CN102663233A - 溢油海面电磁散射的计算方法 - Google Patents

溢油海面电磁散射的计算方法 Download PDF

Info

Publication number
CN102663233A
CN102663233A CN2012100722634A CN201210072263A CN102663233A CN 102663233 A CN102663233 A CN 102663233A CN 2012100722634 A CN2012100722634 A CN 2012100722634A CN 201210072263 A CN201210072263 A CN 201210072263A CN 102663233 A CN102663233 A CN 102663233A
Authority
CN
China
Prior art keywords
sea
oil spilling
oil
wave
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100722634A
Other languages
English (en)
Inventor
杨永红
林明
张贞凯
奚彩萍
凌霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN2012100722634A priority Critical patent/CN102663233A/zh
Publication of CN102663233A publication Critical patent/CN102663233A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明属于海洋微波遥感技术领域,具体涉及一种溢油海面电磁散射的计算方法。一种溢油海面电磁散射的计算方法,包括如下步骤:步骤一、根据海洋环境参数和,计算清洁海面的JONSWAP频谱
Figure 90450DEST_PATH_IMAGE002
;步骤二、根据溢油抑制函数,计算溢油海面的频谱
Figure 7591DEST_PATH_IMAGE004
;步骤三、根据Marangoni波的色散关系和溢油海面的频谱,计算溢油海面的方向谱;步骤四、采用双尺度法,计算溢油海面的雷达后向散射系数
Figure 247784DEST_PATH_IMAGE008
Figure 62156DEST_PATH_IMAGE010
。本发明通过Marangoni波的色散关系和溢油抑制函数来求解溢油海面的方向谱;并采用双尺度近似法来计算溢油海面的雷达后向散射系数。与现有技术相比,其适用范围广、计算准确、运算量小。

Description

溢油海面电磁散射的计算方法
技术领域
本发明属于海洋微波遥感技术领域,具体涉及一种溢油海面电磁散射的计算方法。 
背景技术
海洋中蕴含着丰富的渔业资源、矿产资源、药物资源以及油气资源等,它与人类的经济活动息息相关。海洋溢油污染具有影响海域范围广、持续时间长、对海洋生物和生态环境破坏大的特点。 
在溢油监测方面,主要有直接探测和遥感探测两种方法。遥感探测主要采用电磁波的方法来区分溢油和海面,目前常用的电磁波有可见光、微波、红外、紫外及激光。合成孔径雷达(SAR,synthetic aperture radar)作为一种全天时、全天候和高分辨率微波遥感技术得到了快速发展,在溢油监测方面发挥了积极的作用,然而高虚警率问题阻碍了SAR溢油监测系统的应用,尽管已提出了许多种SAR溢油识别方法,但该问题仍未得到彻底的解决。溢油海面电磁散射是微波遥感方法探测海面溢油的物理基础,这将有助于改进溢油识别方法,从而降低SAR溢油监测系统的高虚警率。 
在溢油海面电磁散射的计算问题上,涉及到海面电磁散射和溢油对海面的影响两个方面的内容。海面电磁散射的计算方法大致分为有近似法和数值法两种。数值法具有较高的精度,但存在运算量较大的缺点。在近似法中,主要有KA法、微扰法及双尺度法。KA法适用于大起伏的粗糙面,微扰法适用于微起伏的粗糙面,而双尺度法认为海面中同时包含大尺度波和小尺度波,并且小尺度粗糙度是按照表面 大尺度粗糙度的斜率分布来倾斜的。因此,双尺度法的适用范围更广,计算结果较KA法和微扰法更准确。 
关于溢油对海面的影响方面,现有的大多数方法,如文献(N.Pinel,N.Déchamps,C.Bourlier.Modeling of the bistatic electromagnetic scattering from sea surfaces covered in oil for microwave applications[J].IEEE Trans.Geosci.Remote Sens.,2008,46(2):385-392),只考虑了溢油对海面频谱的影响,给出了一种溢油海面电磁散射的数值计算方法。但是在该文献中,忽略了溢油对海面方向谱的影响,也未涉及溢油海面的色散关系。 
发明内容
本发明所要解决的技术问题是,针对现有技术存在的缺陷提供一种适用于溢油海面电磁散射的近似计算,适用范围广、计算准确及运算量小的溢油海面电磁散射的计算方法。 
本发明为实现上述目的,采用如下技术方案: 
本发明溢油海面电磁散射的计算方法,其特征在于包括如下步骤: 
步骤一、根据海洋环境参数和,计算清洁海面的JONSWAP频谱S(ω); 
步骤二、根据溢油抑制函数,计算溢油海面的频谱Soil(ω); 
步骤三、根据Marangoni波的色散关系和溢油海面的频谱Soil(ω),计算溢油海面的方向谱; 
步骤四、采用双尺度法,计算溢油海面的雷达后向散射系数 
Figure BDA0000144253390000021
和 
Figure BDA0000144253390000022
本发明通过Marangoni波的色散关系和溢油抑制函数来求解溢油海面的方向谱;并采用双尺度近似法来计算溢油海面的雷达后向散射系数,其中,小尺度溢油海浪电磁散射系数采用微扰法来计算,而大尺度溢油海浪斜率的统计分布则采用 Cox-Munk溢油经验模型。与现有技术相比,本发明具有适用范围广、计算准确及运算量小的优点。 
附图说明
图1是本发明方法的流程图 
具体实施方式
下面结合附图对本发明的技术方案进行详细说明: 
如图1所示,本发明溢油海面电磁散射的计算方法,包括如下步骤: 
步骤一:根据海洋环境参数和,计算清洁海面的JONSWAP频谱S(ω); 
JONSWAP海浪谱的表达式为 
Figure BDA0000144253390000031
式中,  β = exp [ - ( ω - ω p ) 2 2 δ 2 ω p 2 ] , δ = 0.07 ω p ≤ ω 0.09 ω p > ω , ω p = 7 π ( g 2 F U 3 ) - 0.33 , ωp为谱峰值角频率,ω为海浪的角频率,γ为峰升因子,δ为峰形参量,g为引力常数,α为尺度系数,U为海面上10m处的风速,F为风区长度; 
步骤二:根据溢油抑制函数,计算溢油海面的频谱Soil(ω): 
溢油海面的海浪谱 
Figure BDA0000144253390000035
式中,q为海面溢油区域归一化因子,溢油抑制函数 P ( ω ) = 1 ± 2 τ + 2 τ 2 - X + Y ( X + τ ) 1 ± 2 τ + 2 τ 2 - 2 X + 2 X 2 , τ = ω D 2 ω , X = Ek 2 ρ 2 υ ω 3 , E为油膜的弹性模量,υ为油膜的运动粘度,ωD为溢油的特征角频率,ρ为溢油的密度,k为波数; 
步骤三:根据Marangoni波的色散关系和溢油海面的频谱Soil(ω),计算溢油海面的方向谱Woil(km,kn): 
溢油海面波数进行网格离散化处理(km,kn),km为海面在x方向上的波数, 
Figure BDA0000144253390000041
m=1,2,K,M-1,即在x方向上海面波数离散化M个点;kn为海面在y方向上的波数, n=1,2,K,N-1,即在y方向上海面波数离散化N个点,其中,L1为海面在x方向的长度,L2为海面在y方向的长度; 
计算溢油海面上每个网格点的海浪波数 
Figure BDA0000144253390000043
根据Marangoni波的色散关系计算角频率 
Figure BDA0000144253390000044
其中,η为油膜的动力粘度; 
则溢油海面的方向谱 W oil ( k m , k n ) = 4 3 [ sec 4 ( π 8 ) ρη E 2 ] 1 3 k mm 1 3 S oil ( ω mm ) ;
步骤四:采用双尺度法,计算溢油海面的雷达后向散射系数 
Figure BDA0000144253390000046
和 
Figure BDA0000144253390000047
σ oil 0 ( θ i ) hh = ∫ - ∞ ∞ ∫ - ctg θ i ∞ ( h ^ · h ^ ′ ) 4 σ hh ( θ i ' ) ( 1 + z x tg θ i ) P ( z x , z y ) dz x dz y
σ oil 0 ( θ i ) vv = ∫ - ∞ ∞ ∫ - ctg θ i ∞ ( v ^ · v ^ ′ ) 4 σ vv ( θ i ' ) ( 1 + z x tg θ i ) P ( z x , z y ) dz x dz y
式中,θi,θ′i分别表示雷达波在基准坐标系和本地坐标系中的入射角; 
Figure BDA00001442533900000410
分别表示基准坐标系中的单位水平,垂直极化矢量; 
Figure BDA00001442533900000411
分别表示本地坐标系中的单位水平,垂直极化矢量;zx,zy分别表示溢油海面在x,y方向上的斜率; 
σhh(θ′i),σvv(θ′i)分别表示小尺度溢油海浪的雷达后向散射系数,用微扰法计算的方法为: σ hh ( θ i ′ ) = 4 πk em 4 cos 4 θ i ′ | ( ϵ r - 1 ) [ cos θ i ′ + ( ϵ r - sin 2 θ i ′ ) 1 2 ] 2 | 2 W oil ( 2 k em sin θ i ′ , 0 )
σ vv ( θ i ′ ) = 4 πk em 4 cos 4 θ i ′ | ( ϵ r - 1 ) [ ϵ r ( 1 + sin 2 θ i ′ ) - sin 2 θ i ′ [ ϵ r cos θ i ′ + ( ϵ r - sin 2 θ i ′ ) 1 2 ] 2 | 2 W oil ( 2 k em sin θ i ′ , 0 )
式中,kem为雷达波的波数,εr为溢油海表面的相对介电常数;
P(zx,zy)表示大尺度溢油海浪斜率的概率密度函数,采用Cox-Munk溢油经验 模型; 
P ( z x , z y ) = J ( z x , z y ) 2 π σ u σ c exp [ - z x 2 2 σ u 2 - z y 2 2 σ c 2 ]
σ u 2 = 0.005 + 0.78 × 10 - 3 U 12.5
σ c 2 = 0.003 + 0.8 × 10 - 3 U 12.5
J ( z x , z y ) = 1 - 0.01 - 0.0086 U 12.5 2 ( z y 2 σ c 2 - 1 ) z x σ u - 0.04 - 0.033 U 12.5 6 ( z x 3 σ u 3 - 3 z x σ u )
+ 0.4 24 ( z y 4 σ c 4 - 6 z y 2 σ c 2 + 3 ) + 0.12 4 ( z y 2 σ c 2 - 1 ) ( z x 2 σ u 2 - 1 ) + 0.23 24 ( z x 4 σ u 4 - 6 z x 2 σ u 2 + 3 )
式中,U12.5为溢油海面上12.5m处的风速。 

Claims (5)

1.一种溢油海面电磁散射的计算方法,其特征是:它包括如下步骤,
步骤一、根据海洋环境参数和,计算清洁海面的JONSWAP频谱                                                
Figure 406162DEST_PATH_IMAGE001
步骤二、根据溢油抑制函数,计算溢油海面的频谱
Figure 140900DEST_PATH_IMAGE002
; 
步骤三、根据Marangoni波的色散关系和溢油海面的频谱
Figure 749736DEST_PATH_IMAGE002
,计算溢油海面的方向谱;
步骤四、采用双尺度法,计算溢油海面的雷达后向散射系数
Figure 923228DEST_PATH_IMAGE003
2.根据权利要求1所述的溢油海面电磁散射的计算方法,其特征是:步骤一中JONSWAP海浪谱的表达式为
Figure 80027DEST_PATH_IMAGE005
,式中,  , 
Figure 825446DEST_PATH_IMAGE007
Figure 690634DEST_PATH_IMAGE008
Figure 16442DEST_PATH_IMAGE009
为谱峰值角频率,
Figure 599870DEST_PATH_IMAGE010
为海浪的角频率,γ 为峰升因子, 
Figure 849586DEST_PATH_IMAGE011
 为峰形参量,g 为引力常数, α 为尺度系数, 
Figure 772543DEST_PATH_IMAGE012
为海面上10m处的风速,
Figure 82301DEST_PATH_IMAGE013
为风区长度。
3.根据权利要求1所述的溢油海面电磁散射的计算方法,其特征是:步骤二中,溢油海面的海浪谱
Figure 339976DEST_PATH_IMAGE014
,式中,
Figure 393383DEST_PATH_IMAGE015
为海面溢油区域归一化因子, 溢油抑制函数
Figure 233163DEST_PATH_IMAGE016
 ,
Figure 943947DEST_PATH_IMAGE018
Figure 801044DEST_PATH_IMAGE019
, 
Figure 682282DEST_PATH_IMAGE020
为油膜的弹性模量,
Figure 333843DEST_PATH_IMAGE021
为油膜的运动粘度,
Figure 316842DEST_PATH_IMAGE022
为溢油的特征角频率,
Figure 712052DEST_PATH_IMAGE023
为溢油的密度,
Figure 260845DEST_PATH_IMAGE024
为波数。
4.根据权利要求1所述的溢油海面电磁散射的计算方法,其特征是:步骤三中,对溢油海面波数进行网格离散化处理
Figure 538767DEST_PATH_IMAGE025
Figure 805800DEST_PATH_IMAGE026
为海面在x方向上的波数,
Figure 942383DEST_PATH_IMAGE027
,即在x方向上海面波数离散化M个点;
Figure 345683DEST_PATH_IMAGE028
为海面在y方向上的波数,
Figure 604626DEST_PATH_IMAGE029
,即在y方向上海面波数离散化N个点,其中,
Figure 545906DEST_PATH_IMAGE030
为海面在x方向的长度,为海面在y方向的长度;
计算溢油海面上每个网格点的海浪波数
Figure 743986DEST_PATH_IMAGE032
 , 根据Marangoni波的色散关系计算角频率
Figure 173830DEST_PATH_IMAGE033
,其中,
Figure 149877DEST_PATH_IMAGE034
为油膜的动力粘度;
则溢油海面的方向谱
Figure 877530DEST_PATH_IMAGE035
5.根据权利要求1所述的溢油海面电磁散射的计算方法,其特征是:步骤四中,雷达后向散射系数
Figure 521001DEST_PATH_IMAGE036
         
Figure 856167DEST_PATH_IMAGE037
式中, ,
Figure 788537DEST_PATH_IMAGE039
分别表示雷达波在基准坐标系和本地坐标系中的入射角;
Figure 286515DEST_PATH_IMAGE040
Figure 730265DEST_PATH_IMAGE041
分别表示基准坐标系中的单位水平,垂直极化矢量;
Figure 946483DEST_PATH_IMAGE042
Figure 18869DEST_PATH_IMAGE043
分别表示本地坐标系中的单位水平,垂直极化矢量;
Figure 371353DEST_PATH_IMAGE044
分别表示溢油海面在x,y方向上的斜率;
Figure 689519DEST_PATH_IMAGE046
 ,
Figure 110136DEST_PATH_IMAGE047
分别表示小尺度溢油海浪的雷达后向散射系数,用微扰法计算的方法为:
Figure 707339DEST_PATH_IMAGE048
式中,
Figure 480440DEST_PATH_IMAGE050
为雷达波的波数, 
Figure 891699DEST_PATH_IMAGE051
为溢油海表面的相对介电常数;
Figure 218775DEST_PATH_IMAGE052
表示大尺度溢油海浪斜率的概率密度函数,采用Cox-Munk溢油经验模型;
Figure 440809DEST_PATH_IMAGE053
Figure 853336DEST_PATH_IMAGE054
Figure 615755DEST_PATH_IMAGE055
式中, 为溢油海面上 12.5m处的风速。
CN2012100722634A 2012-03-16 2012-03-16 溢油海面电磁散射的计算方法 Pending CN102663233A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100722634A CN102663233A (zh) 2012-03-16 2012-03-16 溢油海面电磁散射的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100722634A CN102663233A (zh) 2012-03-16 2012-03-16 溢油海面电磁散射的计算方法

Publications (1)

Publication Number Publication Date
CN102663233A true CN102663233A (zh) 2012-09-12

Family

ID=46772724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100722634A Pending CN102663233A (zh) 2012-03-16 2012-03-16 溢油海面电磁散射的计算方法

Country Status (1)

Country Link
CN (1) CN102663233A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991288A (zh) * 2015-07-09 2015-10-21 大连海事大学 一种基于声呐电磁协同探测技术的海洋沉潜油检测系统及方法
CN107808066A (zh) * 2017-11-29 2018-03-16 上海无线电设备研究所 三维海面与目标复合电磁散射的置信度评价方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600566B1 (en) * 2000-09-29 2003-07-29 Northrop Grumman Corporation High-order high-frequency rough surface scattering solver
CN102306217A (zh) * 2011-08-12 2012-01-04 北京理工大学 基于非线性一维海面分形模型的电磁散射系数估计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600566B1 (en) * 2000-09-29 2003-07-29 Northrop Grumman Corporation High-order high-frequency rough surface scattering solver
CN102306217A (zh) * 2011-08-12 2012-01-04 北京理工大学 基于非线性一维海面分形模型的电磁散射系数估计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NICOLAS PINEL 等: "Modeling of the Bistatic Electromagnetic Scattering From Sea Surfaces Covered in Oil for Microwave Applications", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 *
WERNER ALPERS: "The Damping of Ocean Waves by Surface Films:A New Look at an Old Problem", 《JOURNAL OF GEOPHYSICAL RESEARCH》 *
刘历博: "粗粗海面的电磁特性研究", 《中国优秀硕士学位论文全文数据库(信息科技辑)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991288A (zh) * 2015-07-09 2015-10-21 大连海事大学 一种基于声呐电磁协同探测技术的海洋沉潜油检测系统及方法
CN104991288B (zh) * 2015-07-09 2017-09-19 大连海事大学 一种基于声呐电磁协同探测技术的海洋沉潜油检测系统及方法
CN107808066A (zh) * 2017-11-29 2018-03-16 上海无线电设备研究所 三维海面与目标复合电磁散射的置信度评价方法

Similar Documents

Publication Publication Date Title
Mahrt Stably stratified atmospheric boundary layers
Hesp et al. CFD flow dynamics over model scarps and slopes
Gao et al. Numerical study on transient harbor oscillations induced by solitary waves
US10436879B2 (en) Satellite method and system for detecting a floating layer on a sea surface to be monitored
Zilong et al. Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads
McAllister et al. Lagrangian measurement of steep directionally spread ocean waves: Second-order motion of a wave-following measurement buoy
Chen Enhancement of alongshore freshwater transport in surface-advected river plumes by tides
Sun et al. Risk analysis of seawall overflowed by storm surge during super typhoon
Lu et al. Application research of convolution neural network in image classification of icing monitoring in power grid
CN102663233A (zh) 溢油海面电磁散射的计算方法
Jiang et al. Study on the nearshore evolution of regular waves under steady wind
CN104992035A (zh) 一种太赫兹频段表面粗糙目标电磁散射的快速计算方法
Schlo̸er et al. Irregular wave forces on monopile foundations: Effect of full nonlinearity and bed slope
CN105842675B (zh) 一种针对汽车雷达目标的rcs实时估算方法
Yang et al. Effect of wave spectral variability on the dynamic response of offshore wind turbine considering soil-pile-structure interaction
Barcons et al. A wind field downscaling strategy based on domain segmentation and transfer functions
Chen et al. A 3-D numerical study of solitary wave interaction with vertical cylinders using a parallelised particle-in-cell solver
CN103852647A (zh) 一种雷电回击电磁场的近似解析表达方法
CN102508946A (zh) 有限水深下溢油海面的仿真方法
Joubert An investigation of the wave energy resource on the South African coast, focusing on the spatial distribution of the south west coast
Cai et al. Flux footprints in the convective boundary layer: large-eddy simulation and lagrangian stochastic modelling
Geiman et al. Unforced oscillation of rip-current vortex cells
CN104850754A (zh) 风浪-涌浪混合模式动态海面电磁散射计算方法
Bian et al. Quantitative characteristics of the striking distance to wind turbine blades based on an improved stochastic lightning model
Cherneva et al. Non-Gaussian wave groups generated in an offshore wave basin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120912