CN102651537B - Manufacturing method for organic semiconductor laser based on active waveguide grating structure - Google Patents
Manufacturing method for organic semiconductor laser based on active waveguide grating structure Download PDFInfo
- Publication number
- CN102651537B CN102651537B CN201110043450.5A CN201110043450A CN102651537B CN 102651537 B CN102651537 B CN 102651537B CN 201110043450 A CN201110043450 A CN 201110043450A CN 102651537 B CN102651537 B CN 102651537B
- Authority
- CN
- China
- Prior art keywords
- organic semiconductor
- recording medium
- spin
- film
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 24
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 21
- 238000004528 spin coating Methods 0.000 claims description 17
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 16
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 14
- 229920002120 photoresistant polymer Polymers 0.000 claims description 13
- 239000011521 glass Substances 0.000 claims description 11
- 239000003960 organic solvent Substances 0.000 claims description 10
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000008096 xylene Substances 0.000 claims description 8
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 7
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 claims description 2
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 claims description 2
- 239000005964 Acibenzolar-S-methyl Substances 0.000 claims description 2
- 229940117389 dichlorobenzene Drugs 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 238000002679 ablation Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 9
- 239000010408 film Substances 0.000 description 33
- 238000000025 interference lithography Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 8
- 239000010409 thin film Substances 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 6
- 239000011149 active material Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- BNIUBQUDMPRXLZ-UHFFFAOYSA-N C(CCC)C1=CC=C(C=C1)NC1=CC=C(C=C1)N(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound C(CCC)C1=CC=C(C=C1)NC1=CC=C(C=C1)N(C1=CC=CC=C1)C1=CC=CC=C1 BNIUBQUDMPRXLZ-UHFFFAOYSA-N 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明公开了基于有源波导光栅结构的有机半导体激光器的制作方法,属于纳米光电子材料及器件技术领域,包括以下步骤:1)制备荧光发射有机半导体材料的有机溶液;2)将荧光发射有机半导体溶液旋涂在基底上,获得厚度为50-500nm均匀的有机半导体薄膜;3)将记录介质旋涂在步骤2)中所制得的有机半导体薄膜上,获得厚度均匀的记录介质薄膜,薄膜的厚度为50-500nm;4)将激光干涉图案与记录介质薄膜作用,形成高质量的记录介质分布反馈式结构。本发明方法无需使用昂贵的设备,成本低,制备效率高,激光模式良好,阈值低,适合制作电泵浦半导体激光器。The invention discloses a method for manufacturing an organic semiconductor laser based on an active waveguide grating structure, which belongs to the technical field of nano-optoelectronic materials and devices, and comprises the following steps: 1) preparing an organic solution of a fluorescent-emitting organic semiconductor material; 2) preparing a fluorescent-emitting organic semiconductor The solution is spin-coated on the substrate to obtain a uniform organic semiconductor film with a thickness of 50-500nm; 3) the recording medium is spin-coated on the organic semiconductor film prepared in step 2) to obtain a recording medium film with a uniform thickness. The thickness is 50-500nm; 4) The laser interference pattern interacts with the recording medium film to form a high-quality recording medium distributed feedback structure. The method of the invention does not need to use expensive equipment, has low cost, high preparation efficiency, good laser mode and low threshold value, and is suitable for making electrically pumped semiconductor lasers.
Description
技术领域 technical field
本发明属于纳米光电子材料及器件技术领域,涉及依次把有机半导体和记录介质溶液旋涂在基板上,再利用激光干涉光刻技术在记录介质薄膜上制作纳米光栅,实现了一种新的有机半导体激光器的制备技术。The invention belongs to the technical field of nano-optoelectronic materials and devices, and involves sequentially spin-coating an organic semiconductor and a recording medium solution on a substrate, and then using laser interference lithography technology to fabricate a nano-grating on the recording medium film, realizing a new organic semiconductor Laser fabrication technology.
背景技术 Background technique
作为实现电泵浦有机半导体激光器的前提,分布反馈式有机半导体激光器引起了国际上广泛的关注。但现有的分布反馈式有机半导体激光器都是由活性材料作为分布反馈腔,即需要把分布反馈式结构转印到活性材料上。转印过程不可避免地会在分布反馈腔中引入缺陷,且活性材料薄膜的厚度不均匀,导致激光模式差。减少活性材料薄膜的缺陷,改善分布反馈式有机半导体激光器模式具有重要的应用意义。As a prerequisite for the realization of electrically pumped organic semiconductor lasers, distributed feedback organic semiconductor lasers have attracted widespread attention in the world. However, the existing distributed feedback organic semiconductor lasers all use active materials as distributed feedback cavities, that is, it is necessary to transfer the distributed feedback structure to the active material. The transfer process inevitably introduces defects in the distributed feedback cavity, and the thickness of the active material film is not uniform, resulting in poor lasing modes. It is of great application significance to reduce the defects of active material thin films and improve the mode of distributed feedback organic semiconductor lasers.
发明内容 Contents of the invention
本发明目的是提出依次把有机半导体和记录介质溶液旋涂在基板上,再利用激光干涉光刻技术在记录介质薄膜上制作纳米光栅,实现一种新的基于有源波导的分布反馈式有机半导体激光器的制备技术。The purpose of the present invention is to propose that the organic semiconductor and the recording medium solution are spin-coated on the substrate in turn, and then use laser interference lithography to make a nano-grating on the recording medium film, so as to realize a new distributed feedback organic semiconductor based on the active waveguide. Laser fabrication technology.
本发明中有机半导体激光器制备技术具体方案如下:The specific scheme of organic semiconductor laser preparation technology among the present invention is as follows:
1)将荧光发射有机半导体材料溶解于有机溶剂中,制成浓度为10-60mg/ml的有机半导体溶液;1) dissolving the fluorescent emitting organic semiconductor material in an organic solvent to prepare an organic semiconductor solution with a concentration of 10-60 mg/ml;
2)将荧光发射有机半导体溶液旋涂在基底上,旋涂速度为500-4000rpm,以转速为1800rpm时为最佳,获得厚度均匀的有机半导体薄膜,薄膜厚度为50-500nm。2) Spin-coat the fluorescence-emitting organic semiconductor solution on the substrate at a spin-coating speed of 500-4000 rpm, preferably 1800 rpm, to obtain an organic semiconductor film with a uniform thickness of 50-500 nm.
3)将记录介质旋涂在步骤2)中所制得的有机半导体薄膜上,旋涂速度为500-4000rpm,以转速为2000rpm时为最佳,获得厚度均匀的记录介质薄膜,薄膜的厚度为50-500nm;3) The recording medium is spin-coated on the organic semiconductor film prepared in step 2), the spin-coating speed is 500-4000rpm, and it is the best when the rotation speed is 2000rpm, so as to obtain a recording medium film with uniform thickness, and the thickness of the film is 50-500nm;
4)将激光干涉图案与记录介质薄膜作用,形成高质量的记录介质分布反馈式结构,激光干涉光刻技术制备记录介质分布反馈式结构的光路示意图见图1。4) The laser interference pattern is interacted with the recording medium film to form a high-quality recording medium distributed feedback structure. The optical path schematic diagram of the recording medium distributed feedback structure prepared by laser interference lithography is shown in Figure 1.
上述所述的荧光发射有机半导体材料为:9,9-二辛基芴-2,7)-交替共聚-(1,4-{2,1’,3}-苯并噻二唑)(F8BT),(9,9-二辛基芴-2,7)-共聚-二(4-甲氧基苯基)-芴(F8DP),(9,9-二辛基芴-2,7)-共聚-双-N,N’-(4-丁基苯基)-双-N,N’-苯基-1,4-苯二胺(PFB)等;所述的有机溶剂为二甲苯、甲苯、氯苯、二氯苯、苯、三氯甲烷、环己烷、戊烷、己烷或辛烷中的一种;基底选自玻璃、ITO玻璃、FTO玻璃、石英片或者硅片等;干涉灼蚀紫外激光光源为波长小于等于400nm的高能量脉冲激光。The fluorescent emitting organic semiconductor material mentioned above is: 9,9-dioctylfluorene-2,7)-alternating copolymerization-(1,4-{2,1',3}-benzothiadiazole) (F8BT ), (9,9-dioctylfluorene-2,7)-co-bis(4-methoxyphenyl)-fluorene (F8DP), (9,9-dioctylfluorene-2,7)- Copolymerization-bis-N, N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine (PFB), etc.; the organic solvent is xylene, toluene , chlorobenzene, dichlorobenzene, benzene, chloroform, cyclohexane, pentane, hexane or octane; the substrate is selected from glass, ITO glass, FTO glass, quartz wafer or silicon wafer, etc.; interference The ablative ultraviolet laser source is a high-energy pulsed laser with a wavelength less than or equal to 400nm.
本发明的优势特点:Advantageous features of the present invention:
1)本发明方法无需使用昂贵的设备,成本低,制备效率高,激光模式良好,阈值低。1) The method of the present invention does not need to use expensive equipment, has low cost, high preparation efficiency, good laser mode and low threshold.
2)本发明的结构适合用于制作电泵浦半导体激光器。2) The structure of the present invention is suitable for making electrically pumped semiconductor lasers.
附图说明 Description of drawings
图1、激光干涉光刻技术制备分布反馈式结构的光路示意图Figure 1. Schematic diagram of the optical path of the distributed feedback structure prepared by laser interference lithography
其中,1为脉冲紫外激光器;2为扩束用透镜组;3为介质膜全反镜;4为分束镜;5为待加工的样品Among them, 1 is a pulsed ultraviolet laser; 2 is a lens group for beam expansion; 3 is a dielectric film total reflection mirror; 4 is a beam splitter; 5 is a sample to be processed
图2、所获得的一维记录介质分布反馈式结构的原子力显微镜(AFM)照片Figure 2. Atomic force microscope (AFM) photo of the obtained one-dimensional recording medium distributed feedback structure
具体实施方式 Detailed ways
实施例1:基于有源波导的一维有机半导体激光器的制备(一维结构)Embodiment 1: Preparation of a one-dimensional organic semiconductor laser based on an active waveguide (one-dimensional structure)
1)将有机半导体F8BT溶解于甲苯、二甲苯、三氯甲烷、环己烷、戊烷、己烷或辛烷等有机溶剂中,制成浓度为15mg/ml的F8BT有机半导体溶液;1) Dissolving organic semiconductor F8BT in organic solvents such as toluene, xylene, chloroform, cyclohexane, pentane, hexane or octane, to prepare a F8BT organic semiconductor solution with a concentration of 15mg/ml;
2)将F8BT有机半导体溶液旋涂在玻璃基底上。旋涂速度为1800rpm,相应的膜厚为150nm;2) Spin-coat the F8BT organic semiconductor solution on the glass substrate. The spin coating speed is 1800rpm, and the corresponding film thickness is 150nm;
3)将记录介质S1805光刻胶旋涂在步骤2)中的有机半导体薄膜上。旋涂速度为2000rpm,相应的膜厚为500nm;3) The recording medium S1805 photoresist is spin-coated on the organic semiconductor thin film in step 2). The spin coating speed is 2000rpm, and the corresponding film thickness is 500nm;
4)将上述制备的双层膜样品置于干涉光路中,如图1所示,其中,干涉光刻所用激光波长为355nm,即可在上层光刻胶薄膜上记录下干涉条纹,然后将光刻胶样品进行显影、定影,即可得到周期性的一维分布反馈式结构;4) The above-mentioned prepared double-layer film sample is placed in the interference optical path, as shown in Figure 1, wherein, the laser wavelength used in interference lithography is 355nm, and the interference fringes can be recorded on the upper photoresist film, and then the light Resist samples are developed and fixed to obtain a periodic one-dimensional distributed feedback structure;
5)所制备的一维分布反馈式有机半导体激光器的原子力显微图像如图2所示,所制备的有机半导体光栅的周期为350nm。5) The atomic force microscope image of the prepared one-dimensional distributed feedback organic semiconductor laser is shown in FIG. 2 , and the period of the prepared organic semiconductor grating is 350 nm.
实施例2:基于有源波导的一维有机半导体激光器的制备Example 2: Preparation of one-dimensional organic semiconductor laser based on active waveguide
1)将有机半导体F8BT溶解于甲苯、二甲苯、三氯甲烷、环己烷、戊烷、己烷或辛烷等有机溶剂中,制成浓度为25mg/ml的F8BT有机半导体溶液;1) Dissolving the organic semiconductor F8BT in an organic solvent such as toluene, xylene, chloroform, cyclohexane, pentane, hexane or octane, to prepare a F8BT organic semiconductor solution with a concentration of 25mg/ml;
2)将F8BT有机半导体溶液旋涂在玻璃基底上。旋涂速度为2000rpm,相应的膜厚为150nm;2) Spin-coat the F8BT organic semiconductor solution on the glass substrate. The spin coating speed is 2000rpm, and the corresponding film thickness is 150nm;
3)将记录介质S1805光刻胶旋涂在步骤2)中的有机半导体薄膜上。旋涂速度为2000rpm,相应的膜厚为500nm;3) The recording medium S1805 photoresist is spin-coated on the organic semiconductor thin film in step 2). The spin coating speed is 2000rpm, and the corresponding film thickness is 500nm;
4)将上述制备的双层膜样品置于干涉光路中,如图1所示,其中,干涉光刻所用激光波长为355nm,即可在上层光刻胶薄膜上记录下干涉条纹,然后将光刻胶样品进行显影、定影,即可得到周期性的一维分布反馈式结构。4) The above-mentioned prepared double-layer film sample is placed in the interference optical path, as shown in Figure 1, wherein, the laser wavelength used in interference lithography is 355nm, and the interference fringes can be recorded on the upper photoresist film, and then the light After developing and fixing the resist sample, a periodic one-dimensional distributed feedback structure can be obtained.
实施例3:基于有源波导的一维有机半导体激光器的制备Example 3: Preparation of one-dimensional organic semiconductor laser based on active waveguide
1)将有机半导体PFB溶解于甲苯、二甲苯、三氯甲烷、环己烷、戊烷、己烷或辛烷等有机溶剂中,制成浓度为15mg/ml的PFB有机半导体溶液;1) Dissolving organic semiconductor PFB in organic solvents such as toluene, xylene, chloroform, cyclohexane, pentane, hexane or octane, to make a PFB organic semiconductor solution with a concentration of 15 mg/ml;
2)将PFB有机半导体溶液旋涂在玻璃基底上。旋涂速度为1000rpm,相应的膜厚为200nm;2) Spin-coat the PFB organic semiconductor solution on the glass substrate. The spin coating speed is 1000rpm, and the corresponding film thickness is 200nm;
3)将记录介质S1805光刻胶旋涂在步骤2)中的有机半导体薄膜上。旋涂速度为2000rpm,相应的膜厚为500nm;3) The recording medium S1805 photoresist is spin-coated on the organic semiconductor thin film in step 2). The spin coating speed is 2000rpm, and the corresponding film thickness is 500nm;
4)将上述制备的双层膜样品置于干涉光路中,如图1所示,其中,干涉光刻所用激光波长为355nm,即可在上层光刻胶薄膜上记录下干涉条纹,然后将光刻胶样品进行显影、定影,即可得到周期性的一维分布反馈式结构。4) The above-mentioned prepared double-layer film sample is placed in the interference optical path, as shown in Figure 1, wherein, the laser wavelength used in interference lithography is 355nm, and the interference fringes can be recorded on the upper photoresist film, and then the light After developing and fixing the resist sample, a periodic one-dimensional distributed feedback structure can be obtained.
实施例4:基于有源波导的一维有机半导体激光器的制备Example 4: Preparation of one-dimensional organic semiconductor laser based on active waveguide
1)将有机半导体F8BT溶解于甲苯、二甲苯、三氯甲烷、环己烷、戊烷、己烷或辛烷等有机溶剂中,制成浓度为15mg/ml的F8BT有机半导体溶液;1) Dissolving organic semiconductor F8BT in organic solvents such as toluene, xylene, chloroform, cyclohexane, pentane, hexane or octane, to prepare a F8BT organic semiconductor solution with a concentration of 15mg/ml;
2)将F8BT有机半导体溶液旋涂在硅片基底上。旋涂速度为2000rpm,相应的膜厚为150nm;2) Spin-coat the F8BT organic semiconductor solution on the silicon wafer substrate. The spin coating speed is 2000rpm, and the corresponding film thickness is 150nm;
3)将记录介质S1805光刻胶旋涂在步骤2)中的有机半导体薄膜上。旋涂速度为2000rpm,相应的膜厚为500nm;3) The recording medium S1805 photoresist is spin-coated on the organic semiconductor thin film in step 2). The spin coating speed is 2000rpm, and the corresponding film thickness is 500nm;
4)将上述制备的双层膜样品置于干涉光路中,如图1所示,其中,干涉光刻所用激光波长为355nm,即可在上层光刻胶薄膜上记录下干涉条纹,然后将光刻胶样品进行显影、定影,即可得到周期性的一维分布反馈式结构。4) The above-mentioned prepared double-layer film sample is placed in the interference optical path, as shown in Figure 1, wherein, the laser wavelength used in interference lithography is 355nm, and the interference fringes can be recorded on the upper photoresist film, and then the light After developing and fixing the resist sample, a periodic one-dimensional distributed feedback structure can be obtained.
实施例5:基于有源波导的一维有机半导体激光器的制备Example 5: Preparation of one-dimensional organic semiconductor laser based on active waveguide
1)将有机半导体F8BT溶解于甲苯、二甲苯或三氯甲烷等有机溶剂中,制成浓度为15mg/ml的F8BT有机半导体溶液;1) Dissolving the organic semiconductor F8BT in an organic solvent such as toluene, xylene or chloroform to prepare a F8BT organic semiconductor solution with a concentration of 15mg/ml;
2)将F8BT有机半导体溶液旋涂在玻璃基底上。旋涂速度为1000rpm,相应的膜厚为200nm;2) Spin-coat the F8BT organic semiconductor solution on the glass substrate. The spin coating speed is 1000rpm, and the corresponding film thickness is 200nm;
3)将记录介质S1805光刻胶旋涂在步骤2)中的有机半导体薄膜上。旋涂速度为2000rpm,相应的膜厚为500nm;3) The recording medium S1805 photoresist is spin-coated on the organic semiconductor thin film in step 2). The spin coating speed is 2000rpm, and the corresponding film thickness is 500nm;
4)将上述制备的双层膜样品置于干涉光路中,如图1所示,其中,干涉光刻所用激光波长为355nm,即可在上层光刻胶薄膜上记录下干涉条纹,然后将光刻胶样品进行显影、定影,即可得到周期性的一维分布反馈式结构。4) The above-mentioned prepared double-layer film sample is placed in the interference optical path, as shown in Figure 1, wherein, the laser wavelength used in interference lithography is 355nm, and the interference fringes can be recorded on the upper photoresist film, and then the light After developing and fixing the resist sample, a periodic one-dimensional distributed feedback structure can be obtained.
实施例6:基于有源波导的一维有机半导体激光器的制备Embodiment 6: Preparation of one-dimensional organic semiconductor laser based on active waveguide
1)将有机半导体F8BT溶解于甲苯、二甲苯、三氯甲烷、环己烷、戊烷、己烷或辛烷等有机溶剂中,制成浓度为15mg/ml的F8BT有机半导体溶液;1) Dissolving organic semiconductor F8BT in organic solvents such as toluene, xylene, chloroform, cyclohexane, pentane, hexane or octane, to prepare a F8BT organic semiconductor solution with a concentration of 15mg/ml;
2)将F8BT有机半导体溶液旋涂在玻璃基底上。旋涂速度为2000rpm,相应的膜厚为150nm;2) Spin-coat the F8BT organic semiconductor solution on the glass substrate. The spin coating speed is 2000rpm, and the corresponding film thickness is 150nm;
3)将记录介质S1805光刻胶旋涂在步骤2)中的有机半导体薄膜上。旋涂速度为2000rpm,相应的膜厚为500nm;3) The recording medium S1805 photoresist is spin-coated on the organic semiconductor thin film in step 2). The spin coating speed is 2000rpm, and the corresponding film thickness is 500nm;
4)将上述制备的双层膜样品置于干涉光路中,如图1所示,其中,干涉光刻所用激光波长为405nm,即可在上层光刻胶薄膜上记录下干涉条纹,然后将光刻胶样品进行显影、定影,即可得到周期性的一维分布反馈式结构。4) The above-mentioned prepared double-layer film sample is placed in the interference optical path, as shown in Figure 1, wherein, the laser wavelength used in interference lithography is 405nm, and the interference fringes can be recorded on the upper photoresist film, and then the light After developing and fixing the resist sample, a periodic one-dimensional distributed feedback structure can be obtained.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110043450.5A CN102651537B (en) | 2011-02-23 | 2011-02-23 | Manufacturing method for organic semiconductor laser based on active waveguide grating structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110043450.5A CN102651537B (en) | 2011-02-23 | 2011-02-23 | Manufacturing method for organic semiconductor laser based on active waveguide grating structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102651537A CN102651537A (en) | 2012-08-29 |
CN102651537B true CN102651537B (en) | 2014-07-30 |
Family
ID=46693463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110043450.5A Expired - Fee Related CN102651537B (en) | 2011-02-23 | 2011-02-23 | Manufacturing method for organic semiconductor laser based on active waveguide grating structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102651537B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103197366B (en) * | 2013-03-13 | 2015-06-17 | 北京工业大学 | Polarizing filter based on heterojunction grating and preparation method |
CN103236647A (en) * | 2013-04-17 | 2013-08-07 | 北京工业大学 | Manufacturing method of distributed Bragg reflection lens structure |
CN105226500B (en) * | 2015-05-08 | 2018-03-30 | 北京工业大学 | Flexible tunable multi-wavelength organic semiconductor laser and preparation method |
CN104882780B (en) | 2015-06-10 | 2017-10-13 | 北京工业大学 | A kind of preparation method of film-type organic polymer laser |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388523A (en) * | 2008-10-30 | 2009-03-18 | 上海大学 | Novel organic semiconductor solid-state laser and its preparation method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6665479B2 (en) * | 2000-03-06 | 2003-12-16 | Shayda Technologies, Inc. | Polymeric devices including optical waveguide laser and optical amplifier |
JP2001257399A (en) * | 2000-03-09 | 2001-09-21 | Taiyo Yuden Co Ltd | Thin-film laser light emitting device and method of manufacturing the same |
JP4415113B2 (en) * | 2003-10-01 | 2010-02-17 | 独立行政法人理化学研究所 | Organic distributed feedback laser with variable oscillation wavelength |
JP2010015874A (en) * | 2008-07-04 | 2010-01-21 | Kyoto Institute Of Technology | Organic optical device, method of manufacturing the same, and method of manufacturing amplified or narrowed light |
-
2011
- 2011-02-23 CN CN201110043450.5A patent/CN102651537B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388523A (en) * | 2008-10-30 | 2009-03-18 | 上海大学 | Novel organic semiconductor solid-state laser and its preparation method |
Non-Patent Citations (4)
Title |
---|
polymer grating based on photopolymerization for low-order distributed feedback polymer lasers;zhao xuanke,et al;《CHINESE OPTICS LETTERS》;20080210;第6卷(第2期);90-92 * |
zhao xuanke,et al.polymer grating based on photopolymerization for low-order distributed feedback polymer lasers.《CHINESE OPTICS LETTERS》.2008,第6卷(第2期),90-92. |
周进波.用于有机半导体激光器的新型聚合物光栅.《清华大学硕士学位论文》.2004,全文. |
用于有机半导体激光器的新型聚合物光栅;周进波;《清华大学硕士学位论文》;20041231;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN102651537A (en) | 2012-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Veinot et al. | Fabrication and properties of organic light-emitting “nanodiode” arrays | |
CN100502034C (en) | Electronic component, integrated circuit and manufacturing method thereof | |
EP0506368B1 (en) | Organic functional thin film, fabrication and use thereof | |
Nguyen et al. | Near-field scanning optical microscopy (NSOM) studies of the relationship between interchain interactions, morphology, photodamage, and energy transport in conjugated polymer films | |
CN101487976B (en) | Preparation method of metal photonic crystal by solution method | |
CN101973512B (en) | Method for directly writing metal micro-nano structure by ultraviolet laser interferometry etching | |
Yamamoto et al. | Nanoscale organic light-emitting diodes | |
CN102651537B (en) | Manufacturing method for organic semiconductor laser based on active waveguide grating structure | |
Poisson et al. | Preparation of patterned and multilayer thin films for organic electronics via oxygen‐tolerant SI‐PET‐RAFT | |
CN103972388B (en) | The method for preparing the controllable highly oriented organic small molecular semiconductor single grain pattern of size | |
JP2009516380A (en) | Method for patterning a thin film | |
WO2010131046A1 (en) | Photonic crystal structure and method of formation thereof | |
WO2016035823A1 (en) | Low-resistance cladding material and electro-optic polymer optical waveguide | |
Castro et al. | Nanostructured organic layers via polymer demixing for interface-enhanced photovoltaic cells | |
Jang et al. | Tetrabranched photo-crosslinker enables micrometer-scale patterning of light-emitting super yellow for high-resolution OLEDs | |
Lee et al. | Nondestructive direct photolithography for patterning quantum dot films by atomic layer deposition of ZnO | |
CN102651534A (en) | Distributed feedback type organic semiconductor laser preparation method based on laser interferometer lithography | |
CN105226500B (en) | Flexible tunable multi-wavelength organic semiconductor laser and preparation method | |
CN102649196B (en) | Method for directly writing organic semiconductor laser by ultraviolet laser interferometry etching | |
CN101975976B (en) | Photonic crystal micro-nano structure direct-writing method based on metal nanoparticles | |
CN110137799B (en) | Composite cavity laser with adjustable laser emitting direction | |
CN103258956B (en) | A kind of preparation method of two-dimensional island infrared spectrum plasmon metal structure | |
Zheng et al. | Preparation of high-quality organic semiconductor nanoparticle films by solvent-evaporation-induced self-assembly | |
JP7425199B2 (en) | Quantum dot light emitting component and its manufacturing method, quantum dot display panel manufacturing method | |
CN101067719A (en) | A method for constructing sub-10 nanometer gaps and arrays thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140730 Termination date: 20180223 |
|
CF01 | Termination of patent right due to non-payment of annual fee |