CN102645365A - 一种确定有效应力强度因子范围的方法 - Google Patents

一种确定有效应力强度因子范围的方法 Download PDF

Info

Publication number
CN102645365A
CN102645365A CN2012101554119A CN201210155411A CN102645365A CN 102645365 A CN102645365 A CN 102645365A CN 2012101554119 A CN2012101554119 A CN 2012101554119A CN 201210155411 A CN201210155411 A CN 201210155411A CN 102645365 A CN102645365 A CN 102645365A
Authority
CN
China
Prior art keywords
stress
ratio
stress ratio
mpam
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101554119A
Other languages
English (en)
Other versions
CN102645365B (zh
Inventor
许天旱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN2012101554119A priority Critical patent/CN102645365B/zh
Publication of CN102645365A publication Critical patent/CN102645365A/zh
Application granted granted Critical
Publication of CN102645365B publication Critical patent/CN102645365B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种确定有效应力强度因子范围的方法,步骤为:一,根据标准加工试样,完成疲劳裂纹扩展试验,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标(lg(da/dN)-lgK)中;二,确定最大应力比下lg(da/dN)-lgK直线部分的中部点对应的(da/dN),其值作为(da/dNbase;三,确定不同应力比曲线上(da/dNbase对应的△K,根据不同应力比下的(lg(da/dN)-lgK)确定出△K;四,依次确定较低应力比和最大应力比0.7曲线对应于(da/dNbase的△K之间的差值△K ce;五,建立不同应力下的△K ce和应力比的关系公式;六,确定不同应力比下的△K和应力比R之间的关系,确定更高应力比下的△K;七,有效应力强度因子范围的确定,方法简单,精度高,适用范围广。

Description

一种确定有效应力强度因子范围的方法
技术领域
本发明涉及材料疲劳裂纹扩展性能确定技术领域,具体涉及一种确定有效应力强度因子范围的方法,主要应用于确定材料疲劳裂纹扩展性能参数。
背景技术
套管钻井即使是21世纪最有创新性的钻井技术之一,由于套管改变了传统的使用方法,同时具备固井和钻井的功能,对其疲劳性能提出了更高的要求。尽管自从Paris发现疲劳裂纹扩展曲线在双对数坐标中呈一直线,Paris公式中的两个参数C和m就在工程上得到了广泛的重视和应用。但事实上很多人都通过试验发现随着应力比的增加,疲劳裂纹扩展曲线发生左移,即Paris参数C并非材料常数,而是受到应力比的显著影响。据此,有研究者建立了如下公式:
Figure 2012101554119100002DEST_PATH_IMAGE001
                                               
式中:da/dt 为裂纹扩展速率(m/cycle),△K eff为有效应力强度因子范围(MPa·m1/2);C effm eff是材料常数。
C effm eff作为材料常数能够很方便的用于工程设计中,不受其它外在因素的影响。为了获得材料常数C effm eff. 通常需要首先确定△K eff, 但确定△K eff很麻烦,因为影响的因素很多,包括材料的塑性,材料容易受氧化的程度等等。
尽管根据公式(2)可以计算出△K eff
K effUK                                                (2)
式中:U为闭合效应系数,△K为标称应力强度因子范围。
但U的确定本身就很麻烦,需要专用的设备。尽管有的文献利用特殊方法获得某些材料闭合效应系数的计算公式,但不同材料特性千差万别,计算误差较大。
采用本发明的方法能够确定△K eff,具有方法简单,不需要添加设备,精度高,适用范围广等特点。从而增加了工程设计的精确度和方便性,在降低疲劳失效事故率方面具有重要的意义。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供一种确定有效应力强度因子范围的方法,具有方法简单,不需要添加设备,精度高,适用范围广的特点。
为了实现上述目的,本发明采用的技术方案是:一种确定有效应力强度因子范围的方法,包括如下步骤:
第一,根据标准加工试样,采用紧凑拉伸试样,试样厚度B=4.8mm,宽度W=30mm,切口采用线切割方式加工,预裂长度为2mm,利用PLD-100型液压伺服疲劳试验机,裂纹长度由微机辅助电位法监测,电位函数由边界元法计算给出,试验温度为室温,频率为10Hz,加载波形为正弦波型,载荷为1.4KN,试验应力比RP min/P max,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标(lg(da/dN)-lgK)中;
其中,da/dN为疲劳裂纹扩展速率;△K为应力强度因子范围;P min为最小载荷;P max为最大载荷;
第二,确定最大应力比下lg(da/dN)-lgK直线部分的中部点对应的(da/dN)其值作为(da/dNbase,其中(da/dNbase为基准裂纹扩展速率;
第三,确定不同应力比曲线上(da/dNbase 对应的△K,根据不同应力比下的(lg(da/dN)-lgK)可确定出对应于(da/dNbase的△K
第四,依次确定较低应力比和最大应力比0.7曲线对应于(da/dNbase 的△K之间的差值,作为因闭合效应引起的应力强度因子范围的降低值;
第五,建立不同应力下的△K ce和应力比的关系公式,绘制不同应力比下的裂纹扩展曲线曲线会发现,会发现应力比R和△K ce对数关系,采用最小二乘法即可得到如下公式:△K ce=f(R);
其中,△K ce为由闭合效应引起的应力强度因子范围降低的值;
第六,确定不同应力比下的△K和应力比R之间的关系,并确定更高应力比下的△K
建立lg(△K R/△K 最大应力比)和R之间的关系式;
其中R为应力比,△K R为应比比R对应的△K;△K 最大应力比为最大应比对应的△K,最大应力比是指可以忽略掉的裂纹闭合效应所对应的应力比;
第七,有效应力强度因子范围的确定,
Figure 68185DEST_PATH_IMAGE002
其中,△K eff为有效应力强度因子范围(MPa·m1/2);△K 最大应力比为最大应比对应的△K,最大应力比是指可以忽略掉的裂纹闭合效应所对应的应力比;
本发明的有益效果是:
与现有技术相比,采用本发明能实现简单、方便、准确、低成本下获得材料有效应力强度因子范围值;具有方法简单,不需要添加设备,精度高,适用范围广的特点;使用本方法确定有效应力强度因子,增加了工程设计的精确度和方便性,在降低疲劳失效事故率方面具有重要的意义。
具体实施方式
下面结合实施例对本发明作进一步详细说明。
实施例一
对于一种珠光体-铁素体的套管钻井钢,获得有效应力强度因子范围的方法,包括有如下步骤:
第一,根据标准加工试样,采用紧凑拉伸试样,试样厚度B=4.8mm,宽度W=30mm,切口采用线切割方式加工,预裂长度为2mm,利用PLD-100型液压伺服疲劳试验机,裂纹长度由微机辅助电位法监测,电位函数由边界元法计算给出,试验温度为室温,频率为10Hz,加载波形为正弦波型,载荷为1.4KN,试验应力比RP min/P max,分别为:0.1、0.3、0.5、0.7,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标(lg(da/dN)-lgK)中;
其中,P min为最小载荷,P max为最大载荷;da/dN为疲劳裂纹扩展速率;△K为应力强度因子范围;
第二,确定最大应力比0.7下lg(da/dN)-lgK直线部分的中点对应的(da/dN)其值为5.27×10-8作为(da/dNbase,其中(da/dNbase为基准裂纹扩展速率;
第三,确定不同应力比曲线上(da/dNbase 对应的△K,根据不同应力比下的(lg(da/dN)-lgK)可确定出对应于(da/dNbase的△K,不同应力比0.7, 0.5, 0.3, 0.1 对应的△K分别为:18.03 MPam1/2, 19.20 MPam1/2, 21.18 MPam1/2, 24.14 MPam1/2
第四,依次确定应力比0.1, 0.3, 0.5和应力比0.7曲线对应于(da/dNbase 的△K之间的差值,作为因闭合效应引起的应力强度因子范围的降低值,记作△K ce,△K ce 0.1-0.7,△K ce 0.3-0.7,△K ce 0.5-0.7分别为6.11 MPa·m1/2;3.15MPa·m1/2;1.17MPa·m1/2
第五,建立不同应力下的△K ce和应力比的关系公式,
通过绘制曲线并分析,发现应力比与△K ce满足对数关系
Kce = -3.0097Ln(R) - 0.7366
其中,△K ce为由闭合效应引起的应力强度因子范围降低的值;
由上式可计算出应力0.7对应的△K ce 0.7为0.34 MPa·m1/2,根据0.34 MPa·m1/2和第三步中18.32 MPa·m1/2, 可知应力比0.9对应的△K为17.69MPa·m1/2
第六,确定不同应力比下的△K和应力比R之间的关系,并确定更高应力比下的△K
建立lg(△K R/△K 最大应力比)和R之间的关系式:
应力比大于0.9则裂纹闭合效应很小,可忽略不计,以应力比为0.9对应的闭合效应1计算:
则:
lg(△K R0.1/△K  R0.9)= lg(24.14/17.69)=0.1350
lg(△K R0.3/△K  R0.9)= lg(21.18/17.69)=0.0781
lg(△K R0.5/△K R0.9)= lg(19.20/17.69)=0.0355
lg(△K R0.7/△K R0.9)= lg(18.03/17.69)=0.0083
发现:不同应力下的△K和应力比0.9对应的△K比值的对数与R具有相关性,通过最小二乘法进行拟合,获得下式:
lg(△K R/△K 0.9)=0.1844R - 0.359R + 0.1691
K R为应比R对应的△K;△K 0.9为应力比0.9R对应的△K
第七,有效应力强度因子范围的确定,
Figure 2012101554119100002DEST_PATH_IMAGE003
其中,△K eff为有效应力强度因子范围(MPa·m1/2)
该方法实现了通过珠光体-铁素体套管钻井钢不同应力比下的疲劳裂纹扩展曲线确定珠光体-铁素体钢在任意应力比下不同裂纹扩展长度处的有效应力强度因子范围值,使用方便,效果良好,所有应力比下的Paris区数据一起进行线性拟合,偏差为0.05335,线性相关系数为0.9959。
实施例二
对于一种铁素体-贝氏体-马氏体套管钻井钢,获得有效应力强度因子范围的方法,包括有如下步骤:
第一,根据标准加工试样,采用紧凑拉伸试样,试样厚度B=4.8mm,宽度W=30mm,切口采用线切割方式加工,预裂长度为2mm,利用PLD-100型液压伺服疲劳试验机,裂纹长度由微机辅助电位法监测,电位函数由边界元法计算给出,试验温度为室温,频率为10Hz,加载波形为正弦波型,载荷为1.4KN,试验应力比RP min/P max,分别为:0.1、0.3、0.5、0.7,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标((lg(da/dN)-lgK)中;
其中,P min为最小载荷,P max为最大载荷;da/dN为疲劳裂纹扩展速率;△K为应力强度因子范围;
第二,确定最大应力比0.7下lg(da/dN)-lgK直线部分的中部对应的(da/dN)其值为3.84×10-8作为(da/dNbase,其中(da/dNbase为基准裂纹扩展速率;
第三,确定不同应力比曲线上(da/dNbase 对应的△K,根据不同应力比下的(lg(da/dN)-lgK)可确定出对应于(da/dNbase的△K,不同应力比0.7, 0.5, 0.3, 0.1 对应的△K分别为:17.43 MPam1/2, 18.12 MPam1/2, 19.40 MPam1/2, 21.12 MPam1/2
第四,依次确定应力比0.1, 0.3, 0.5和应力比0.7曲线对应于(da/dNbase 的△K之间的差值,作为因闭合效应引起的应力强度因子范围的降低值,记作△K ce,△K ce 0.1-0.7,△K ce 0.3-0.7,△K ce 0.5-0.7分别为3.69 MPa·m1/2;1.97MPa·m1/2;0.69MPa·m1/2
第五,建立不同应力下的△K ce和应力比的关系公式,
通过绘制曲线并分析,发现应力比与△K ce满足对数关系
Kce = -1.8165Ln(R) - 0.4263
其中,△K ce为由闭合效应引起的应力强度因子范围降低的值;
由上式可计算出应力0.7对应的△K ce 0.7为0.22 MPa·m1/2,根据0.22 MPa·m1/2和第三步中17.43 MPa·m1/2, 可知应力比0.9对应的△K为 17.219MPa·m1/2
第六,确定不同应力比下的△K和应力比R之间的关系,并确定更高应力比下的△K
建立lg(△K R/△K 最大应力比)和R之间的关系式:
应力比大于0.9则裂纹闭合效应很小,可忽略不计,以应力比为0.9对应的闭合效应1计算:
则:
lg(△K R0.1/△K  R0.9)= lg(21.12/17.21)=0.1350
lg(△K R0.3/△K  R0.9)= lg(19.40/17.21)=0.0781
lg(△K R0.5/△K R0.9)= lg(18.12/17.21)=0.0355
lg(△K R0.7/△K R0.9)= lg(17.43/17.21)=0.0083
发现:不同应力下的△K和应力比0.9对应的△K比值的对数与R具有相关性,通过最小二乘法进行拟合,获得下式:
lg(△K R/△K 0.9)=0.1252R- 0.2401R + 0.1119
第七,有效应力强度因子范围的确定,
Figure 589296DEST_PATH_IMAGE004
K R为应比R对应的△K;△K 0.9为应力比0.9R对应的△K
该方法实现了通过铁素体-贝氏体-马氏体钢不同应力比下的疲劳裂纹扩展曲线确定珠铁素体-贝氏体-马氏体钢在任意应力比下不同裂纹扩展长度处的有效应力强度因子范围值,使用方便,效果良好,所有应力比下的Paris区数据一起进行线性拟合,偏差为0.0596,线性相关系数为0.9949。
实施例三
对于一种完全回火马氏体套管钻井钢,获得有效应力强度因子范围的方法,包括有如下步骤:
第一,根据标准加工试样,采用紧凑拉伸试样,试样厚度B=4.8mm,宽度W=30mm,切口采用线切割方式加工,预裂长度为2mm,利用PLD-100型液压伺服疲劳试验机,裂纹长度由微机辅助电位法监测,电位函数由边界元法计算给出,试验温度为室温,频率为10Hz,加载波形为正弦波型,载荷为1.4KN,试验应力比RP min/P max,分别为:0.1、0.3、0.5、0.7,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标(lg(da/dN)-lgK)中;
上式中,P min为最小载荷,P max为最大载荷;da/dN为疲劳裂纹扩展速率;△K为应力强度因子范围;
第二,确定最大应力比0.7下lg(da/dN)-lgK直线部分的中点对应的(da/dN)其值为1.42×10-7 作为(da/dNbase,其中(da/dNbase为基准裂纹扩展速率;
第三,确定不同应力比曲线上(da/dNbase 对应的△K,根据不同应力比下的(lg(da/dN)-lgK)确定出对应于(da/dNbase的△K,不同应力比0.7, 0.5, 0.3, 0.1 对应的△K分别为:22.39 MPam1/2, 23.97 MPam1/2, 26.47 MPam1/2, 30.51 MPam1/2
第四,依次确定应力比0.1, 0.3, 0.5和应力比0.7曲线对应于(da/dNbase 的△K之间的差值,作为因闭合效应引起的应力强度因子范围的降低值,记作△K ce,△K ce 0.1-0.7,△K ce 0.3-0.7,△K ce 0.5-0.7分别为8.13 MPa·m1/2;4.08MPa·m1/2;1.58MPa·m1/2
第五,建立不同应力下的△K ce和应力比的关系公式,
通过绘制曲线并分析,发现应力比与△K ce满足对数关系
 △K ce = -4.0088Ln(R) - 1.0152
其中,△K ce为由闭合效应引起的应力强度因子范围降低的值;
由上式可计算出应力0.7对应的△K ce 0.7为0.41 MPa·m1/2,根据0.41 MPa·m1/2和第三步中22.39 MPa·m1/2, 可知应力比0.9对应的△K为21.98MPa·m1/2
第六,确定不同应力比下的△K和应力比R之间的关系,并确定更高应力比下的△K
建立lg(△K R/△K 最大应力比)和R之间的关系式:
应力比大于0.9则裂纹闭合效应很小,可忽略不计,以应力比为0.9对应的闭合效应1计算:
则:
lg(△K R0.1/△K  R0.9)= lg(30.51/21.98)=0.1424
lg(△K R0.3/△K  R0.9)= lg(26.47/21.98)=0.0873
lg(△K R0.5/△K R0.9)= lg(23.97/21.98)=0.0376
lg(△K R0.7/△K R0.9)= lg(22.39/21.98)=0.0080
发现:不同应力下的△K和应力比0.9对应的△K比值的对数与R具有相关性。通过最小二乘法进行拟合,获得下式:
lg(△K R/△K 0.9)=0.2005R - 0.3835R + 0.1785
K R为应比R对应的△K;△K 0.9为应力比0.9R对应的△K
第七,有效应力强度因子范围的确定
Figure 2012101554119100002DEST_PATH_IMAGE005
其中,△K eff为有效应力强度因子范围(MPa·m1/2),
该方法实现了通过回火马氏体钢不同应力比下的疲劳裂纹扩展曲线确定回火马氏体钢在任意应力比下不同裂纹扩展长度处的有效应力强度因子范围值,使用方便,效果良好,所有应力比下的Paris区数据一起进行线性拟合,偏差为0.03976,线性相关系数为0.9974。

Claims (4)

1.一种确定有效应力强度因子范围的方法,其特征在于,包括如下步骤:
第一,根据标准加工试样,采用紧凑拉伸试样,试样厚度B=4.8mm,宽度W=30mm,切口采用线切割方式加工,预裂长度为2mm,利用PLD-100型液压伺服疲劳试验机,裂纹长度由微机辅助电位法监测,电位函数由边界元法计算给出,试验温度为室温,频率为10Hz,加载波形为正弦波型,载荷为1.4KN,试验应力比RP min/P max,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标(lg(da/dN)-lgK)中;
其中,da/dN为疲劳裂纹扩展速率;△K为应力强度因子范围;P min为最小载荷;P max为最大载荷;
第二,确定最大应力比下lg(da/dN)-lgK直线部分的中部点对应的(da/dN)其值作为(da/dNbase,其中(da/dNbase为基准裂纹扩展速率;
第三,确定不同应力比曲线上(da/dNbase 对应的△K,根据不同应力比下的(lg(da/dN)-lgK)可确定出(da/dNbase 对应的△K
第四,依次确定较低应力比和最大应力比0.7曲线对应于(da/dNbase 的△K之间的差值△K ce,作为由闭合效应引起的应力强度因子范围的降低值;
第五,建立不同应力下的△K ce和应力比的关系公式,绘制不同应力比下的裂纹扩展曲线曲线会发现,会发现应力比R和△K ce对数关系,采用最小二乘法即可得到如下公式:△K ce=f(R);
其中,△K ce为由闭合效应引起的应力强度因子范围降低的值;
第六,确定不同应力比下的△K和应力比R之间的关系,并确定更高应力比下的△K
建立lg(△K R/△K 最大应力比)和R之间的关系式:
lg(△K R/△K 最大应力比)=f(R)
其中R为应力比,△K R为应比R对应的△K;△K 最大应力比为最大应比对应的△K,最大应力比是指可以忽略掉的裂纹闭合效应所对应的应力比;
第七,有效应力强度因子范围的确定,
Figure 2012101554119100001DEST_PATH_IMAGE001
其中,△K eff为有效应力强度因子范围(MPa·m1/2);△K 最大应力比为最大应比对应的△K,最大应力比是指可以忽略掉的裂纹闭合效应所对应的应力比。
2.根据权利要求1所述的一种确定有效应力强度因子范围的方法,其特征在于,包括如下步骤:
第一,根据标准加工试样,采用紧凑拉伸试样,试样厚度B=4.8mm,宽度W=30mm,切口采用线切割方式加工,预裂长度为2mm,利用PLD-100型液压伺服疲劳试验机,裂纹长度由微机辅助电位法监测,电位函数由边界元法计算给出,试验温度为室温,频率为10Hz,加载波形为正弦波型,载荷为1.4KN,试验应力比RP min/P max,分别为:0.1、0.3、0.5、0.7,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标(lg(da/dN)-lgK)中;
其中,P min为最小载荷,P max为最大载荷;da/dN为疲劳裂纹扩展速率;△K为应力强度因子范围;
第二,确定最大应力比0.7下lg(da/dN)-lgK直线部分的中点对应的(da/dN)其值为5.27×10-8作为(da/dNbase,其中(da/dNbase为基准裂纹扩展速率;
第三,确定不同应力比曲线上(da/dNbase 对应的△K,根据不同应力比下的(lg(da/dN)-lgK)可确定出对应于(da/dNbase的△K,不同应力比0.7, 0.5, 0.3, 0.1 对应的△K分别为:18.03 MPam1/2, 19.20 MPam1/2, 21.18 MPam1/2, 24.14 MPam1/2
第四,依次确定应力比0.1, 0.3, 0.5和应力比0.7曲线对应于(da/dNbase 的△K之间的差值△K ce,作为因闭合效应引起的应力强度因子范围的降低值,记作△K ce,△K ce 0.1-0.7,△K ce 0.3-0.7,△K ce 0.5-0.7分别为6.11 MPa·m1/2;3.15MPa·m1/2;1.17MPa·m1/2
第五,建立不同应力下的△K ce和应力比的关系公式,
通过绘制曲线并分析,发现应力比与△K ce 满足对数关系
Kce = -3.0097Ln(R) - 0.7366
其中,△K ce为由闭合效应引起的应力强度因子范围降低的值;
由上式可计算出应力0.7对应的△K ce 0.7为0.34 MPa·m1/2,根据0.34 MPa·m1/2和第三步中18.32 MPa·m1/2, 可知应力比0.9对应的△K为17.69MPa·m1/2
第六,确定不同应力比下的△K和应力比R之间的关系,并确定更高应力比下的△K
建立lg(△K R/△K 最大应力比)和R之间的关系式:
应力比大于0.9则裂纹闭合效应很小,可忽略不计,以应力比为0.9对应的闭合效应1计算:
则:
lg(△K R0.1/△K  R0.9)= lg(24.14/17.69)=0.1350
lg(△K R0.3/△K  R0.9)= lg(21.18/17.69)=0.0781
lg(△K R0.5/△K R0.9)= lg(19.20/17.69)=0.0355
lg(△K R0.7/△K R0.9)= lg(18.03/17.69)=0.0083
发现:不同应力下的△K和应力比0.9对应的△K比值的对数与R具有相关性,通过最小二乘法进行拟合,获得下式:
lg(△K R/△K 0.9)=0.1844R - 0.359R + 0.1691
K R为应比R对应的△K;△K 0.9为应力比0.9R对应的△K
第七,有效应力强度因子范围的确定,
Figure 387352DEST_PATH_IMAGE002
其中,△K eff为有效应力强度因子范围(MPa·m1/2);△K 最大应力比为最大应比对应的△K,最大应力比是指可以忽略掉的裂纹闭合效应所对应的应力比;
该方法实现了通过珠光体-铁素体套管钻井钢不同应力比下的疲劳裂纹扩展曲线确定珠光体-铁素体钢在任意应力比下不同裂纹扩展长度处的有效应力强度因子范围值,所有应力比下的Paris区数据一起进行线性拟合,偏差为0.05335,线性相关系数为0.9959。
3.根据权利要求1所述的一种确定有效应力强度因子范围的方法,其特征在于,包括如下步骤:
第一,根据标准加工试样,采用紧凑拉伸试样,试样厚度B=4.8mm,宽度W=30mm,切口采用线切割方式加工,预裂长度为2mm,利用PLD-100型液压伺服疲劳试验机,裂纹长度由微机辅助电位法监测,电位函数由边界元法计算给出,试验温度为室温,频率为10Hz,加载波形为正弦波型,载荷为1.4KN,试验应力比RP min/P max,分别为:0.1、0.3、0.5、0.7,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标((lg(da/dN)-lgK)中;
其中,P min为最小载荷,P max为最大载荷;da/dN为疲劳裂纹扩展速率;△K为应力强度因子范围;
第二,确定最大应力比0.7下lg(da/dN)-lgK直线部分的中部对应的(da/dN)其值为3.84×10-8作为(da/dNbase,其中(da/dNbase为基准裂纹扩展速率;
第三,确定不同应力比曲线上(da/dNbase 对应的△K,根据不同应力比下的(lg(da/dN)-lgK)可确定出对应于(da/dNbase的△K,不同应力比0.7, 0.5, 0.3, 0.1 对应的△K分别为:17.43 MPam1/2, 18.12 MPam1/2, 19.40 MPam1/2, 21.12 MPam1/2
第四,依次确定应力比0.1, 0.3, 0.5和应力比0.7曲线对应于(da/dNbase 的△K之间的差值,作为因闭合效应引起的应力强度因子范围的降低值,记作△K ce,△K ce 0.1-0.7,△K ce 0.3-0.7,△K ce 0.5-0.7分别为3.69 MPa·m1/2;1.97MPa·m1/2;0.69MPa·m1/2
第五,建立不同应力下的△K ce和应力比的关系公式,
通过绘制曲线并分析,发现应力比与△K ce 满足对数关系
Kce = -1.8165Ln(R) - 0.4263
其中,△K ce为由闭合效应引起的应力强度因子范围降低的值;
由上式可计算出应力0.7对应的△K ce 0.7为0.22 MPa·m1/2,根据0.22 MPa·m1/2和第三步中17.43 MPa·m1/2, 可知应力比0.9对应的△K为 17.219MPa·m1/2
第六,确定不同应力比下的△K和应力比R之间的关系,并确定更高应力比下的△K
建立lg(△K R/△K 最大应力比)和R之间的关系式:
应力比大于0.9则裂纹闭合效应很小,可忽略不计,以应力比为0.9对应的闭合效应1计算:
则:
lg(△K R0.1/△K  R0.9)= lg(21.12/17.21)=0.1350
lg(△K R0.3/△K  R0.9)= lg(19.40/17.21)=0.0781
lg(△K R0.5/△K R0.9)= lg(18.12/17.21)=0.0355
lg(△K R0.7/△K R0.9)= lg(17.43/17.21)=0.0083
发现:不同应力下的△K和应力比0.9对应的△K比值的对数与R具有相关性,通过最小二乘法进行拟合,获得下式:
lg(△K R/△K 0.9)=0.1252R - 0.2401R + 0.1119
K R为应比R对应的△K;△K 0.9为应力比0.9R对应的△K
第七,有效应力强度因子范围的确定,
Figure 2012101554119100001DEST_PATH_IMAGE003
其中,△K eff为有效应力强度因子范围(MPa·m1/2);
该方法实现了通过铁素体-贝氏体-马氏体钢不同应力比下的疲劳裂纹扩展曲线确定珠铁素体-贝氏体-马氏体钢在任意应力比下不同裂纹扩展长度处的有效应力强度因子范围值,所有应力比下的Paris区数据一起进行线性拟合,偏差为0.0596,线性相关系数为0.9949。
4.根据权利要求1所述的一种确定有效应力强度因子范围的方法,其特征在于,包括如下步骤:
第一,根据标准加工试样,采用紧凑拉伸试样,试样厚度B=4.8mm,宽度W=30mm,切口采用线切割方式加工,预裂长度为2mm,利用PLD-100型液压伺服疲劳试验机,裂纹长度由微机辅助电位法监测,电位函数由边界元法计算给出,试验温度为室温,频率为10Hz,加载波形为正弦波型,载荷为1.4KN,试验应力比RP min/P max,分别为:0.1、0.3、0.5、0.7,将不同应力比下的疲劳裂纹扩展曲线绘制在双对数坐标(lg(da/dN)-lgK)中;
其中,P min为最小载荷,P max为最大载荷;da/dN为疲劳裂纹扩展速率;△K为应力强度因子范围;
第二,确定最大应力比0.7下lg(da/dN)-lgK直线部分的中点对应的(da/dN)其值为1.42×10-7 作为(da/dNbase,其中(da/dNbase为基准裂纹扩展速率;
第三,确定不同应力比曲线上(da/dNbase 对应的△K,根据不同应力比下的(lg(da/dN)-lgK)确定出对应于(da/dNbase的△K,不同应力比0.7, 0.5, 0.3, 0.1 对应的△K分别为:22.39 MPam1/2, 23.97 MPam1/2, 26.47 MPam1/2, 30.51 MPam1/2
第四,依次确定应力比0.1, 0.3, 0.5和应力比0.7曲线对应于(da/dNbase 的△K之间的差值,作为因闭合效应引起的应力强度因子范围的降低值,记作△K ce,△K ce 0.1-0.7,△K ce 0.3-0.7,△K ce 0.5-0.7分别为8.13 MPa·m1/2;4.08MPa·m1/2;1.58MPa·m1/2
第五,建立不同应力下的△K ce和应力比的关系公式,
通过绘制曲线并分析,发现应力比与△K ce 满足对数关系
 △K ce = -4.0088Ln(R) - 1.0152
其中,△K ce为由闭合效应引起的应力强度因子范围降低的值;
由上式计算出应力0.7对应的△K ce 0.7为0.41 MPa·m1/2,根据0.41 MPa·m1/2和第三步中22.39 MPa·m1/2, 可知应力比0.9对应的△K为21.98MPa·m1/2
第六,确定不同应力比下的△K和应力比R之间的关系,并确定更高应力比下的△K
建立lg(△K R/△K 最大应力比)和R之间的关系式:
应力比大于0.9则裂纹闭合效应很小,可忽略不计,以应力比为0.9对应的闭合效应1计算:
则:
lg(△K R0.1/△K  R0.9)= lg(30.51/21.98)=0.1424
lg(△K R0.3/△K  R0.9)= lg(26.47/21.98)=0.0873
lg(△K R0.5/△K R0.9)= lg(23.97/21.98)=0.0376
lg(△K R0.7/△K R0.9)= lg(22.39/21.98)=0.0080
发现:不同应力下的△K和应力比0.9对应的△K比值的对数与R具有相关性,通过最小二乘法进行拟合,获得下式:
lg(△K R/△K 0.9)=0.2005R - 0.3835R + 0.1785
K R为应比R对应的△K;△K 0.9为应力比0.9R对应的△K
第七,有效应力强度因子范围的确定
其中,△K eff为有效应力强度因子范围(MPa·m1/2),
该方法实现了通过回火马氏体钢不同应力比下的疲劳裂纹扩展曲线确定回火马氏体钢在任意应力比下不同裂纹扩展长度处的有效应力强度因子范围值,所有应力比下的Paris区数据一起进行线性拟合,偏差为0.03976,线性相关系数为0.9974。
CN2012101554119A 2012-05-18 2012-05-18 一种确定有效应力强度因子范围的方法 Expired - Fee Related CN102645365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101554119A CN102645365B (zh) 2012-05-18 2012-05-18 一种确定有效应力强度因子范围的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101554119A CN102645365B (zh) 2012-05-18 2012-05-18 一种确定有效应力强度因子范围的方法

Publications (2)

Publication Number Publication Date
CN102645365A true CN102645365A (zh) 2012-08-22
CN102645365B CN102645365B (zh) 2013-12-11

Family

ID=46658327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101554119A Expired - Fee Related CN102645365B (zh) 2012-05-18 2012-05-18 一种确定有效应力强度因子范围的方法

Country Status (1)

Country Link
CN (1) CN102645365B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937547A (zh) * 2012-11-12 2013-02-20 中国航空工业集团公司西安飞机设计研究所 一种金属材料强度性能评定方法
CN103760007A (zh) * 2014-01-16 2014-04-30 清华大学 一种预测不同应力比下疲劳裂纹扩展门槛值的方法
CN103868786A (zh) * 2014-03-18 2014-06-18 东北大学 一种预测疲劳裂纹扩展规律的方法
CN105352800A (zh) * 2015-11-13 2016-02-24 武汉钢铁(集团)公司 钢箱梁疲劳裂纹扩展速率测试方法
CN105758723A (zh) * 2016-02-29 2016-07-13 南京航空航天大学 一种线性梯度材料裂纹扩展速率测试方法
CN107941611A (zh) * 2017-10-27 2018-04-20 西安石油大学 一种确定i/iii复合型疲劳裂纹扩展速率的方法
CN112329195A (zh) * 2020-09-14 2021-02-05 北京航空航天大学 耐久性分析中相对小裂纹扩展速率的计算方法
CN113609675A (zh) * 2021-08-04 2021-11-05 天津大学 一种疲劳短裂纹扩展速率预测模型的确定方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631123A2 (en) * 1993-06-25 1994-12-28 General Electric Company Method and apparatus for monitoring crack growth
US20030074976A1 (en) * 2001-09-04 2003-04-24 Jalees Ahmad Method and system for determining crack nucleation of a part subject to fretting fatigue
JP2008292206A (ja) * 2007-05-22 2008-12-04 Ihi Corp 亀裂伝播予想方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631123A2 (en) * 1993-06-25 1994-12-28 General Electric Company Method and apparatus for monitoring crack growth
US20030074976A1 (en) * 2001-09-04 2003-04-24 Jalees Ahmad Method and system for determining crack nucleation of a part subject to fretting fatigue
JP2008292206A (ja) * 2007-05-22 2008-12-04 Ihi Corp 亀裂伝播予想方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
杨秀清 等: "20Cr结构钢疲劳裂纹扩展的应力强度因子范围及有效应力强度因子范围的计算", 《贵州工业大学学报(自然科学版)》, vol. 35, no. 6, 31 December 2006 (2006-12-31), pages 18 - 21 *
许天旱 等: "应力比对J55钢级疲劳裂纹断口形貌的影响", 《钢铁研究学报》, vol. 22, no. 1, 31 January 2010 (2010-01-31), pages 46 - 51 *
许天旱 等: "应力比对套管钻井用J55钢疲劳裂纹扩展行为的影响", 《机械工程材料》, vol. 33, no. 11, 30 November 2009 (2009-11-30), pages 19 - 23 *
赵永翔 等: "一种疲劳长裂纹扩展率新模型", 《机械工程学报》, vol. 42, no. 11, 30 November 2006 (2006-11-30), pages 120 - 124 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937547B (zh) * 2012-11-12 2014-12-24 中国航空工业集团公司西安飞机设计研究所 一种金属材料强度性能评定方法
CN102937547A (zh) * 2012-11-12 2013-02-20 中国航空工业集团公司西安飞机设计研究所 一种金属材料强度性能评定方法
CN103760007B (zh) * 2014-01-16 2016-09-21 清华大学 一种预测不同应力比下疲劳裂纹扩展门槛值的方法
CN103760007A (zh) * 2014-01-16 2014-04-30 清华大学 一种预测不同应力比下疲劳裂纹扩展门槛值的方法
CN103868786A (zh) * 2014-03-18 2014-06-18 东北大学 一种预测疲劳裂纹扩展规律的方法
CN105352800A (zh) * 2015-11-13 2016-02-24 武汉钢铁(集团)公司 钢箱梁疲劳裂纹扩展速率测试方法
CN105352800B (zh) * 2015-11-13 2018-01-02 武汉钢铁有限公司 钢箱梁疲劳裂纹扩展速率测试方法
CN105758723A (zh) * 2016-02-29 2016-07-13 南京航空航天大学 一种线性梯度材料裂纹扩展速率测试方法
CN107941611A (zh) * 2017-10-27 2018-04-20 西安石油大学 一种确定i/iii复合型疲劳裂纹扩展速率的方法
CN112329195A (zh) * 2020-09-14 2021-02-05 北京航空航天大学 耐久性分析中相对小裂纹扩展速率的计算方法
CN112329195B (zh) * 2020-09-14 2023-05-02 北京航空航天大学 耐久性分析中相对小裂纹扩展速率的计算方法
CN113609675A (zh) * 2021-08-04 2021-11-05 天津大学 一种疲劳短裂纹扩展速率预测模型的确定方法及装置
CN113609675B (zh) * 2021-08-04 2022-04-15 天津大学 一种疲劳短裂纹扩展速率预测模型的确定方法及装置

Also Published As

Publication number Publication date
CN102645365B (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
CN102645365B (zh) 一种确定有效应力强度因子范围的方法
CN102645385A (zh) 一种不同参数对材料疲劳裂纹扩展性能影响的检测方法
Barsom Fatigue-crack growth under variable-amplitude loading in ASTM A514-B steel
CN110031307B (zh) 一种确定损伤岩石起裂应力指标的方法
CN103344705A (zh) 一种应用声发射能量值测定岩石脆性指数的方法
CN110646282A (zh) 基于围岩质量指标BQ的围岩弹性反力系数k确定方法
CN104268377A (zh) 一种基于煤岩工业组分的脆性指数确定方法
CN102628775A (zh) 一种根据钢铁材料强度确定最大应变硬化指数的方法
CN105021444A (zh) 一种基于稳态流变速率交点的岩石长期强度参数确定方法
CN102645366A (zh) 一种确定材料在不同应力比下的Paris参数C和m的方法
CN105421172A (zh) 一种单侧形式运营双线铁路轨道控制网的测量方法
CN105181318A (zh) 一种风力发电机叶片弯扭耦合向量测量装置
Hu et al. Crack extension resistance of concrete at low temperatures
CN103760007B (zh) 一种预测不同应力比下疲劳裂纹扩展门槛值的方法
CN103790581A (zh) 一种确定煤岩工业组分物理参数的方法
CN106960095B (zh) 一种确定导线蠕变率的方法及系统
CN103148095B (zh) 全陶瓷轴承及其制造方法、基本结构参数的确定方法
CN111366448B (zh) 一种页岩脆性的测定方法
CN201280932Y (zh) 五电极激励屏蔽持水率测量电导传感器
Shimizu et al. A wind tunnel study on aerodynamic characteristics of ice accreted transmission lines
Siebel The combined bending and twisting of thin cylinders in the plastic range
CN102102509B (zh) 注蒸汽井蒸汽腔半径测试方法及设备
CN113125266A (zh) 一种岩石粘聚力和内摩擦角时效劣化演化方程获取方法
CN112834390A (zh) 一种降黏型路用温拌剂掺量及降温幅度的快速确定方法
CN103542894A (zh) 高温变加载速率下钢筋应力、应变测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131211

Termination date: 20140518