CN102706455A - 体感温度测量方法 - Google Patents

体感温度测量方法 Download PDF

Info

Publication number
CN102706455A
CN102706455A CN2012101103612A CN201210110361A CN102706455A CN 102706455 A CN102706455 A CN 102706455A CN 2012101103612 A CN2012101103612 A CN 2012101103612A CN 201210110361 A CN201210110361 A CN 201210110361A CN 102706455 A CN102706455 A CN 102706455A
Authority
CN
China
Prior art keywords
temperature
air
calculating
blackness
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101103612A
Other languages
English (en)
Other versions
CN102706455B (zh
Inventor
杨瑞梁
高龙
周义德
梁永智
马富芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyuan University of Technology
Original Assignee
Zhongyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongyuan University of Technology filed Critical Zhongyuan University of Technology
Priority to CN201210110361.2A priority Critical patent/CN102706455B/zh
Publication of CN102706455A publication Critical patent/CN102706455A/zh
Application granted granted Critical
Publication of CN102706455B publication Critical patent/CN102706455B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明公开一种体感温度测量方法,是按照下述方式进行的:(1)测量所处环境所有表面的角系数
Figure DEST_PATH_IMAGE002
、表面温度
Figure DEST_PATH_IMAGE004
和表面黑度
Figure DEST_PATH_IMAGE006
,(2)计算得出表面黑度的加权值
Figure DEST_PATH_IMAGE008
:(3)计算得出平均辐射温度
Figure DEST_PATH_IMAGE010
:(4)测量计算环境空气温度
Figure DEST_PATH_IMAGE012
、辐射换热系数
Figure DEST_PATH_IMAGE014
和对流换热系数
Figure DEST_PATH_IMAGE016
;(5)计算推导出操作温度
Figure DEST_PATH_IMAGE018
,(6)测量环境空气的相对湿度
Figure DEST_PATH_IMAGE020
和空气流速
Figure DEST_PATH_IMAGE022
;(7)计算体感温度t per 。与现有技术相比,本发明测量的时候通过测量空气的温度、湿度和风速等参数,考虑了辐射、温度、风度,所得到的体感温度更接近人体的实际感觉。尤其适用于婴幼儿房、病房等对体感温度较为敏感的场所,以便于即使调整周边环境使房内的内处于一种较为舒适的状态。

Description

体感温度测量方法
技术领域
本发明涉及一种测量人体体感温度的方法,可用于对实际温度较为敏感的场所。
背景技术
体感温度是考虑了空气温度、湿度和风速等因素的综合影响,人体所感受到的冷暖程度。但在具体应用时,通常把空气温度稍加修正,即作为体感温度。这种体感温度的计算方法简单,但没有充分考虑辐射、湿度、风速三因素的影响,数据偏离人体实际较多,难以真正应用于对实际温度较为敏感的场所。另外,与本技术相关较多的背景技术是使用传统的温度计来测量空气温度。实际的空气温度不同于人体的实际感觉,例如夏季和春季,室内空气温度同为27℃,但春季虽然人穿得较多,但仍然明显感觉较冷。这是因为人的感觉温度,除与室内空气温度相关外,还与室内各围护结构表面的热辐射有密切的关系。因此使用温度计测量的空气温度来实际代替人体的感觉温度,明显不够客观。
发明内容
本发明要解决的技术问题是体感温度测量时与实际情况存在偏差,提供一种所得到的体感温度与实际体感温度更为接近的体感温度测量方法。
本发明的体感温度测量方法,是按照下述方式进行的:
(1)测量所处环境所有表面的角系数                                                
Figure 2012101103612100002DEST_PATH_IMAGE001
、表面温度
Figure 176179DEST_PATH_IMAGE002
和表面黑度
Figure 2012101103612100002DEST_PATH_IMAGE003
,其中表面数定为
Figure 926704DEST_PATH_IMAGE004
个,
Figure 202757DEST_PATH_IMAGE002
Figure 379792DEST_PATH_IMAGE003
分别表示第
Figure 2012101103612100002DEST_PATH_IMAGE005
个表面的黑度、表面温度和表面黑度,
Figure 301218DEST_PATH_IMAGE006
(2)计算得出表面黑度的加权值
Figure 2012101103612100002DEST_PATH_IMAGE007
Figure 314436DEST_PATH_IMAGE008
其中
Figure 2012101103612100002DEST_PATH_IMAGE009
表示第
Figure 494357DEST_PATH_IMAGE005
个表面的黑度加权系数,
Figure 260319DEST_PATH_IMAGE010
表示第
Figure 742859DEST_PATH_IMAGE005
个表面的表面积,表示所有表面的表面积之和,
Figure 977794DEST_PATH_IMAGE012
(3)计算得出平均辐射温度
Figure 2012101103612100002DEST_PATH_IMAGE013
(4)测量计算环境空气温度
Figure 2012101103612100002DEST_PATH_IMAGE015
、辐射换热系数
Figure 595256DEST_PATH_IMAGE016
和对流换热系数
Figure 2012101103612100002DEST_PATH_IMAGE017
(5)计算推导出操作温度
Figure 189311DEST_PATH_IMAGE018
    
Figure 2012101103612100002DEST_PATH_IMAGE019
(6)测量环境空气的相对湿度
Figure 869732DEST_PATH_IMAGE020
和空气流速
Figure 2012101103612100002DEST_PATH_IMAGE021
(7)计算体感温度:
  
Figure 204505DEST_PATH_IMAGE022
   其中
Figure 2012101103612100002DEST_PATH_IMAGE023
Figure 882742DEST_PATH_IMAGE024
为常数。
与现有技术相比,本发明测量的时候通过测量空气的温度、湿度和风速等参数,考虑了辐射、温度、风度,所得到的体感温度更接近人体的实际感觉。尤其适用于婴幼儿房、病房等对体感温度较为敏感的场所,以便于即使调整周边环境使房内的内处于一种较为舒适的状态。
附图说明
图1是本发明的工作流程图。
具体实施方式
如图1所示,一种体感温度测量方法,是按照下述方式进行的:
(1)测量所处环境所有表面的角系数、表面温度
Figure 165880DEST_PATH_IMAGE002
和表面黑度
Figure 353279DEST_PATH_IMAGE003
,其中表面数定为
Figure 210989DEST_PATH_IMAGE004
个,
Figure 209163DEST_PATH_IMAGE001
Figure 155253DEST_PATH_IMAGE002
分别表示第
Figure 671609DEST_PATH_IMAGE005
个表面的黑度、表面温度和表面黑度,
Figure 89952DEST_PATH_IMAGE006
(2)计算得出表面黑度的加权值
Figure 67879DEST_PATH_IMAGE007
Figure 800343DEST_PATH_IMAGE008
其中
Figure 304749DEST_PATH_IMAGE009
表示第
Figure 831676DEST_PATH_IMAGE005
个表面的黑度加权系数,
Figure 627725DEST_PATH_IMAGE010
表示第个表面的表面积,
Figure 194896DEST_PATH_IMAGE011
表示所有表面的表面积之和,
Figure 991861DEST_PATH_IMAGE012
(3)计算得出平均辐射温度
Figure 196578DEST_PATH_IMAGE013
Figure 270844DEST_PATH_IMAGE014
(4) 测量计算环境空气温度
Figure 359629DEST_PATH_IMAGE015
、辐射换热系数
Figure 493939DEST_PATH_IMAGE016
和对流换热系数
Figure 185951DEST_PATH_IMAGE017
(5)计算推导出操作温度
Figure 798329DEST_PATH_IMAGE018
    
Figure 7200DEST_PATH_IMAGE019
(6)测量环境空气的相对湿度
Figure 312411DEST_PATH_IMAGE020
和空气流速
Figure 226140DEST_PATH_IMAGE021
(7)计算体感温度:
  
Figure 639279DEST_PATH_IMAGE022
其中
Figure 181698DEST_PATH_IMAGE024
为常数,这里取
Figure 2012101103612100002DEST_PATH_IMAGE025
Figure 533789DEST_PATH_IMAGE026
其中,表面黑度是指所处环境表面的实际辐射力与同温度下绝对黑体的辐射力之比值,可通过反射式黑度计或真空辐射法进行测量。
表面角系数是指辐射换热时,一个表面发射的能量中能直接到达另一表面的百分数,可用角系数测量仪进行测定。
辐射换热系数是指当固体与固体表面之间的温度差为1℃时, 1m×1m壁面面积在每秒通过辐射方式所能传递的热量,该系数仅适合用于温差较小时的辐射换热,不适合用于大温差情况。可通过研究学者Rapp提出的辐射换热经验公式进行计算取得。
对流换热系数是指当流体与固体表面之间的温度差为1℃时, 1m×1m壁面面积在每秒所能传递的热量,一般可通过研究学者D.Mitchell提出的对流换热经验公式进行计算取得。
以具有4个墙壁、1个屋顶和1个地板的婴儿房间为例,其墙壁、屋顶和地板的面积基本相同,在春天通过反射式黑度计测得墙壁、屋顶和地板的黑度分别为0.5、0.4、0.6,表面温度均为27℃;室内空气温度为27℃,相对湿度为40%,空气流速为0.2m/s,现求其体感温度。
墙壁、屋顶和地板之间可用角系数测量仪测量他们相互的角系数。它们的面积接近,可近似认为他们相互的角系数相同。
则可计算出表面黑度的加权值为:
Figure 2012101103612100002DEST_PATH_IMAGE027
平均辐射温度
Figure 235772DEST_PATH_IMAGE013
为:
(K)
 按Rapp提出的辐射换热经验公式,在20℃~30℃之间,
Figure 2012101103612100002DEST_PATH_IMAGE029
Figure 676036DEST_PATH_IMAGE030
按D. Mitchell提出的对流换热经验公式,对流换热系数应为:
Figure 2012101103612100002DEST_PATH_IMAGE031
Figure 515422DEST_PATH_IMAGE030
 则操作温度为:
Figure 86343DEST_PATH_IMAGE032
(℃)
  
即体感温度为21.2℃,远远低于室内空气温度27℃,这与春季室内人的实际感觉是完全相同的:即室外虽然可能短时间温暖,但由于室外温度的日波动,致使传入房间的热量较少,使室内各围护结构的表面温度与室内温度基本相同,人感觉温度要远低于室内实际的空气温度。

Claims (1)

1.一种体感温度测量方法,其特征在于是按照下述方式进行的:
(1)测量所处环境所有表面的角系数                                               
Figure 2012101103612100001DEST_PATH_IMAGE002
、表面温度
Figure 2012101103612100001DEST_PATH_IMAGE004
和表面黑度
Figure 2012101103612100001DEST_PATH_IMAGE006
,其中表面数定为个,
Figure 865949DEST_PATH_IMAGE004
Figure 241566DEST_PATH_IMAGE006
分别表示第个表面的黑度、表面温度和表面黑度,
Figure 2012101103612100001DEST_PATH_IMAGE012
(2)计算得出表面黑度的加权值
Figure 2012101103612100001DEST_PATH_IMAGE014
其中
Figure 2012101103612100001DEST_PATH_IMAGE018
表示第
Figure 220106DEST_PATH_IMAGE010
个表面的黑度加权系数,
Figure 2012101103612100001DEST_PATH_IMAGE020
表示第个表面的表面积,
Figure 2012101103612100001DEST_PATH_IMAGE022
表示所有表面的表面积之和,
Figure 2012101103612100001DEST_PATH_IMAGE024
(3)计算得出平均辐射温度
Figure 2012101103612100001DEST_PATH_IMAGE028
(4)测量计算环境空气温度
Figure 2012101103612100001DEST_PATH_IMAGE030
、辐射换热系数和对流换热系数
(5)计算推导出操作温度
Figure 2012101103612100001DEST_PATH_IMAGE036
    
Figure 2012101103612100001DEST_PATH_IMAGE038
(6)测量环境空气的相对湿度
Figure 2012101103612100001DEST_PATH_IMAGE040
和空气流速
Figure DEST_PATH_IMAGE042
(7)计算体感温度:
  
Figure DEST_PATH_IMAGE044
   其中
Figure DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE048
为常数。
CN201210110361.2A 2012-04-16 2012-04-16 体感温度测量方法 Expired - Fee Related CN102706455B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210110361.2A CN102706455B (zh) 2012-04-16 2012-04-16 体感温度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210110361.2A CN102706455B (zh) 2012-04-16 2012-04-16 体感温度测量方法

Publications (2)

Publication Number Publication Date
CN102706455A true CN102706455A (zh) 2012-10-03
CN102706455B CN102706455B (zh) 2014-03-12

Family

ID=46899405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210110361.2A Expired - Fee Related CN102706455B (zh) 2012-04-16 2012-04-16 体感温度测量方法

Country Status (1)

Country Link
CN (1) CN102706455B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901508A (zh) * 2012-12-25 2014-07-02 联想(北京)有限公司 体感温度测量方法及终端
CN103994556A (zh) * 2013-02-18 2014-08-20 三菱电机株式会社 空气调节机
CN104501358A (zh) * 2014-12-16 2015-04-08 广东美的制冷设备有限公司 空调器控制方法和系统
CN106152384A (zh) * 2015-04-08 2016-11-23 龚禹豪 一种体感温度测量方法
CN106202658A (zh) * 2016-06-30 2016-12-07 上海理工大学 用软件计算人体局部部位角系数的方法
CN106372172A (zh) * 2016-08-30 2017-02-01 乐视控股(北京)有限公司 基于体感温度的信息提示方法及装置
CN112649104A (zh) * 2020-12-22 2021-04-13 朱寿燕 一种体感温度测量方法、系统及介质
CN114938784A (zh) * 2022-05-09 2022-08-26 华南农业大学 一种哺乳仔猪智能保温装置及控制方法
KR102540834B1 (ko) * 2022-07-08 2023-06-13 대한민국 야외 지면가열을 고려한 체감온도 산출 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436852A (en) * 1990-09-21 1995-07-25 Yamatake-Honeywell Co., Ltd. Method and apparatus for calculating predicted mean thermal sensitivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436852A (en) * 1990-09-21 1995-07-25 Yamatake-Honeywell Co., Ltd. Method and apparatus for calculating predicted mean thermal sensitivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘璟瑜: "空气湿度和风对体感温度的影响", 《河南气象》 *
石秀云: "格尔木市体感温度预报方法研究", 《青海科技》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901508A (zh) * 2012-12-25 2014-07-02 联想(北京)有限公司 体感温度测量方法及终端
CN103994556A (zh) * 2013-02-18 2014-08-20 三菱电机株式会社 空气调节机
CN104501358A (zh) * 2014-12-16 2015-04-08 广东美的制冷设备有限公司 空调器控制方法和系统
CN104501358B (zh) * 2014-12-16 2017-06-16 广东美的制冷设备有限公司 空调器控制方法和系统
CN106152384A (zh) * 2015-04-08 2016-11-23 龚禹豪 一种体感温度测量方法
CN106202658A (zh) * 2016-06-30 2016-12-07 上海理工大学 用软件计算人体局部部位角系数的方法
CN106372172A (zh) * 2016-08-30 2017-02-01 乐视控股(北京)有限公司 基于体感温度的信息提示方法及装置
CN112649104A (zh) * 2020-12-22 2021-04-13 朱寿燕 一种体感温度测量方法、系统及介质
CN112649104B (zh) * 2020-12-22 2023-05-05 朱寿燕 一种体感温度测量方法、系统及介质
CN114938784A (zh) * 2022-05-09 2022-08-26 华南农业大学 一种哺乳仔猪智能保温装置及控制方法
CN114938784B (zh) * 2022-05-09 2023-08-25 华南农业大学 一种哺乳仔猪智能保温装置及控制方法
KR102540834B1 (ko) * 2022-07-08 2023-06-13 대한민국 야외 지면가열을 고려한 체감온도 산출 방법 및 장치

Also Published As

Publication number Publication date
CN102706455B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN102706455B (zh) 体感温度测量方法
Lyons et al. Window performance for human thermal comfort
Tanabe et al. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)
Alfano et al. Thermal comfort: Design and assessment for energy saving
Liu et al. The thermal mechanism of warm in winter and cool in summer in China traditional vernacular dwellings
Shimazaki et al. Application of human thermal load into unsteady condition for improvement of outdoor thermal comfort
Kazkaz et al. Operative temperature and globe temperature
Yang et al. Experimental and numerical study of physiological responses in hot environments
Albatayneh et al. Development of a new metric to characterise the buildings thermal performance in a temperate climate
Schellen et al. Downdraught assessment during design: Experimental and numerical evaluation of a rule of thumb
Koskela et al. Turbulence correction for thermal comfort calculation
JP2019113303A (ja) Hvac装置を制御する方法および制御ユニット
Sakoi et al. Heat balance model for a human body in the form of wet bulb globe temperature indices
Pan et al. Numerical studies on the microclimate around a sleeping person and the related thermal neutrality issues
Uchiyama et al. Estimation of core temperature based on a human thermal model using a wearable sensor
Madsen Thermal comfort measurements
Shimazaki et al. Thermal responses and perceptions under distinct ambient temperature and wind conditions
Laghrouche et al. Low-cost embedded spirometer based on micro machined polycrystalline thin film
Zhang et al. Human environmental heat transfer simulation with CFD–the advances and challenges
Zhou et al. Measurement of the convective heat transfer coefficient of the human body in the lift-up design
Hu et al. Overall thermal sensation and comfort prediction with different model combinations: Cold and hot step-change environments in winter
EP3213044B1 (en) An operative temperature measuring device
Heydari et al. A Study of the Impact of Kharkhona on Wind Speed in the Vernacular Housing of Sistan Region
Ekici et al. A comparison of suit dresses and summer clothes in the terms of thermal comfort
Sokolová et al. Evaluation of thermo-hygric microclimate parameters in the work environment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140312

Termination date: 20190416

CF01 Termination of patent right due to non-payment of annual fee