CN1027500C - 从水处理流中去除有机溶剂的方法和设备 - Google Patents

从水处理流中去除有机溶剂的方法和设备 Download PDF

Info

Publication number
CN1027500C
CN1027500C CN89100239A CN89100239A CN1027500C CN 1027500 C CN1027500 C CN 1027500C CN 89100239 A CN89100239 A CN 89100239A CN 89100239 A CN89100239 A CN 89100239A CN 1027500 C CN1027500 C CN 1027500C
Authority
CN
China
Prior art keywords
reactor
organic solvent
air
electrolyte solution
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN89100239A
Other languages
English (en)
Other versions
CN1035274A (zh
Inventor
詹姆斯·劳·索伦森
马克·代·亚伯路
查尔斯·亚·格洛克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magma Copper Corp
Original Assignee
Magma Copper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US141,736 priority Critical
Priority to US07/141,736 priority patent/US4874534A/en
Application filed by Magma Copper Corp filed Critical Magma Copper Corp
Publication of CN1035274A publication Critical patent/CN1035274A/zh
Application granted granted Critical
Publication of CN1027500C publication Critical patent/CN1027500C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0205Separation of non-miscible liquids by gas bubbles or moving solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • B03D1/028Control and monitoring of flotation processes; computer models therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/24Pneumatic
    • B03D1/245Injecting gas through perforated or porous area
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/30Oximes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1443Feed or discharge mechanisms for flotation tanks
    • B03D1/1456Feed mechanisms for the slurry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明涉及从来自铜溶剂提取法的提余液和从溶剂中反萃出铜的电解质溶液中除去携带有机溶剂液滴的方法以及在铜电解法从提余液和从溶剂中反萃出铜的电解质水溶液回收有机溶剂的设备。

Description

本发明涉及从水处理流中去除有机溶剂的方法,具体地说,本发明涉及从水处理流中去除象金属铜的溶剂提取法的各种工业生产中所用的有机溶剂的方法和设备,例如:用在电解冶金法的回收提取工艺中,含酸及硫酸铜的电解质水溶液的处理。
如上所述,本发明涉及从用于许多工业生产中所应用的各种水处理流中去除有机溶剂的方法和设备。本发明的详细描述将结合目前所常用于铜的溶剂提取法/电解冶金法进行,但对于该领域的技术人员来说可以知道,除了这个特别的用途之外,本发明还有其他运用性。
从矿石中回收铜的技术包括,用有机溶剂通过离子交换将铜从第一个弱酸性处理流转移至第二个强酸性水溶液。在第一步中,第一个富铜的弱酸性水溶液,被称作为富集浸取液,是与有机溶剂相混合,铜离子优先与溶剂结合,该溶剂在水溶液中是不混溶的并可通过沉降分离出来。然后将已与铜离子结合的有机溶剂与强酸“电解质”溶液混合,在这一步中,铜被解质水溶液从溶剂中分离出来,同时,有机溶剂分子从硫酸中捕获氢离子。然后通过沉降将溶剂从电解质液中物理地分离开关可重新使用。接着铜通过电解冶金法从电解质中分离出来,也即,通过电解(积在阴极片处),在电解槽中铜从电解质溶液中出来,聚到阴极上。
电解质,是含有相对高含量硫酸的水溶液;淋洗液,是含有相对低含量硫酸的水溶液;有机溶剂在这方法中一直是可重复使用的,这方法不“消耗”任何材料。电是可供的基本能源。
然而,这方法中这些材料可被重复使用的程度取决于在几个阶段中,它们彼此分离的程度。具体地说,淋洗溶液在用于矿石之后,成了富铜的富集浸取液,然后将其与有机溶剂混合,该溶剂优先地将氢离子交换给溶液中的铜离子。如所述的,因为有机溶剂与水溶液是不溶混的,它可通过沉降而大量地被分离。然而,一部分有机溶剂不可避免地被水溶液带走,并丢失,除非将其分开。相似地,在其随后通过沉降基本上被分离之后,一部分有机溶剂不可避免地保留了带走的电解质。这种有机溶剂极贵而且在该技术的工业规模的应用中用量极大,因此,提供有效的分离是非常必要的。
已有技术提出了几种技术,它们可以用来处理工艺中的水溶液以去除带走的有机溶剂。例如,可以进行附加的静置沉降阶段,或过滤水溶液。然而,由于必须处理大量的水溶液,过滤法就需要大量的容器和极大量的过滤介质。沉降是有效的,但也由于该技术的任何工业规模的应用中必须要处理大量的水溶液,需要极大的槽。确实,大多数沉淀槽是那么庞大以致于必须放在太阳光下,紫外光辐射引起许多有机溶剂裂解。因此,这些已知技术对从水处理流中去除带走的有机溶剂均是在成本上是无效的。
本发明者还知道,将空气简单地与沉降槽中水溶液相混的技术已被试图用来去除带走的有机物,但这些方法在大规模应用均未成功。
因而,本发明的一个目的是提供一种从水处理流中去除携带的有机溶剂的方法,该方法处理在大规模工业处理过程中的大量的水溶液是简单的和在成本上是有效的。
本发明的另一个目的是提供一种从发生在各种处理工厂中不同情况下的pH值变化的水处理流中去除有机溶剂的方法和设备。
根据本发明,将含有有机溶剂的水处理流从反应室的顶部以垂直方向引入,将空气泡从反应室底部附近的部位引入向上行至顶部,将水溶液从一般低于空气进口处的位置引出,这样,空气在反应室的垂直方向发生了大体积的与水溶液的逆向流动,空气泡垂直上升,逆向于水溶液的流动,达到了与有机分子结合。就这样地,当它们升至反应室的顶部时,较好地,处理设备是能使它们在反应室内的水溶液顶部形成泡沫。泡沫可被控制溢入集槽中,致此泡沫最终破裂,将有机溶剂留在后面。
如果以所附的附图为参考,就可更好地理解本发明,附图为:图1为根据本发明的利用溶剂回收铜技术的铜电解冶金法的流程示意图;
图2为根据本发明的有机溶剂回收反应室的示意图;
图3为图2中所用的反应室的顶端部分;
图4为用于根据本发明的一个发明变体的成功试验的溶剂提取法的更详细的设备图。
如前所述,本发明涉及携带在水处理流中的有机溶剂的回收法,并可用于广泛的各种各样的工业处理法中。因此,尽管下面是以铜电解冶金法来描述本发明的,但本发明并不仅限于此。
图1给出了铜电解冶炼法的示意图。将大量含有铜和其他矿物质,一般是以氧化物的形式,的矿石10放置成堆,或者放入带有排水沟13的大槽12内。包含相对较弱的硫酸水溶液的水淋洗溶液,比如每升水含5至20克硫酸,被称作为“淋洗液”,将其在一般示为14处倾倒于矿石10之上。淋洗液从矿石10中以硫酸铜形式获取铜,如下:
由此成为在该领域中称为富集浸取液(pregnant leach solution)。该富集浸取液还包括其他硫酸矿物质盐,比如MgSO4,Al2(SO4)3,Fe2(SO4)3及其他硫酸盐。将富集浸取液送进可作为沉降池的混合/沉降单元16,并加入分子中含有可交换的氢离子的有机溶剂。
在图1中,当溶剂是以其氢离子形式时,有机溶剂被称为“氢型”(“RH”);当氢离子被交换成铜离子时标为“铜型”(“R2Cu”,比如在单元16中,
有机溶剂典型地为煤油和其他提取剂的混合物,如Henkel公司生产的LIX-622。
在单元16中,溶剂分子氢型RH的H离子与铜离子交换,成为富铜的铜型R2Cu形式。因为在富集浸取液中有机溶剂是不溶混的,它们就可通过沉降简单地被分开。将富铜溶剂,R2Cu,随后从单元16中除去并送入第二个混合/沉降单元18。同时,也将已经除去富铜溶剂的淋洗液从单元16中除去,并作为标作24的淋洗/残液循环管线的一部分重新使用,该淋洗液已去除了富铜的溶剂,一般被称为“残液”。所有这些处理过程通常可连续进行。
尽管溶剂在残液中是不溶混的,但残液会典型地含有一些携带的溶剂;典型地,在残液中会含有20至60ppm溶剂。在总的百分数中这是个相对较小的量,但在现在工业生产中,要用价值大约每加仑55美金的有机溶剂250,000加仑,这时,这样的损失可能就是个重要的经济因素。另外,有机溶剂的存在会干扰以后的处理步骤,如电解步骤。根据本发明,因此,在第一反应室20中将携带溶剂从残液中除去,反应室20结合图2和图3给予详细的描述。将除去的有机溶剂RH送回标为22的“有机物管线循环”。
有机溶剂的选择要对矿物质具有特别的专一性,这样,它就不会从铜淋洗液中提取铝、镁和铁的硫酸盐;这些离子被在淋洗/残液管线循环24的别处被去除以防止它们随着时间而过度地积聚。
在将富铜有机溶剂R2Cu从混合/沉淀单元16除去后,将其送入如上所述的第二个混合/沉淀单元18,在那里将其与也是水酸性溶液的电解质溶液混合,这里每升溶液中含140至190克硫酸。在这个浓度下,结合在溶剂分子上的铜优先地与酸的氢离子交换,这样水溶液又变成含在溶液中作为离子存在的CuSO4,并且有机溶剂也被重新变成氢型,即又变成RH。同样地,有机溶剂在水溶液中的不混溶性使得它们基本上通过沉降来分离,这可以包括几个带溢流口倾倒处理的槽,或其他已知技术。重新转成氢型的RH在一般标为30处又被送回有机物管线循环22。再将含有CuSO4的电解质溶液送到标为32的电解冶金法操作器中,在这个步骤中,将富铜水溶液放在大槽内并施加电压,比如,在大量的不锈钢阴极34和惰性阳极之间。这使得铜以非常高的纯度被电解到阴极电解极34上,结束电解过程。将已经除了部分铜的电解质送回在38处标为36的“电解质管线循环”。
如上所述结合残液淋洗管线,一些有机溶剂被携带进入含有铜的电解质的单元18,并被除去。相应地,含有携带的有机溶剂的电解质通过第二个反应室40,在这反应室中,有机溶剂按照本发明的方法被有效地从水溶液中除去。在标为42处,这种有机溶剂RH被送回到有机物管线22,以重复使用。
因此,如图1中所示,根据本发明的技术在铜电解法中至少有二次机会使有机溶剂可很有利地从水溶液中除去。根据本发明,含有携带的有机溶剂的水溶液被送到反应室20、40的垂直方向沿伸的反应器50(见图2-4)的顶部。空气是从反应器50的底部送入,而已经在此去除了有机溶剂的水溶液,是从反应器50的空气引入点的下面排出。将空气形成气泡,向上穿过容器内的水溶液,产生对流;气泡在其上升的时候,吸附并结合有机溶剂。较好地,气泡在容器的顶部形成泡沫,泡沫溢出容器的上边缘,进入集槽,这样,有机溶剂就被分开了。
图2显示了本发明反应室20、40的整个结构,图3则显示了使用状态下容器的顶端的细节。
如图2所示,水溶液在反应室20、40中通过由进口52送入垂直布置的反应器50而被处理。水溶液是从出口54放出的,这样,水溶液的净流是如标为56的向下方向流动。压缩空气是在置于出口54上面一点的空气进口58送入,设置在出口54稍微上面的压缩空气进口58接着一空气分布器60,该分布器是一简单的带有一系列洞的管子,这样,气泡就由上喷出。空气泡如62所示上升,吸附了不溶性有机溶剂液滴,使之随着气泡上升。控制气泡以形成如图3所示的富有机物泡沫64。随着时间,泡沫溢出容器的顶部,收集在集槽66中,再从集槽66,已被浓缩的有机溶剂可以从68处放出。
下面描述一个成功地试验过的本发明的实施例。水溶液是电解质,在带有大约60ppm有机溶剂的水溶液中,含有每升溶液中有45克铜(作为硫酸盐)和170克硫酸。有机溶剂是煤油和提取剂的混合物,由Henkel公司生产的称为“LIX-622”反应器50的物理数据为:全高    20英尺接触区高    12英尺容器直径    1.5英尺接触区体积 21.2英尺3电解质比重    1.3电解质送料的流率    60加仑/分接触区内的保留时间    2.6分钟空气泡直径(平均)    1毫米泡沫厚度    3英寸溶液层和电解质进口之间的距离    57英寸空气进口和电解质出口之间的距离    24英寸加空气的速率(大约)在30磅/平方寸时为3-4立方英尺/分在一个特别合适的实施例中,空气分布器60为出售的用于花园浇水的普通的穿孔软管的一部分。软管的材料是天然橡胶,基本不受水溶液中的有机溶液或硫酸的影响,合适尺寸的气泡可由这分布器产生。
按上述方法操作发现平均有80%的携带在水溶液中的有机物在出口68得到回收。回收的有机物还包含了大量的有机物湿润的细粒状物,随后通过离心法除去该细粒状物,用这样的方法去除颗粒是特别有益的,因为在电解法中这些微粒会象有机物一样,起干扰作用。
图4显示了与图2和图3中的反应器50相连的更详细的实际连接装置。该实例是用来评价本发明的从水处理流中提取有机溶剂的方法的试验系统。图中缩略词“ESC”是指电解质的气体清洗柱,即指反应器50。可以看到,上述电解质是通过8英寸的不锈钢管送到反应器50的水溶液进口52,而用1英寸的钢管将压缩空气送到空气进口58,空气喷嘴60是如上所述的穿孔的花园浇水软管的一部分。有机溶剂和“油污物”,即湿润的有机颗粒和电解质/有机物/细粒的空气稳定乳浊液,是通过4英寸的不锈钢管送到带有搅拌器72的油污物罐70,并由此送到标为74的用于颗粒分离的离心分离器。电解质被送到罐76,该罐在这个实验装置中,根据本发明还是用来贮存电解质的,而不是进行处理的。随后过滤所有的电解质以除去溶剂。过滤不是规定必需的,如果有机溶剂是按本发明被从电解质中除去的话。
泡沫的形成,如该领域的技术人员所知的那样,是一种处理设备选择的单独工艺参数的函数,它直接关系到根据本发明的特殊处理流和须分离的有机溶剂。一般来说,气泡上升到反应器内溶液的表面时是由包围了一层水溶液的膜的空气所组成,当气泡上升穿过泡沫时,在重力影响之下水溶液从气泡的表面流走、掉下,回到水溶液中。因为有机溶剂是疏水的,它留在气泡表面的时间较长些,所以,泡沫的厚度越深,在泡沫层中有机溶剂对水溶液的比例就越高。
在当气泡上升透过水溶液的下降流柱时,通过气泡的直接接触有机溶剂被气泡收集而从水溶液中除去。为了确保气泡和有机溶剂之间的接触,必须使有效接触面积达到最大,这通过控制空气泡的数目和尺寸来达到。
对给定的水溶液,引入反应器中的气泡的最大数目应限制在保持某个水平之下,即在此时,空气泡趋于聚集和合并的水平之下。允许的实际空气量可容易地由实验确定。
气泡的尺寸应是最小的以使提供通入空气的单位体积的最大表面积。然而,如果气泡的直径减少得太多,气泡就不能克服水溶液的下降速度,这样气泡就会象有机小滴一样被携带于水溶液。最小气泡直径也是水溶液的密度和粘度以及水溶液穿过容器的速度的函数。
在容器中水溶液的保留时间较好的是水溶液流过容器的最佳平均保留时间,可以对各特殊处理运用的实验来确定,并与给定的水流的特有性质有关。还发现提供满意结果的典型的保留时间是大大少于有机物的自然合并所需要的时间,比如在沉降操作中,这使得根据本发明的回收有机溶剂的方法大大优于沉降法。由于根据本发明所提供的对向流动而增加的有机溶剂液滴暴露于空气泡的机率所产生的直接结果是减少了需要的保留时间,对向流动由于在水溶液是从进口向下流向出口的容器中,气泡是从容器的底部引入的。
该领域技术人员可容易地利用本发明的方法,确定最佳的容器直径和深度以及其他提供适当数量和尺寸的气泡所需的设备的参数,在任何各个有机溶剂的分离方法中。特别是,要提出的是反应器的物理尺寸是重要的:1.空气进口和水溶液进口之间的接触区的体积应足以使需要的保留时间作为进出送料速率的一个函数。
2.反应器的高度与直径的比例应达最大(在可实施的限制范围内),以提供上升的空气泡和携带的有机溶剂液滴之间的最大的碰撞可能性。其作用是提供增加的水溶液中任何个别气泡的停留时间。
3.反应器的直径应足以防止上升的气泡的过量聚结,这种聚结的结果是减少它们的有效表面积。
如前所述,该领域的技术人员可设计出合适的设备,只要注意到以上这几点。
尽管如前所述的,已经揭示和详细描述了本发明的一个较好的实施例,但这不意味着对本发明方法的限制,本发明方法除了用于所述的铜电解法之外还有更广泛的应用,不仅仅是这里所举的例子。本发明只是受到下面的权利要求的限定。

Claims (7)

1.从来自铜溶剂提取法的提余液和从溶剂中反萃出铜的电解质溶液中除去携带有机溶剂液滴的方法,其特征在于,(1)在向垂直方向伸展的反应器顶部附近的部位引入含有上述携带有机溶剂的电解质溶液,(2)在所述的反应器底部附近的部位引入空气气泡,(3)在所述的水溶液中,使所述的空气形成气泡,(4)从在所述反应器的底部附近,处于所述的空气引入点的部位的下面的出口排掉上述电解质溶液,(5)控制所述的电解质溶液进入和排出所述的反应器流动速率和控制供给所述反应器的空气的速率,使得在所述电解质溶液中的上升的空气气泡结合以上所述的有机溶剂的液滴,并使得所述的有机溶剂上升到电解质溶液层的顶部,并(6)从所述的反应器的顶部除去所述的有机溶剂。
2.根据权利要求1所述的方法,其特征在于所述的有机溶剂是可与金属离子优先结合的物质。
3.根据权利要求1所述的方法,其特征在于所述的步骤是连续的。
4.根据权利要求1所述的方法,其特征在于所述的有机溶剂液滴与空气气泡所形成的泡沫是通过溢流从所述的反应器排到至少部分地围绕所述的反应器的集槽中。
5.根据权利要求1所述的方法,其特征在于,所述的空气是压缩空气,它是通过空气分布器引入所述的反应器的。
6.根据权利要求1所述的方法,其特征在于,对所述反应器中的电解质溶液的液位进行监控,从而保证所述反应器中的电解质溶液的液位保持在所述的电解质溶液的进料点上。
7.从提余液和从溶剂中反萃出铜的电解质水溶液中回收有机溶剂的设备,其特征在于包括:至少两个立式反应器,各反应器包括:在反应器顶部附近导入含有携带有机溶剂液滴的电解质溶液的进口〔52〕,用于将空气导入所述反应器的装置和使所述空气在该反应器内的电解质溶液中形成气泡的装置〔60〕,该装置设置在所述反应器的底部附近,在该反应器中所述的电解质溶液的出口〔54〕低于空气的进口〔58〕,用来控制所述的电解质溶液从所述的进口〔52〕通过该反应器〔50〕到达所述的出口〔54〕的流速和使得所述的空气气泡通过所述的溶液向上升并吸附所述的有机溶剂液滴的,在该反应器内的所述电解质溶液的表面上形成泡沫的装置,和从所述反应器顶端收集所述泡沫的集槽〔66〕。
CN89100239A 1988-01-11 1989-01-11 从水处理流中去除有机溶剂的方法和设备 Expired - Fee Related CN1027500C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US141,736 1988-01-11
US07/141,736 US4874534A (en) 1988-01-11 1988-01-11 Method for removal of organic solvents from aqueous process streams

Publications (2)

Publication Number Publication Date
CN1035274A CN1035274A (zh) 1989-09-06
CN1027500C true CN1027500C (zh) 1995-01-25

Family

ID=22496998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89100239A Expired - Fee Related CN1027500C (zh) 1988-01-11 1989-01-11 从水处理流中去除有机溶剂的方法和设备

Country Status (5)

Country Link
US (1) US4874534A (zh)
CN (1) CN1027500C (zh)
AU (1) AU612001B2 (zh)
CA (1) CA1319453C (zh)
WO (1) WO1989006161A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273654A (en) * 1992-06-08 1993-12-28 Aquatechnology Resource Management Solvent removal system
CA2104437C (en) * 1992-08-27 1999-05-25 Renzo Alberto Gasparini Noziglia Method for purifying aqueous phases in hydrometallurigical extractions
US5516408A (en) * 1993-04-19 1996-05-14 Magma Copper Company Process for making copper wire
US5366612A (en) * 1993-04-19 1994-11-22 Magma Copper Company Process for making copper foil
US5820653A (en) * 1993-04-19 1998-10-13 Electrocopper Products Limited Process for making shaped copper articles
RU2126312C1 (ru) * 1993-04-19 1999-02-20 ЭлектроКуппер Продактс Лимитед Способ получения металлического порошка, оксидов меди и медной фольги
US5670033A (en) * 1993-04-19 1997-09-23 Electrocopper Products Limited Process for making copper metal powder, copper oxides and copper foil
US5580463A (en) * 1994-10-27 1996-12-03 Chevron U.S.A. Inc. Pressurized, sparged flotation column
US5879556A (en) * 1995-01-25 1999-03-09 Henkel Corporation Method of recovering extractant
US5643459A (en) * 1995-04-26 1997-07-01 Cominco Engineering Services Ltd. Flotation method and apparatus
SE9502459L (sv) * 1995-07-06 1996-07-08 Andreas Schelin Anordning för avskiljning av olja ur vatten
US5849172A (en) * 1997-06-25 1998-12-15 Asarco Incorporated Copper solvent extraction and electrowinning process
FI115904B (fi) 2002-01-25 2005-08-15 Bcde Group Waste Man Ltd Oy Menetelmä ja laite epäpuhtauksien poistamiseksi jätevedestä elektroflotaatiolla
US8133396B2 (en) * 2007-01-11 2012-03-13 Smith & Loveless, Inc. Dissolved air floatation with filter system
US9994962B2 (en) 2016-02-23 2018-06-12 Minextech, Llc Solvent extraction and stripping system
EP3455170B1 (en) * 2016-05-09 2022-01-26 Unilever Global IP Limited Device and method for purification of wastewater
US20190263679A1 (en) * 2016-06-10 2019-08-29 OPEC Remediation Technologies Pty Limited Method And Apparatus For Separation Of A Substance From Groundwater
CN109897958B (zh) * 2019-04-16 2021-01-08 中国恩菲工程技术有限公司 含磷酸类萃取剂溶液中铜的回收方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203837A (en) * 1976-01-16 1980-05-20 Hoge John H Process for removal of discrete particulates and solutes from liquids by foam flotation
US4130626A (en) * 1977-10-31 1978-12-19 Amax Inc. Flotation separation of iron oxide from undigested matte particles obtained from autoclave leach residues
US4617113A (en) * 1984-12-18 1986-10-14 Deister Concentrator Company, Inc. Flotation separating system

Also Published As

Publication number Publication date
AU3038989A (en) 1989-08-01
WO1989006161A1 (en) 1989-07-13
CA1319453C (en) 1993-06-22
US4874534A (en) 1989-10-17
CN1035274A (zh) 1989-09-06
AU612001B2 (en) 1991-06-27

Similar Documents

Publication Publication Date Title
CN1027500C (zh) 从水处理流中去除有机溶剂的方法和设备
CN103243348B (zh) 回收电镀废水中重金属的方法和设备
CN1654317A (zh) 一种净化湿法磷酸的生产工艺及其设备
US6350354B1 (en) Modular solvent extraction plant
CN100558438C (zh) 用于提纯水溶液以除去萃取溶液液滴的方法和装置
CN102284191A (zh) 一种三相溶剂气助萃取方法
CN201871247U (zh) 液氨分油装置
CN211546178U (zh) 一种油田化学驱驱油采出水用的多级环流浮选柱及处理系统
US11293077B2 (en) Method for recovering scandium from red mud left from alumina production
CN1216813C (zh) 一种油田废水处理方法及设备
US6692628B2 (en) Process to remove ferric iron impurities from an acidic aqueous solution used in the electro-winning of copper
CN105154673A (zh) 一种搅拌萃取制备高纯钴溶液的方法
CN107601750A (zh) 一种镍钴废水的处理设备
CN111850603B (zh) 一种含油铜泥的回收装置和回收方法
CN215757623U (zh) 一种退锡废液再生回收装置
US2223832A (en) Process for the recovery of precious metals present in sea water
CN213699888U (zh) 蒸馏甲苯中和缓冲罐
CN212559493U (zh) 一种高效收集高浓度氢氧化镍的回收系统
CN2579880Y (zh) 一种油田废水处理装置
CN201010680Y (zh) 可有效减少生物冶金工艺中负载有机相中杂质夹带的装置
CN1036318C (zh) 冠状液膜分离方法及其装置
CN1403381A (zh) 一种从废碱液中回收有机酸的方法
CN1050015A (zh) 从含乙酸有机工业废水中回收乙酸的工艺
CN1038075A (zh) 萃取法处理含锰废水新工艺
CN1038076A (zh) 含油污水处理设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee