CN102655975B - 用于制造钛物体的方法和装置 - Google Patents

用于制造钛物体的方法和装置 Download PDF

Info

Publication number
CN102655975B
CN102655975B CN201080046089.5A CN201080046089A CN102655975B CN 102655975 B CN102655975 B CN 102655975B CN 201080046089 A CN201080046089 A CN 201080046089A CN 102655975 B CN102655975 B CN 102655975B
Authority
CN
China
Prior art keywords
reative cell
actuator
reactor
opening
elasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080046089.5A
Other languages
English (en)
Other versions
CN102655975A (zh
Inventor
西格丽德·古尔德伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norway Titanium Co
Original Assignee
Norsk Titanium Components AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Titanium Components AS filed Critical Norsk Titanium Components AS
Publication of CN102655975A publication Critical patent/CN102655975A/zh
Application granted granted Critical
Publication of CN102655975B publication Critical patent/CN102655975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/38Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/10Non-vacuum electron beam-welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0229Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member being situated alongside the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0461Welding tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/162Arc welding or cutting making use of shielding gas making use of a stationary fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/25Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/022Particular heating or welding methods not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/12Laminated parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明涉及通过实体自由成形制造来制造物体,特别是由钛或钛合金制成的物体的方法和反应器。通过实体自由成形制造的可焊接材料的物体的制造的反应器包括对于环境气氛关闭的反应室,其中对所述反应器进行设计,使得形成所述反应室的所有邻接壁元件以钝角(大于90°)接合;对位于所述反应室下方的致动器进行设计,使得所述致动器通过所述反应室底部的开口而突出到所述反应室内并将支持基材保持在所述反应室内,所述开口被至少一种弹性不透气膜密封,所述弹性不透气膜是不透气的且在所述开口处附着至所述反应器壁并附着至所述致动器;对位于所述反应室外部的致动器进行设计,使得所述致动器通过所述反应室侧面的开口而突出到所述反应室内并将具有所述可焊接材料的送线器的高能量等离子体转移弧焊炬保持在所述反应室内侧,所述开口被至少一种弹性不透气膜密封,所述弹性不透气膜是不透气的且在所述开口处附着至所述反应器壁并附着至所述致动器;并且所述反应器装备有位于所述反应室最低水平的至少一个可关闭的进气口和位于所述反应室的最高水平的至少一个可关闭的出气口。

Description

用于制造钛物体的方法和装置
技术领域
本发明涉及用于通过实体自由成形制造来制造物体(目标,对象),特别是钛和钛合金物体的方法和反应器。
背景技术
由钛或钛合金制成的金属构造部件通常通过铸造、锻造或机械加工而由坯(billet)制得。这些技术在制造中具有昂贵的钛金属的高材料使用和大的研制周期的缺点。
全致密实体物体(物理对象,实体目标,physicalobjects)可以通过称为快速原型、快速制造、分层制造或其他制造的制造技术来制得。这种技术采用计算机辅助设计软件(CAD)以首先构建要制备的物体的虚拟模型,然后将所述虚拟模型转变成通常水平取向的薄平行片(slices)或层。然后,可以通过如下来制备实体物体:铺放(放下)与虚拟层的形状类似的液体糊、粉末或片材形式的原料的连续层直至形成整个物体。将所述层熔合在一起以形成固体致密物体。在沉积熔合或焊接在一起的固体材料的情况下,所述技术也被称为实体自由成形制造。
实体自由成形制造是可以以相对快的制造速率,通常对于每个物体从几小时至几天变化来形成几乎任何形状的物体的灵活技术。所述技术因此适合于形成原型和小制造系列,但是较不适合于大体积制造。
现有技术
分层制造的技术可以被扩展为包括沉积构成材料的片,即将物体的虚拟模型的各个构造层分为一组片,所述片在并列放置时形成所述层。这使得可以通过如下来形成金属物体:以形成根据物体的虚拟分层模型的每个层的连续条将线焊接到基材(衬底,基板)上,并对于每个层重复所述工艺直至形成整个实体物体。焊接技术的精度通常太粗糙而使得不能直接形成具有可接受尺寸的物体,由此通常将形成的物体看作是未加工物体或预成型物(预成型件),其需要被机械加工为可接受的尺寸精度。
Taminger和Hafley[1]公开了由与电子束自由成形制造(EBF)结合的计算机辅助设计数据来直接制造金属构造部件的方法和装置。所述构造部件通过在连续层上焊接金属焊接线而构造,所述金属焊接线通过由电子束提供的热能焊接。将所述方法(工艺)示意性地示于图1中,其是[I]的图1的复制(复制件)。EBF方法(工艺)涉及在高真空环境中将金属线进料到由聚焦电子束制备并支持的熔池(熔融池)中。通过如下来获得电子束和焊接线的定位:使电子束枪和定位系统(支持基材)沿一个或多个轴(X、Y、Z和旋转)可移动地铰接并通过四个轴移动控制系统来调整所述电子束枪和所述支持基材的位置。所述方法声称在材料使用中接近100%有效且在功率消耗中95%有效。可以对大量金属沉积和更精细的详细沉积两者采用所述方法,并且所述方法声称与机械加工金属部件的常规途径相比,在研制周期下降以及较低的材料和机械加工成本上获得了显著的效果。
电子束技术具有依赖于沉积室中的10-1Pa以下的高真空的缺点。这可以通过等离子体转移弧用聚焦电子束代替局部加热来避免。在这种情况下,局部熔体池的形成通过在两个惰性电极之间的电弧放电而产生的热并通过惰性等离子体形成气体的聚焦流股将所述热送到熔化点上来获得。这种方法可以在大气压力下容易地应用并由此允许更简单且更不昂贵的处理设备。在US7326377和US2006/185473中公开了这种技术的实例。这种技术有时被称作等离子转移弧实体自由成形制造(PTA-SFFF)。
US2006/185473公开了一种方法,其中以显著降低原料成本的方式,通过将钛进料和合金成分结合而以相对低成本的钛进料材料将高能量等离子体束如焊炬代替传统使用的非常昂贵的激光用于实体自由成形制造(SFFF)工艺中。更特别地,在一个方面中,本发明采用成本低于合金线的纯钛线(CPTi),并通过在焊炬或其他高功率能量束的熔体中将CPTi线与粉末合金成分结合而在SFFF工艺中将CPTi线与粉末状的合金成分原位结合。在另一个实施方式中,本发明采用与合金化元素混合并形成为线的钛海绵材料,其中可以在与等离子体焊炬或其他高功率能量束组合的SFFF工艺中使用其以制造近似网状的钛部件。将根据US2006/185473的方法示意性地绘于图2中,其是该文献的图1的复制(复制件)。
可以在与氧接触时对在400℃之上加热的钛金属或钛合金进行氧化。因此,必须保护通过对抗环境气氛中的氧的分层制造而形成的焊接且加热的物体。WO2009/068843公开了用于焊接的惰性气体护罩(shield),其产生了保护惰性气体的平稳流出(evenoutflow)。通过将所述护罩置于需要被保护的物体上方,平稳的惰性气体流会置换环境气氛而不产生可能夹带环境含氧气体的涡流。所述护罩被形成为惰性气体进入到内部的中空盒并使得通过在所述盒的一个壁中制造的一组窄开口而使所述盒的内部逸出。
发明目的
本发明的主要目的是提供用于以钛或钛合金来快速分层制造物体的方法。
本发明的另一个目的是提供使得进行根据本发明的方法的沉积室。
发明内容
本发明基于如下认识:通过使沉积室充分没有氧,使用保护措施以避免通过环境气氛氧而氧化新焊接区域的需求不再存在,使得可以以较大的速度进行焊接工艺。例如,在钛或钛合金的物体的制造中,不再需要将焊接区冷却至低于400℃以避免氧化。
因此,在第一个方面中,本发明涉及通过实体自由成形制造而以可焊接的材料制造物体的方法,其中所述方法包括:
-创建(制作)待形成的物体的虚拟三维模型,
-将所述虚拟三维模型分为一组虚拟平行层,然后将每个层分为一组虚拟的准一维片,从而形成所述物体的虚拟矢量化分层模型(虚拟向量化分层模型),
-将所述物体的所述矢量化(向量化)分层模型装载到能够调整置于封闭反应容器中的线进料系统、支持基材和高能量等离子体转移弧焊炬的位置和活化的焊接控制系统中,
-利用压力为约105Pa且包含最大50ppm氧的惰性气氛置换封闭反应容器内部的气氛,
-使所述控制系统运行(接合,engaging)以根据所述物体的所述虚拟矢量化分层模型的第一层的图案(模式)将可焊接材料的一系列准一维片焊接到所述支持基材上,
-通过以根据所述物体的所述虚拟矢量化分层模型的第二层的图案将所述可焊接材料的一系列准一维片焊接到预先沉积的层上而形成所述物体的第二层,以及
-对于所述物体的虚拟矢量化分层模型的每个连续层,逐层重复所述焊接工艺,直至形成整个物体。
如本文中所用的术语“物体的虚拟矢量化(向量化)分层模型”是指待形成的物体的三维计算机表示,其中将所述物体分为一组平行层并且其中将每个层分为一组准一维片。如本文中所用的术语“准一维片”是指当以根据虚拟模型的具体图案并列放置时(或者当根据虚拟模型以具体图案并列放置时)会形成待形成的物体的焊接材料的纵向类棒片。所述类棒片可以是弯曲的(弧形的)或直线的。可以通过共同焊接对应于虚拟矢量化分层模型的每个虚拟准一维片的焊接线的片而将虚拟矢量化分层模型转变成实体物体。
虚拟模型包括维度的信息且对其给出了对应于待制造的实体物体的三维设计的三维设计。虚拟矢量化分层模型于是可用作用于物体的物理构造的模板。即,将虚拟模型转变成由实体自由成形制造设备的控制系统执行的建造指令,使得通过以连续条将线焊接到基材上而逐件制造实体物体,其中每个焊接条对应于虚拟矢量化分层模型的一片。将制造方法的原理示于图1中,其示出了通过电子束自由成形制造(EBF)将片焊接到第一层上来构造金属物体。本发明可以将用于计算机辅助设计的任何已知的或想得到的软件应用于构建虚拟矢量化分层模型。
可以将根据本发明第一方面的方法与适合用于实体自由成形制造的任何材料一起使用。这包括任何可焊接的金属或合金化金属和聚合材料。所述方法特别适合用于以钛或合金化的钛来制造物体。
惰性气体可以是在低于材料的软化温度的温度下,对所用可焊接材料化学不活泼的任何气体。惰性气体可有利地为具有比空气更高的密度的气体,以便减轻用惰性气体对反应室内部的空气的置换。氩气是合适的惰性气体的一个实例,但是还可以包括氦气、Ar-He或其他惰性气体的气体混合物。当惰性气体包含大于50ppm氧时,钛和合金化的钛的氧化问题变成问题。然而,氧水平可有利地较低,诸如约20ppm氧。
钛或合金化的钛物体的现有技术等离子体转移弧实体自由成形制造的一个持续问题是在大于约400℃的温度下需要保护金属不受环境气氛中的氧影响。这导致定期中断焊接工艺以避免形成物体的部件的过热。通过在焊接区域中使用具有小于50ppm氧的气氛,基本上降低了对于定期间隔以避免过热的这种需求,因为可以使得在大于400℃下对物体进行加热。当使用缺氧气氛时工艺的唯一温度限制是沉积金属相的温度必须低于金属的软化点。如本文中使用的术语“软化点”是指在试验的规定条件下,材料(即钛或合金化的钛)实现特定程度的软化的温度。所述软化点取决于所用合金,但是当使用钛或合金化的钛时,其典型地大于800℃以上。
在第二个方面中,本发明涉及一种用于通过实体自由成形制造而制造可焊接材料的物体的反应器,其中所述反应器包括:
-反应室(1),其对于环境气氛是关闭的,
-致动器(actuator)(2),其控制放置在所述反应室内部的支持基材(3)的位置和移动,
-致动器(4),其控制具有送线器(wirefeeder)的高能量等离子体转移弧焊炬(5)的位置和移动,
-控制系统,其能够阅读待形成的物体的虚拟三维矢量化分层模型并将所述虚拟模型用于控制致动器(2,4)的位置和移动、焊炬(5)和送线器的运行,使得通过根据待形成的物体的虚拟三维矢量化分层模型,将可焊接材料的准一维片的分层结构焊接到所述支持结构上而构造实体物体,
其特征在于,
-所述反应室的壁的所有邻接壁元件(6)以钝角(大于90°)接合,
-所述致动器(2)从所述反应室下方延伸并通过所述反应室壁中的开口(7)而突出(伸入)到所述反应室内,并将所述支持基材(3)保持在所述反应室内,
-所述开口(7)被至少一种弹性不透气膜(8)密封,所述弹性不透气膜(8)在所述开口(7)处气密性地附着至所述反应器壁并附着至所述致动器(2),
-所述致动器(4)从所述反应室的外部延伸并通过所述反应室的壁的开口(9)而突出到所述反应室内,并将具有所述可焊接材料的送线器的所述高能量等离子体转移弧焊炬(5)保持在所述反应室内,
-所述开口(9)被至少一种弹性不透气膜(10)密封,所述弹性不透气膜(10)是不透气的且在所述开口(9)处附着至所述反应器壁并附着至所述致动器(4),以及
-所述反应器装备有至少一个位于所述反应室的下部的可关闭的进气口(气体进口)(11)和至少一个位于所述反应室的上部的可关闭的出气口(气体出口)(12)。
如本文中所用的术语“反应室的壁”包括构成反应室的封闭隔室(enclosedcompartment)的所有边,其包括地板和天花板,除非另有规定。如本文中所用的术语“反应室的下部”是指在反应室的较低水平中(接近地板)的一些位置,而如本文中所用的术语“反应室的上部”是指在反应室的较高水平(接近天花板)中的一些位置。
以钝角接合构成反应室壁的壁元件与至少一个在室下部的可关闭的进气口和至少一个在反应室上部的可关闭的出气口结合的特征提供了以简单且有效的方式利用惰性纯氩气、氦气或Ar-He的气体混合物来置换室内部的气氛的能力,其实际上消除了夹带要被置换的含氧气体的残余部分的涡流和回流区域。因此,可以将该特征看作利用惰性气体有效填充反应室的工具(手段)。因此,如本文中所用的术语“最高水平”是指反应室相对于重力场的最高部分,且术语“最低水平”是指反应室相对于重力场的最低部分。
在邻接壁元件之间的钝角的效果增大了所用的较大角。然而,反应器隔室会随着角的增大而增大。因此,实际上,必须在室内部避免锐边的需求和反应室尺寸之间找到一个平衡(折衷)。因此,所述钝角实际上应该在95到130°之间,更适当地在100到120°之间。
将控制支持基材和焊炬(包括送线器)的位置和移动的致动器的主要部件放在反应室的外部上的特征是尽可能地低地减少绕反应室内部的制造设备形成回流区或涡流形成区的可能性,由此帮助在开始物体的实体自由成形制造之前,吹洗反应室中的氧的工艺。室的吹洗通过以至少5mm的相互距离,放置通过反应器壁的电缆、管等来缓和。
反应室中的开口的弹性气密性密封可以通过使用一层或多层弹性且不透气的橡胶来获得。可以通过使用附着至反应器壁的夹持框架和附着至致动器臂的夹持环来附着一个或多个橡胶片,所述致动器臂通过所述开口突出(伸入)到所述反应室中。以这种方式,对致动器臂给出相对于反应器壁相当自由地移动的可能性并且还通过弹性不透气橡胶获得反应器壁中的开口的气密性关闭。
可以通过载入充分的氩气以在反应室内部获得与大气压相比稍微升高的压力,诸如例如比大气压高约100Pa来提高反应器的氧保护。反应室还可以装备有测量仪器以检测室内部的惰性气氛中的氧、氮和其他气体含量的一种或多种,由此使得可以在达到对于正在制造的金属物体有害的水平之前,吹洗反应室中的不可接受的氧、氮等水平的最终产生。
根据本发明第二方面的反应室可以用氩气或其他惰性气氛容易地填充以获得氧浓度为50ppm以下的室内部的气氛。在这种低氧水平下,没有显著的不可接受地氧化正在形成的物体的风险,使得可以在与现有技术实体自由成形制造方法相比升高的温度下进行焊接工艺。可以将物体的温度升高至可达软化点。在使用钛或合金化的钛的情况下,在物体的分层制造期间,金属的温度可以高达800℃以上。与需要低于400℃的温度的现有技术相比,这种特征将由此显著地降低在利用焊接工艺继续进行之前冷却新形成的金属薄片(web)所需要的时间。
通过使用根据本发明第二方面的反应室,观察到,通过仅载入与室体积相同量的惰性气体,在获得层流的流动条件下以稳定的容易方式通过室底部中的进气口载入氩气,可以对室内部的空气进行完全吹洗并还获得约20ppm氧的惰性氩气氛中的氧含量。因此,在填充氩气期间不必形成溢流,仅温和地推出空气并停止填充惰性气体且一旦将空气全部推出则关闭室顶部的惰性气体出口是足够的。这提供了非常少利用昂贵的惰性气体的优势。
反应室还可以包括封闭冷却回路,在所述封闭冷却回路中将惰性气体从室中取出,通过热交换器以降低其温度,然后以封闭循环回路将其载入到反应室内。该特征有利于在以高功率运行焊炬的情况下避免反应室的过热。可以以5-6kW以上的效果运行焊炬,并且在这种情况下,会将1-2m3的密封反应室空间加热至高温而不需要室内部的气相的主动冷却。
本发明可以使用任何已知的或想得到的用于操作致动器、焊炬和送线器的控制系统。所述致动器可有利地装备有四轴移动控制系统(X,Y,X和旋转)。本发明可以使用任何已知的或想得到的能够通过称为等离子体转移弧实体自由成形制造(PTA-SFFF)的技术进行金属物体的分层制造的焊炬和送线器系统。这种设备的一个实例示于图2中,其是US2006/0185473的图1的复制。
附图说明
图1是示出了实体自由成形制造的原理的示意图的[1]的图1的传真。
图2是示出了等离子体转移弧实体自由成形制造的原理的示意图的US2006/01854673的图1的传真。
图3是根据本发明的反应器的一个实施方式的示意性侧视图。
图4是用于保持两层柔性气密膜的夹持框架的实施方式的展开图,所述两层柔性气密膜封闭根据本发明的反应室的底部中的开口。
图5a和5b是根据本发明的反应器的实施方式的不同侧视图。
具体实施方式
将根据本发明第二方面的本发明的发明特征示意性地示于图3中。
所述图示出了反应室1,其具有由一组壁元件6制造的内部封闭隔室。设置壁元件6,使得没有锐边,即具有以90°以下的角度成角的壁的边。反应室的所有内部壁角α都是钝角(大于90°)。控制支持基材3的位置和移动的致动器2位于反应室的外部且通过开口7突出,使得支持基材3位于反应室内部。开口7通过弹性气密膜8关闭。控制具有用于进料可焊接材料的线的送线器的高能量等离子体转移弧焊炬5的位置和移动的致动器4位于反应室的外部并且通过开口9突出,使得具有送线器的高能量等离子体转移弧焊炬5位于反应室内部。开口9通过弹性气密膜10关闭。反应室装备有至少一个可关闭的进气口11和至少一个可关闭的出气口12,以便利用惰性气体吹洗反应室中的含氧气体并置换该气体。
图4示出了可用于保持两层弹性气密膜的夹持框架7的展开图。通过形成具有使得边进入到两个夹持框架之间的空间中的尺寸的两片膜,所述膜可以通过将夹具固定至反应器壁,使得它们相互压靠而牢固地并气密性地附着至反应器壁6。突出到室内部的致动器臂2通过夹持环13中的孔伸出。对环13的尺寸进行调节以绕致动器臂形成气密柄。以与夹持框架7相同的方式将气密膜附着至夹持环13。所述图还示出了可关闭的进气口11的方位的实例。
图5a和5b示出了反应器100的示例性实施方式的两个不同的侧视图。反应器100由许多壁元件106组成以形成封闭的小室。所述壁元件可以设置有气密性玻璃窗116以使得可目视观察所述工艺或者设置有气密门以使得可以在形成物体前后进入到室内。所述实施方式装备有冷却回路,其包括出气口102、进气口103和热交换器101。从图5a可以看出,通过使用保持弹性橡胶膜110的夹持框架109将为了放置一个致动器而打开的侧壁关闭(为了提供清晰度,未示出通过所述膜进入的致动器)。从图5b可以看出,通过使用保持弹性橡胶膜108的夹持框架107来关闭底部开口(为了提供清晰度,未示出通过所述膜进入的致动器)。
参考文献
1.Taminger,K.M.andHafley,R.A.,“ElectronBeamFreeformFabricationforCostEffectiveNear-NetShapeManufacturing”,NATO/RTOAVT-139,Specialists′MeetingonCostEffectiveManufactureviaNetShapeProcessing)(Amsterdam,theNetherlands,2006)(NATO).pp9-25,http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080013538_2008013396.pdf。

Claims (9)

1.一种通过实体自由成形制造来生产可焊接材料的物体的反应器,其中所述反应器包括:
-反应室(1),所述反应室(1)对于环境气氛是关闭的,
-第一致动器(2),所述第一致动器(2)控制置于所述反应室内部的支持基材(3)的位置和移动,
-第二致动器(4),所述第二致动器(4)控制具有送线器的高能量等离子体转移弧焊炬(5)的位置和移动,
-控制系统,所述控制系统能够阅读待形成的物体的虚拟三维矢量化分层模型并将所述虚拟三维矢量化分层模型用于控制所述第一致动器(2)和所述第二致动器(4)的位置和移动、焊炬(5)和送线器的运行,使得通过根据待形成的物体的所述虚拟三维矢量化分层模型,将所述可焊接材料的准一维片的分层结构焊接到支持结构上而构造实体物体,
其特征在于,
-所述反应室的壁的所有邻接壁元件(6)以钝角接合,
-所述第一致动器(2)从所述反应室下方延伸并通过所述反应室壁中的第一开口(7)而突出到所述反应室内,从而将所述支持基材(3)保持在所述反应室内,
-所述第一开口(7)被至少一种弹性不透气膜(8)密封,所述弹性不透气膜(8)在所述第一开口(7)处气密地附着至所述反应器壁并附着至所述第一致动器(2),
-所述第二致动器(4)从所述反应室的外部延伸并通过所述反应室壁的第二开口(9)而突出到所述反应室内,从而将具有所述可焊接材料的送线器的所述高能量等离子体转移弧焊炬(5)保持在所述反应室内,
-所述第二开口(9)被至少一种弹性不透气膜(10)密封,所述弹性不透气膜(10)在所述第二开口(9)处气密地附着至所述反应器壁并附着至所述第二致动器(4),以及
-所述反应器装备有位于所述反应室下部的至少一个可关闭的进气口(11)和位于所述反应室上部的至少一个可关闭的出气口(12),
其中,所述反应器填充有氩气作为惰性气体并且其中所述进气口(11)装备有用于将氩气压力调整为比环境大气压力高100Pa的设备,并且,
其中,所述反应器装备有用于测量所述反应室内部的惰性气氛的氧含量的设备以及用于在氧浓度升高到预设最大值之上的情况下利用新鲜惰性气体执行所述反应室的吹洗的设备。
2.根据权利要求1所述的反应器,其中,所述弹性不透气膜(8,10)为气密性弹性橡胶(8,10),通过使用两层气密性弹性橡胶(8,10)来关闭所述第一开口(7)和所述第二开口(9),所述气密性弹性橡胶(8,10)通过使用附着至所述反应器壁的夹持框架(109)和附着至所述第一致动器(2)和所述第二致动器(4)的致动器臂的夹持环附着,所述致动器臂通过所述第一开口(7)和所述第二开口(9)突出到所述反应室中。
3.根据权利要求1所述的反应器,其中,将所述氧浓度的预设最大值设定为20ppm。
4.根据权利要求1-3中任一项所述的反应器,其中,所述反应器装备有用于冷却所述反应室中的所述惰性气体的封闭冷却回路,所述封闭冷却回路包括惰性气体出口(102)、热交换器(101)和惰性气体进口(103)。
5.根据权利要求1所述的反应器,其中,在构成所述反应室内壁的任何邻接壁元件(6)之间的钝角在95°到130°之间。
6.根据权利要求1所述的反应器,其中,在构成所述反应室内壁的任何邻接壁元件(6)之间的钝角在100°到120°之间。
7.根据权利要求1所述的反应器,其中,所述可焊接材料是可焊接的金属、或聚合材料。
8.根据权利要求1所述的反应器,其中,所述可焊接材料是可焊接的合金化金属。
9.根据权利要求1所述的反应器,其中,所述可焊接材料是钛或合金化的钛。
CN201080046089.5A 2009-08-14 2010-08-11 用于制造钛物体的方法和装置 Active CN102655975B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0914301.7A GB2472783B (en) 2009-08-14 2009-08-14 Device for manufacturing titanium objects
GB0914301.7 2009-08-14
PCT/NO2010/000303 WO2011019287A2 (en) 2009-08-14 2010-08-11 Method and device for manufacturing titanium objects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610237962.8A Division CN105710502A (zh) 2009-08-14 2010-08-11 用于制造钛物体的方法

Publications (2)

Publication Number Publication Date
CN102655975A CN102655975A (zh) 2012-09-05
CN102655975B true CN102655975B (zh) 2016-05-11

Family

ID=41171457

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610237962.8A Pending CN105710502A (zh) 2009-08-14 2010-08-11 用于制造钛物体的方法
CN201080046089.5A Active CN102655975B (zh) 2009-08-14 2010-08-11 用于制造钛物体的方法和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610237962.8A Pending CN105710502A (zh) 2009-08-14 2010-08-11 用于制造钛物体的方法

Country Status (15)

Country Link
US (2) US9346116B2 (zh)
EP (2) EP3184226A1 (zh)
JP (1) JP5863652B2 (zh)
KR (1) KR20120068865A (zh)
CN (2) CN105710502A (zh)
AU (1) AU2010283011A1 (zh)
BR (1) BR112012003365A2 (zh)
CA (1) CA2771005A1 (zh)
DK (1) DK2464487T3 (zh)
EA (1) EA201290093A1 (zh)
ES (1) ES2627079T3 (zh)
GB (1) GB2472783B (zh)
IN (1) IN2012DN02016A (zh)
SG (1) SG178415A1 (zh)
WO (1) WO2011019287A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461509A (zh) * 2017-03-27 2019-11-15 株式会社神户制钢所 层叠造型物的制造方法及制造系统

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9776274B2 (en) 2007-10-26 2017-10-03 Ariel Andre Waitzman Automated welding of moulds and stamping tools
EP3479933A1 (en) 2009-09-17 2019-05-08 Sciaky Inc. Electron beam layer manufacturing apparatus
US8461474B2 (en) 2010-03-31 2013-06-11 Sciaky, Inc. Raster methodology, apparatus and system for electron beam layer manufacturing using closed loop control
GB2489493B (en) * 2011-03-31 2013-03-13 Norsk Titanium Components As Method and arrangement for building metallic objects by solid freeform fabrication
CN102764889A (zh) * 2012-07-13 2012-11-07 中国航空工业集团公司北京航空制造工程研究所 一种电子束同步送粉快速成形方法
CN102922108A (zh) * 2012-11-09 2013-02-13 中国人民解放军装甲兵工程学院 一种等离子焊接快速成形的系统和方法
CN102962547B (zh) * 2012-11-23 2015-06-03 首都航天机械公司 一种钛合金结构件电弧增材制造方法
WO2014094882A1 (en) * 2012-12-21 2014-06-26 European Space Agency Additive manufacturing method using focused light heating source
US9902015B2 (en) 2013-02-26 2018-02-27 United Technologies Corporation Multiple wire electron beam melting
EP2774703A1 (en) * 2013-03-04 2014-09-10 SLM Solutions GmbH Apparatus for producing work pieces under elevated pressure
CN103537777B (zh) * 2013-09-12 2016-01-27 云南钛业股份有限公司 一种修复钛及钛合金板孔洞的装置及使用方法
GB201320888D0 (en) * 2013-11-27 2014-01-08 Linde Aktiengesellshcaft Additive manufacturing of titanium article
DE102014203711A1 (de) * 2014-02-28 2015-09-03 MTU Aero Engines AG Erzeugung von Druckeigenspannungen bei generativer Fertigung
CN104401006B (zh) * 2014-09-04 2017-06-06 宁波高新区乐轩锐蓝智能科技有限公司 三打印头的3d打印机的打印区域控制方法、打印方法
CN104210108B (zh) * 2014-09-15 2017-11-28 宁波高新区乐轩锐蓝智能科技有限公司 3d打印机的打印缺陷弥补方法和系统
US20160096234A1 (en) * 2014-10-07 2016-04-07 Siemens Energy, Inc. Laser deposition and repair of reactive metals
CA2970313C (en) 2014-12-12 2021-10-19 Digital Alloys Incorporated Additive manufacturing of metallic structures
US20160271732A1 (en) * 2015-03-19 2016-09-22 Dm3D Technology, Llc Method of high rate direct material deposition
US10889067B1 (en) * 2015-04-13 2021-01-12 Lockheed Martin Corporation Tension-wound solid state additive manufacturing
JP6583771B2 (ja) * 2015-05-07 2019-10-02 学校法人金沢工業大学 立体造形装置
CN105149739A (zh) * 2015-06-30 2015-12-16 苏州华日金菱机械有限公司 一种流水线操作用循环鼓风式装夹电焊工作箱
DE102015117238A1 (de) * 2015-10-09 2017-04-13 GEFERTEC GmbH Bearbeitungsmodul für eine Vorrichtung zur additiven Fertigung
ES2559114B1 (es) * 2015-10-19 2016-09-28 Goratu Máquinas Herramienta, S.A. Máquina de deposición de material para fabricación de piezas
TWI741476B (zh) 2016-03-03 2021-10-01 美商史達克公司 三維部件、其製造方法及焊接之方法
JP2019516010A (ja) * 2016-04-20 2019-06-13 アーコニック インコーポレイテッドArconic Inc. アルミニウム、チタン、及びジルコニウムのhcp材料ならびにそれから作製される製品
EP3481579A1 (en) * 2016-07-08 2019-05-15 Norsk Titanium AS Method and arrangement for building metallic objects by solid freeform fabrication with two welding guns
US11241753B2 (en) 2016-07-08 2022-02-08 Norsk Titanium As Contact tip contact arrangement for metal welding
US10549375B2 (en) 2016-07-08 2020-02-04 Norsk Titanium As Metal wire feeding system
US9821399B1 (en) 2016-07-08 2017-11-21 Norsk Titanium As Wire arc accuracy adjustment system
US10738378B2 (en) * 2016-07-08 2020-08-11 Norsk Titanium As Multi-chamber deposition equipment for solid free form fabrication
CN106180710B (zh) * 2016-07-14 2018-07-24 武汉鑫双易科技开发有限公司 基于等离子体电弧熔覆的3d金属增材制造装置及方法
NL2017864B1 (en) * 2016-11-24 2018-06-01 Additive Ind Bv System for producing an object by means of additive manufacturing
CN106735802B (zh) * 2017-01-16 2019-07-16 北京航星机器制造有限公司 一种钛合金筒形结构件等离子弧增材制造方法
JP7021458B2 (ja) 2017-04-28 2022-02-17 セイコーエプソン株式会社 三次元造形装置
JP6926655B2 (ja) 2017-05-12 2021-08-25 セイコーエプソン株式会社 三次元造形装置および三次元物体の製造方法
WO2018218060A2 (en) * 2017-05-25 2018-11-29 Tdbt Ip Inc. Aseptic printer system including dual-arm mechanism
WO2019002493A1 (en) 2017-06-30 2019-01-03 Norsk Titanium As PROGRAMMING TECHNOLOGIES OF MANUFACTURING AND CONTROL MACHINES FOR ADDITIONAL MANUFACTURING SYSTEMS
WO2019040972A1 (en) * 2017-09-04 2019-03-07 Neptune Marine Services Limited PRESSURE WELDING HOSPITAL
CN107538123A (zh) * 2017-10-11 2018-01-05 桂林实创真空数控设备有限公司 适用于大弧形焊接的电子束焊接机
CN108326454B (zh) * 2018-01-30 2020-04-24 北京理工大学 一种铝合金电弧增材柔性气体保护装置及方法
US10793943B2 (en) 2018-03-15 2020-10-06 Raytheon Technologies Corporation Method of producing a gas turbine engine component
NZ764390A (en) * 2018-04-14 2021-07-30 Aml3D Ltd Method and apparatus for manufacturing 3d metal parts
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
EP3663032B1 (en) * 2018-10-24 2024-02-28 Mitsubishi Electric Corporation Additive manufacturing method, machining-path generation method, and additive manufacturing device
JP7357138B2 (ja) 2019-03-22 2023-10-05 ディーエムシー グローバル インコーポレイテッド 厚さの異なるクラッド層を持つクラッド材
WO2021001429A1 (en) 2019-07-03 2021-01-07 Norsk Titanium As Standoff distance monitoring and control for directed energy deposition additive manufacturing systems
US11853033B1 (en) 2019-07-26 2023-12-26 Relativity Space, Inc. Systems and methods for using wire printing process data to predict material properties and part quality
ES2907813B2 (es) 2019-09-24 2022-10-11 Lortek S Coop Sistema inteligente de protección local con control de temperatura para procesos de fabricación aditiva mediante arco e hilo
CN110978126B (zh) * 2019-12-30 2020-12-01 台州市玺融车业有限公司 一种汽车前保险杠自动冲孔焊接方法
CN112676718A (zh) * 2020-12-16 2021-04-20 湖南科技大学 一种适用于大型装备的钛合金焊接双面保护装置
CN114012225B (zh) * 2022-01-07 2022-04-15 北京煜鼎增材制造研究院有限公司 一种潜艇全钛耐压壳体及其增材制造装备和方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328257A (en) * 1979-11-26 1982-05-04 Electro-Plasma, Inc. System and method for plasma coating
US4838337A (en) * 1987-02-04 1989-06-13 General Electric Company Method of fabricating titanium alloys in foil form
JP2512115B2 (ja) 1988-11-18 1996-07-03 松下電器産業株式会社 温度表示手段
JPH0646622Y2 (ja) * 1989-04-18 1994-11-30 株式会社小池メディカル チタン義歯床の溶接ボックス
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
US5207371A (en) * 1991-07-29 1993-05-04 Prinz Fritz B Method and apparatus for fabrication of three-dimensional metal articles by weld deposition
US5398193B1 (en) * 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
US5685771A (en) * 1996-07-01 1997-11-11 C-K Worldwide Inc. Enclosure for maintaining a controlled atmosphere around a work station
US5791560A (en) * 1996-12-09 1998-08-11 Thermion, Inc. Method and apparatus for spraying metal to form a coating
GB9826728D0 (en) * 1998-12-04 1999-01-27 Rolls Royce Plc Method and apparatus for building up a workpiece by deposit welding
US6265689B1 (en) * 2000-04-24 2001-07-24 General Electric Company Method of underwater cladding using a powder-fan plasma torch
US6359267B1 (en) * 2000-05-31 2002-03-19 Ameritherm, Inc. Induction heating system
GB0107562D0 (en) * 2001-03-27 2001-05-16 Rolls Royce Plc Method for forming a body
US6680456B2 (en) * 2001-06-09 2004-01-20 Honeywell International Inc. Ion fusion formation
US6936118B2 (en) * 2001-08-07 2005-08-30 Northeastern University Process of forming a composite coating on a substrate
US7168935B1 (en) * 2002-08-02 2007-01-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solid freeform fabrication apparatus and methods
JP2005054197A (ja) * 2003-03-14 2005-03-03 Yoshio Miyamoto 三次元自由造形法ならびに自由被覆法および装置
US6940037B1 (en) * 2003-08-25 2005-09-06 Southern Methodist University System and method for controlling welding parameters in welding-based deposition processes
WO2005089090A2 (en) * 2003-10-14 2005-09-29 North Dakota State University Direct write and freeform fabrication apparatus and method
US20050173380A1 (en) * 2004-02-09 2005-08-11 Carbone Frank L. Directed energy net shape method and apparatus
US7073561B1 (en) * 2004-11-15 2006-07-11 Henn David S Solid freeform fabrication system and method
WO2007084144A2 (en) * 2005-01-31 2007-07-26 Materials & Electrochemical Research Corp. Process for the manufacture of titanium alloy structures
DE102005030067A1 (de) * 2005-06-27 2006-12-28 FHS Hochschule für Technik, Wirtschaft und soziale Arbeit St. Gallen Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes durch ein generatives 3D-Verfahren
US20070011873A1 (en) * 2005-07-14 2007-01-18 Teale David W Methods for producing even wall down-hole power sections
US7326377B2 (en) * 2005-11-30 2008-02-05 Honeywell International, Inc. Solid-free-form fabrication process and apparatus including in-process workpiece cooling
CN100457331C (zh) * 2005-12-28 2009-02-04 华中科技大学 零件与模具的无模直接制造方法
CN1907643A (zh) * 2006-08-22 2007-02-07 机械科学研究总院 一种金属零件的分层制造方法
KR100925363B1 (ko) 2007-05-30 2009-11-09 파나소닉 전공 주식회사 적층 조형 장치
US20090014421A1 (en) * 2007-07-10 2009-01-15 Sujith Sathian Weld Repair Method for a Turbine Bucket Tip
GB0723327D0 (en) 2007-11-29 2008-01-09 Rolls Royce Plc A shield
CN101480753B (zh) * 2009-01-14 2011-01-05 深圳大学 一种金属叠层实体制造快速成形方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461509A (zh) * 2017-03-27 2019-11-15 株式会社神户制钢所 层叠造型物的制造方法及制造系统

Also Published As

Publication number Publication date
JP2013501627A (ja) 2013-01-17
EP2464487A2 (en) 2012-06-20
US9346116B2 (en) 2016-05-24
BR112012003365A2 (pt) 2016-02-16
CN105710502A (zh) 2016-06-29
JP5863652B2 (ja) 2016-02-16
GB2472783B (en) 2012-05-23
WO2011019287A3 (en) 2012-04-19
IN2012DN02016A (zh) 2015-07-31
EP2464487B1 (en) 2017-03-15
CN102655975A (zh) 2012-09-05
CA2771005A1 (en) 2011-02-17
WO2011019287A2 (en) 2011-02-17
KR20120068865A (ko) 2012-06-27
EP3184226A1 (en) 2017-06-28
US20120193335A1 (en) 2012-08-02
GB0914301D0 (en) 2009-09-30
ES2627079T3 (es) 2017-07-26
GB2472783A (en) 2011-02-23
EA201290093A1 (ru) 2012-08-30
AU2010283011A1 (en) 2012-04-05
DK2464487T3 (en) 2017-06-06
US20160107261A1 (en) 2016-04-21
SG178415A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
CN102655975B (zh) 用于制造钛物体的方法和装置
Ahn Directed energy deposition (DED) process: state of the art
Derekar et al. Influence of interpass temperature on wire arc additive manufacturing (WAAM) of aluminium alloy components
ES2880440T3 (es) Equipo de deposición multicámara para fabricación de un sólido de forma libre
Kashinath et al. Stable storage of helium in nanoscale platelets at semicoherent interfaces
CN106715036A (zh) 用于单晶超合金和金属的直写的装置和方法
Holesinger et al. Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting
ES2906339T3 (es) Vectorización de piezas de láminas para la fabricación aditiva móvil a gran escala utilizando materiales de construcción a base de láminas
US20200331061A1 (en) Positioning system for an additive manufacturing machine
KR102042038B1 (ko) 다공성 부품의 제조방법 및 이에 의해 제조된 다공성 부품
AU2012100393A4 (en) Method and device for manufacturing titanium objects
Graham et al. Impact of neutron irradiation on the thermophysical properties of additively manufactured stainless steel and inconel
Gong et al. Electron Beam Wire Deposition Technology and Its Application
Hilzenthaler et al. In-situ decarburization and deoxidation during laser powder bed fusion of water-atomized steel C35
JP7157888B1 (ja) 積層構造物の製造装置、積層構造物の製造方法
JP6889744B2 (ja) レーザ積層造形装置及びレーザ積層造形方法
WO2023008216A1 (ja) 積層構造物の製造装置、積層構造物の製造方法
Cacciamani Summary report of CALPHAD XLIV–Loano, Italy, 2015
US20240066598A1 (en) Devices, systems, and methods for monitoring a spot quality of an electron beam
WO2023114151A1 (en) Additive manufacturing and three-dimensional printers
Su et al. In Situ Wire+ Powder Synchronous Arc Additive Manufacturing of Ti–Cu Alloys
Yap et al. Selective Laser Melting of Pure Tin: Microstructure Study

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Oslo

Patentee after: Norway titanium company

Address before: Oslo

Patentee before: Norsk Titanium Components AS

CP01 Change in the name or title of a patent holder