CN102645269B - 一种海洋背景噪声的声压监测装置 - Google Patents

一种海洋背景噪声的声压监测装置 Download PDF

Info

Publication number
CN102645269B
CN102645269B CN 201210155557 CN201210155557A CN102645269B CN 102645269 B CN102645269 B CN 102645269B CN 201210155557 CN201210155557 CN 201210155557 CN 201210155557 A CN201210155557 A CN 201210155557A CN 102645269 B CN102645269 B CN 102645269B
Authority
CN
China
Prior art keywords
vibrating reed
monitoring device
background noise
photelectric receiver
piezoelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201210155557
Other languages
English (en)
Other versions
CN102645269A (zh
Inventor
李磊
周忠海
刘军礼
刘波
吕成兴
李金萍
臧鹤超
张照文
惠超
蒋慧略
牟华
周晓晨
姚璞玉
徐娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Original Assignee
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceanographic Instrumentation Research Institute Shandong Academy of Sciences filed Critical Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority to CN 201210155557 priority Critical patent/CN102645269B/zh
Publication of CN102645269A publication Critical patent/CN102645269A/zh
Application granted granted Critical
Publication of CN102645269B publication Critical patent/CN102645269B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种海洋背景噪声的声压监测装置,包括光路系统、控制系统和供电系统;在所述光路系统中包括激光器、半透射半反射的分光镜、平面反射镜、带反射面的振动片和光电接收器;根据振动片的形变在光电接收器处形成变化的干涉图样;在所述控制系统中包括控制器和两个安装在平面反射镜上的压电陶瓷,通过控制器一方面输出调制信号驱动第一压电陶瓷震荡以判断振动片的形变方向,另一方面通过控制器输出补偿电压驱动第二压电陶瓷形变以跟踪振动片的形变量,进而换算出海洋背景噪声的声压。本发明的海洋背景噪声声压监测装置利用迈克尔逊干涉原理进行光路系统的结构设计,精度高、线性度好,在低频信号段无衰减,具有良好的频率响应特性。

Description

一种海洋背景噪声的声压监测装置
技术领域
本发明属于水下监测装置技术领域,具体地说,是涉及一种用于对海洋的背景噪声进行声压信号监测的装置。
背景技术
研究海洋背景噪声场的特性与模型,可以反演海洋的运动过程,了解海洋动物的行为,进而有助于进行水下目标的识别、声纳性能的评估以及水声对抗的研究。随着现代工业生产、海洋航运以及渔业的发展,海洋背景噪声的特性变得更加复杂,这也对海洋噪声的监测提出了更高的要求。
传统用于检测水下噪声的声压监测装置多以压电式、电容式、磁电式测量原理为主,存在非线性、带宽窄、尤其在低频段信号灵敏度下降快等缺点。而低频段是现代海洋背景噪声与目标识别研究领域的主要频段,因而采用现有的声压监测装置并不能很好地满足海洋背景噪声声压强度的准确监测要求。
发明内容
本发明基于激光干涉原理,提出了一种海洋背景噪声的声压监测装置,以提高对海洋背景噪声声压信号的检测精度。
为了解决上述技术问题,本发明采用以下技术方案予以实现:
一种海洋背景噪声的声压监测装置,包括光路系统、控制系统以及为所述光路系统和控制系统提供工作电源的供电系统;在所述光路系统中包括激光器、半透射半反射的分光镜、平面反射镜、带反射面的振动片和光电接收器;所述激光器发射激光射向所述的分光镜,通过所述分光镜反射形成一路光束作为参考臂射向所述的平面反射镜,透射形成另一路光束作为测量臂射向所述振动片的反射面;所述平面反射镜对入射的光束进行反射,经由所述分光镜透射后射入所述的光电接收器;所述振动片对入射的光束进行反射,经由所述分光镜反射后射入所述的光电接收器,两束光线在光电接收器处汇合形成干涉图样;在所述控制系统中包括控制器和两个安装在所述平面反射镜上的压电陶瓷,所述控制器一方面输出周期性正弦变化的调制信号驱动第一压电陶瓷震荡,另一方面接收光电接收器根据干涉图样产生的电流输出信号,进而计算出补偿电压输出至第二压电陶瓷,通过控制第二压电陶瓷形变带动所述平面反射镜移动,以调节所述干涉图样直到恢复到初始状态;所述控制器根据输出的补偿电压计算出振动片的形变量,进而得出海洋背景噪声的声压。
所述声压监测装置的具体工作过程包括以下步骤:
a、在所述声压监测装置初始化时,首先通过对光路系统进行预调节,使所述光电接收器刚好检测到干涉图样的中心亮斑;
b、声压监测装置进入正常工作状态后,所述控制器根据其输出的调制信号波形以及光电接收器输出的电流输出信号判断振动片的振动方向,具体过程为:
若调制信号处于波峰时光电接收器输出的电流值等于调制信号处于波谷时光电接收器输出的电流值,则表示振动片未发生形变,控制器不用输出补偿电压;
若调制信号处于波峰时光电接收器输出的电流值小于调制信号处于波谷时光电接收器输出的电流值,则表示振动片向缩小测量臂的方向形变,此时控制器控制第二压电陶瓷形变,以带动平面反射镜向缩小参考臂的方向移动;
若调制信号处于波峰时光电接收器输出的电流值大于调制信号处于波谷时光电接收器输出的电流值,则表示振动片向增大测量臂的方向形变,此时控制器控制第二压电陶瓷形变,以带动平面反射镜向增大参考臂的方向移动。
其中,所述控制器在控制第二压电陶瓷形变以带动平面反射镜移动的过程中,输出补偿电压Ucmp至第二压电陶瓷,使所述光电接收器重新检测到干涉图样的中心亮斑;然后,控制器将补偿电压Ucmp代入公式                                                
Figure 509170DEST_PATH_IMAGE001
=
Figure 560302DEST_PATH_IMAGE002
·
Figure 423216DEST_PATH_IMAGE003
,计算出振动分量的补偿值
Figure 24355DEST_PATH_IMAGE001
;假设声压监测装置所处海洋深度的水压造成振动片的形变量为L,则海洋背景噪声的振幅ΔL=
Figure 85852DEST_PATH_IMAGE001
-L;其中,λ为激光波长;U为控制第二压电陶瓷形变幅度为
Figure 183252DEST_PATH_IMAGE003
时控制器需要输出的补偿电压值。
优选的,在所述控制器中包括A/D转换器、D/A转换器和CPU,所述光电接收器输出的电流信号经A/D转换器变换为数字信号后传输至所述的CPU;所述CPU通过D/A转换器输出补偿电压至第二压电陶瓷。
进一步的,将所述第一、第二压电陶瓷按照同一极化方向对接粘合在一起,安装在所述平面反射镜的背面。
又进一步的,所述光路系统、控制系统和供电系统设置于一壳体中,所述壳体的左端或者右端开口,所述振动片垂直安装于所述开口处,进而与所述壳体形成一个密闭的腔室,且振动片的反射面朝向腔室内。
为了减小所述壳体的尺寸,在所述光路系统中还包含有三个倾斜布设的反射镜;其中,上方位置安装第一反射镜和所述的激光器,中间位置安装第二反射镜和所述的分光镜,所述第二反射镜与振动片分设在分光镜的左右两侧,下方位置安装第三反射镜和所述的平面反射镜;所述激光器沿水平方向发射激光,以45°入射角射入第一反射镜,反射形成垂直方向的光束以45°入射角射入第二反射镜,进而经由第二反射镜反射形成水平方向的光束以45°入射角射入分光镜,通过分光镜反射形成垂直方向的第一段参考臂光束以45°入射角射入第三反射镜,进而经由第三反射镜反射形成水平方向的第二段参考臂光束射向垂直布设的平面反射镜;所述光电接收器布设在分光镜的上方,接收两束垂直入射的光线,以形成所述的干涉图样。
为了便于干涉图样的采集,在所述第二反射镜与分光镜之间还设置有一扩束器,通过所述扩束器对激光器发出的激光光束的直径进行扩大。
再进一步的,在所述壳体中还设置有通信系统,连接所述的控制器,将控制器计算生成的海洋背景噪声的振幅ΔL上传至上位机进行显示和存储。
优选的,所述通信系统通过通讯线缆与上位机连接通信。
与现有技术相比,本发明的优点和积极效果是:本发明的海洋背景噪声声压监测装置利用迈克尔逊干涉原理进行监测装置中光路系统的结构设计,通过振动片感应海洋背景噪声的振动,进而使作为测量臂的光束长度发生变化,由此来改变通过分光镜反射和透射出的两束光线所形成的干涉条纹,由此便可以通过检测干涉条纹的变化间接地计算出海洋背景噪声的振幅,并可以进一步通过调节参考臂的距离来对计算出的振幅进行补偿,以获得更为精确的声压大小。由此设计的监测装置精度高、线性度好,在0-10KHz范围内特别是在低频信号段无衰减,具有良好的频率响应特性,且该监测装置性能稳定,测量精度受装置中器件灵敏度的影响较小,易于实现制造集成。
结合附图阅读本发明实施方式的详细描述后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是本发明所提出的海洋背景噪声声压监测装置的整体结构示意图;
图2是图1中光路系统和控制系统的设计原理示意图;
图3是光路系统在声压监测装置壳体中的一种实施例的布设结构示意图;
图4是中心为亮斑的干涉图样示意图;
图5是振动片处于初始状态时干涉条纹的位移波形与电流输出信号的合成坐标图;
图6是振动片内移时干涉条纹的位移波形与电流输出信号的合成坐标图;
图7是振动片外移时干涉条纹的位移波形与电流输出信号的合成坐标图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细地说明。
本发明的海洋背景噪声声压监测装置基于迈克尔逊干涉原理设计而成,采用补偿的方法监测海洋背景噪声的声压,在灵敏度、稳定性、频率响应能力特别是低频段的信号响应能力方面优于目前采用压电式、电容式、磁电式测量原理设计的声压监测设备。
下面通过一个具体的实施例,来详细阐述所述海洋背景噪声声压监测装置的具体组建结构及其工作原理。
实施例一,参见图1所示,本实施例的海洋背景噪声声压监测装置主要由壳体2以及设置在所述壳体2中的光路系统、控制系统、供电系统和通信系统等部分组成。其中,供电系统用于为所述的光路系统、控制系统和通信系统提供工作电压;通信系统连接所述的控制系统,将控制系统计算生成的海洋背景噪声的声压上传至岸上的上位机,通过上位机向工作人员实时显示监测数据,并完成监测数据的长期连续保存,以方便研究人员随时调取进行海洋环境的研究和分析。在本实施例中,所述通信系统与上位机之间优选采用有线信号传输方式通过通信线缆连接通讯。所述通信线缆可以与用于下放声压监测装置的绳索整合设计在一起,同绳索一起随所述声压监测装置下放。当然,在所述声压监测装置中也可以不设置通信系统,通过在控制系统中设置存储器件,例如SD卡或者TF卡等,以用于保存监测到的海洋声压数据。在完成监测任务后,将所述声压监测装置提出水面,将存储器件与计算机连接通讯,实现监测数据的下载输出,供研究人员调取使用。
对于所述的光路系统和控制系统,其设计原理参见图2所示。
在本实施例的光路系统中主要包括激光器3、分光镜5、平面反射镜11、振动片1和光电接收器4等。其中,分光镜5可以选用半透射半反射的分光镜片,按照与水平面所成锐角为45°的关系倾斜设置。在分光镜5的左右两侧对应设置激光器3和振动片1。将所述振动片1垂直安装在壳体2一侧的开口处,所述开口可以开设在壳体2的左端,如图2所示,也可以开设在壳体2的右端,进而通过所述振动片1与壳体2形成一个密闭的腔室。将所述控制系统、通信系统、供电系统以及光路系统中除振动片1以外的其他部件均设置在所述的腔室中,仅通过振动片1接触海水,感应海洋噪声的声压变化。在本实施例中,所述振动片1为带有反射面的振动片,可以采用溅射镀膜工艺在不锈钢板的表面形成一层反射膜的方式设计实现,且将振动片1的反射面朝向腔室内部的分光镜5。在分光镜5的上下两侧对应设置所述的平面反射镜11和光电接收器4,在平面反射镜11的背面安装两个压电陶瓷9、10,通过控制压电陶瓷9、10形变,以带动平面反射镜11移动,以补偿振动片1的位移变化。作为本实施例的一种优选设计方案,优选将两个压电陶瓷9、10进行按照同一极化方向对接粘合后,再安装在所述平面反射镜11的背面,利用两个压电陶瓷9、10的形变共同实现对平面反射镜11位移的控制。
在所述控制系统中,除了包括上述的两个压电陶瓷9、10以外,还设置有控制器。将所述控制器分别与光电接收器4和所述的两个压电陶瓷9、10对应连接,一方面接收光电接收器4输出的电流信号,另一方面输出电压信号至两个压电陶瓷9、10,以控制两个压电陶瓷9、10的形变量。
作为本实施例的一种优选设计方案,所述控制器优选采用一颗CPU芯片配合一颗A/D转换器和一颗D/A转换器组建实现,如图2所示。
下面结合图2所示的光路系统和控制系统,对本实施例所提出的海洋背景噪声声压监测装置的工作原理进行具体阐述。
将激光器3发射的激光作为光源射向所述的分光镜5。为了便于干涉图样的采样,在所述激光器3与分光镜5之间优选再进一步安装一个扩束器8,如图2所示。在本实施例中,优选采用放大倍数为10倍的扩束器8进行系统设计,扩束后的激光光束的直径可以达到5.4mm。激光器3发出的激光经过扩束器8后,光束的直径扩大,扩束后的激光在分光镜5处分为两路:一路为经由分光镜5反射后形成的光束S0,将其定义为参考臂,垂直射向所述的平面反射镜4;另外一路为经由分光镜5透射后形成的光束S1,将其定义为测量臂,垂直射向所述振动片1的反射面。而后,作为参考臂的光束S0经由平面反射镜4反射后,重新射向所述的分光镜5,并通过所述分光镜5透射后,垂直入射到所述的光电接收器4中。作为测量臂的光束S1则经由振动片1的反射面反射后,重新射向所述的分光镜5,并通过所述分光镜5反射后,垂直入射到所述的光电接收器4中。射入到所述光电接收器4的两路光束在光电接收器4处汇合,形成干涉图样,如图4所示,光电接收器4根据接收到的光线强度生成与之对应的电流输出信号,经由A/D转换器进行模拟信号到数字信号的转换处理后,输出至所述的CPU芯片。
为了对振动片1的振动方向进行判断,并补偿振动片1的位移量,本实施例采用对一个压电陶瓷9(可称为第一压电陶瓷)施加周期性正弦变化的电压调制信号的方式,控制第一压电陶瓷9震荡,以形成光信号的调制,实现对振动片1振动方向的准确判断。具体可以通过CPU芯片配合D/A转换器产生并输出所述的电压调制信号,作用于第一压电陶瓷9,以控制其震荡。对于另外一个压电陶瓷10(可称为第二压电陶瓷),则可以通过CPU芯片根据振动片1的形变量配合D/A转换器生成并输出合适的补偿电压,施加到第二压电陶瓷10上,以补偿测量臂的变化。然后,CPU芯片根据其输出的补偿电压值便可以计算出第二压电陶瓷10的形变量,即振动片1的形变量,进而根据振动片1的形变量间接地换算出被测海洋背景噪声的声压级。
下面对振动片1形变方向的判断过程以及海洋背景噪声的声压振幅测量步骤分别进行具体阐述。
(1)振动片形变方向的判断
首先,对所述声压监测装置进行初始化,通过对光路系统进行预调节,使所述光电接收器4刚好能够检测到干涉图样的中心亮斑,即如图4所示的干涉条纹。
其次,将声压监测装置放入水下,启动声压监测装置进入正常工作状态,CPU配合D/A转换器输出调制信号驱动第一压电陶瓷9震荡,对光信号进行调制。当被检测的水域有声音信号时,在声波到达振动片1时,便引起振动片1振动,从而改变测量臂S1的距离,使干涉条纹产生相应的变化。
然后,CPU通过A/D转换器接收光电接收器4产生的电流输出信号iPD,并结合CPU输出的调制信号i0的波形来判断振动片1的振动方向,结合图5至图7所示。图5至图7为干涉条纹位移与电流变化的合成坐标图,其中,I表示光强、Δx表示干涉条纹位移量、iPD表示光电接收器4产生的电流输出信号、i0表示与CPU输出的电压调制信号相对应的电流调制信号。具体判断过程如下:
若调制信号处于波峰时(即CPU输出的调制信号为最大值时)光电接收器4输出的电流值=调制信号处于波谷时(即CPU输出的调制信号为最小值时)光电接收器4输出的电流值,即如图5所示的波形图,则表示振动片1未发生形变,外界没有压力作用于振动片1上。此时,CPU无需输出补偿电压。
若调制信号处于波峰时光电接收器4输出的电流值<调制信号处于波谷时光电接收器4输出的电流值,即如图6所示的波形,则表示振动片1向缩小测量臂S1的方向发生了形变。此时,CPU需要输出补偿电压,控制第二压电陶瓷10向缩小参考臂S0的方向形变,进而带动平面反射镜11向缩小参考臂S0的方向移动,以补偿测量臂S1的变化,直到所述光电接收器4重新检测到干涉图样的中心亮斑。
若调制信号处于波峰时光电接收器4输出的电流值>调制信号处于波谷时光电接收器4输出的电流值,即如图7所示的波形,则表示振动片1向增大测量臂S1的方向发生了形变。此时,CPU需要输出补偿电压控制第二压电陶瓷10向增大参考臂S0的方向形变,进而带动平面反射镜11向增大参考臂S0的方向移动,以补偿测量臂S1的变化,直到所述光电接收器4重新检测到干涉图样的中心亮斑。
(2)声压振幅的测量
本实施例通过控制器输出一个补偿电压控制第二压电陶瓷10形变,以跟踪振动片1的形变量,进而根据控制器输出的补偿电压的大小计算海洋噪声的振幅。具体方法是:通过CPU配合D/A转换器输出一个模拟量的补偿电压Ucmp,将该补偿电压Ucmp经过放大处理后,施加到第二压电陶瓷10,控制第二压电陶瓷10发生形变,进而带动平面反射镜11移动,使干涉条纹反方向移动,以补偿测量臂S1的变化,直到光电接收器4检测到的干涉图样恢复到初始状态。在本实施例中即光电接收器4重新检测到干涉图样的中心亮斑。
已知控制第二压电陶瓷10形变幅度为
Figure 595779DEST_PATH_IMAGE003
时控制器需要输出的电压为U,其中,λ为激光器3发射的激光的波长,则有:
Figure 59996DEST_PATH_IMAGE004
=
其中,
Figure 306618DEST_PATH_IMAGE001
为控制器输出补偿电压Ucmp时第二压电陶瓷10的形变幅度,则振动分量的补偿值为:
=·
Figure 314698DEST_PATH_IMAGE003
由于声压监测装置下放到海洋中的深度已知,假设该海洋深度的水压造成振动片的形变量为L(同样为已知量),则海洋背景噪声的振幅ΔL=
Figure 986857DEST_PATH_IMAGE001
-L。通过计算出的振幅ΔL,结合振动片的强度,即可换算出海洋背景噪声的压强大小,确定出所对应的声压级。若选用8位的D/A转换器,则可以将补偿电压Ucmp细分到激光波长的
Figure 311659DEST_PATH_IMAGE006
,以提高检测精度。
为了缩小所述声压监测装置的整体尺寸,本实施例对所述光路系统在壳体2内的布设方式优选采用如图3所示的布设结构。即在所述光路系统中增加三个反射镜6、7、12,以改变激光光束的传输路径。具体来讲,在所述壳体2与振动片1所围成的密闭腔室内,优选将激光器3和第一反射镜6安装在上方位置;中间位置安装第二反射镜7和所述的分光镜5,且所述第二反射镜7应与振动片1分设在分光镜5的左右两侧;下方位置安装第三反射镜12和所述的平面反射镜11。将所述的三个反射镜6、7、12按照与水平面所成锐角为45°的关系倾斜布设,参见图3所示的布设方式。由此一来,通过激光器3发射的激光沿水平方向传输,并以45°入射角射入第一反射镜6,进而经由第一反射镜6反射形成垂直方向的光束,然后以45°的入射角射入第二反射镜7;通过第二反射镜7反射形成的光束经由扩束器8扩束后,沿水平方向传输,进而以45°的入射角射入分光镜4,通过分光镜4反射形成垂直方向的第一段参考臂光束S0-1,并以45°入射角射入第三反射镜12,进而经由第三反射镜12反射形成水平方向的第二段参考臂光束S0-2,射向垂直布设的平面反射镜11。两段参考臂光束的长度相加即为S0的长度。将所述光电接收器4水平布设在分光镜5的上方,使得射向光电接收器4的两束光线能够垂直入射到光电接收器4的光敏接收头中,以形成理想的干涉图样。采用这种设计方式,可以对壳体2的长度和宽度实现有效地控制,进而方便整个装置的小型化设计。
作为本实施例的一种优选外形设计方案,可以将所述声压监测装置的壳体2设计成圆筒状,并将所述振动片1设计成圆形,以与圆筒状的壳体2的端口相适配。所述振动片1优选采用刚性较大的材料制成,例如不锈钢板等,以使声压监测装置能够承受压力较大的深海环境,即使置于500米的深海环境中也能正常工作。当然,本实施例并不仅限于以上举例。
采用本实施例的声压监测装置,相比传统声压监测装置具有以下显著优势:
(1)精度高,线性度好,在0~10kHz范围内特别在是低频信号段无衰减,具有良好的频率响应特性;
(2)性能稳定,测量精度受设备中器件灵敏度的影响较小,易于实现制造集成;
(3)密封性好,能够在500米甚至更深的水下环境正常作业。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (9)

1.一种海洋背景噪声的声压监测装置,其特征在于:包括光路系统、控制系统以及为所述光路系统和控制系统提供工作电源的供电系统;在所述光路系统中包括激光器、半透射半反射的分光镜、平面反射镜、带反射面的振动片和光电接收器;所述激光器发射激光射向所述的分光镜,通过所述分光镜反射形成一路光束作为参考臂射向所述的平面反射镜,透射形成另一路光束作为测量臂射向所述振动片的反射面;所述平面反射镜对入射的光束进行反射,经由所述分光镜透射后射入所述的光电接收器;所述振动片对入射的光束进行反射,经由所述分光镜反射后射入所述的光电接收器,两束光线在光电接收器处汇合形成干涉图样;在所述控制系统中包括控制器和两个安装在所述平面反射镜上的压电陶瓷,所述控制器一方面输出周期性正弦变化的调制信号驱动第一压电陶瓷震荡,另一方面接收光电接收器根据干涉图样产生的电流输出信号,进而计算出补偿电压输出至第二压电陶瓷,通过控制第二压电陶瓷形变带动所述平面反射镜移动,以调节所述干涉图样直到恢复到初始状态;所述控制器根据输出的补偿电压计算出振动片的形变量,进而得出海洋背景噪声的声压;
在所述光路系统中还包含有三个倾斜布设的反射镜;其中,上方位置安装第一反射镜和所述的激光器,中间位置安装第二反射镜和所述的分光镜,所述第二反射镜与振动片分设在分光镜的左右两侧,下方位置安装第三反射镜和所述的平面反射镜;所述激光器沿水平方向发射激光,以45°入射角射入第一反射镜,反射形成垂直方向的光束以45°入射角射入第二反射镜,进而经由第二反射镜反射形成水平方向的光束以45°入射角射入分光镜,通过分光镜反射形成垂直方向的第一段参考臂光束以45°入射角射入第三反射镜,进而经由第三反射镜反射形成水平方向的第二段参考臂光束射向垂直布设的平面反射镜;所述光电接收器布设在分光镜的上方,接收两束垂直入射的光线,以形成所述的干涉图样。
2.根据权利要求1所述的海洋背景噪声的声压监测装置,其特征在于:在所述声压监测装置初始化时,首先通过对光路系统进行预调节,使所述光电接收器刚好检测到干涉图样的中心亮斑;声压监测装置进入正常工作状态后,所述控制器根据其输出的调制信号波形以及光电接收器输出的电流输出信号判断振动片的振动方向:
若调制信号处于波峰时光电接收器输出的电流值等于调制信号处于波谷时光电接收器输出的电流值,则表示振动片未发生形变,控制器不输出补偿电压;
若调制信号处于波峰时光电接收器输出的电流值小于调制信号处于波谷时光电接收器输出的电流值,则表示振动片向缩小测量臂的方向形变,此时控制器控制第二压电陶瓷形变,以带动平面反射镜向缩小参考臂的方向移动;
若调制信号处于波峰时光电接收器输出的电流值大于调制信号处于波谷时光电接收器输出的电流值,则表示振动片向增大测量臂的方向形变,此时控制器控制第二压电陶瓷形变,以带动平面反射镜向增大参考臂的方向移动。
3.根据权利要求2所述的海洋背景噪声的声压监测装置,其特征在于:所述控制器在控制第二压电陶瓷形变以带动平面反射镜移动的过程中,输出补偿电压Ucmp至第二压电陶瓷,使所述光电接收器重新检测到干涉图样的中心亮斑;然后,控制器将补偿电压Ucmp代入公式                                                
Figure 2012101555573100001DEST_PATH_IMAGE001
=
Figure 257733DEST_PATH_IMAGE002
·
Figure DEST_PATH_IMAGE003
,计算出振动分量的补偿值;假设声压监测装置所处海洋深度的水压造成振动片的形变量为L,则海洋背景噪声的振幅ΔL=-L;其中,λ为激光波长;U为控制第二压电陶瓷形变幅度为
Figure 974650DEST_PATH_IMAGE003
时控制器需要输出的补偿电压值。
4.根据权利要求1所述的海洋背景噪声的声压监测装置,其特征在于:在所述控制器中包括A/D转换器、D/A转换器和CPU,所述光电接收器输出的电流信号经A/D转换器变换为数字信号后传输至所述的CPU;所述CPU通过D/A转换器输出补偿电压至第二压电陶瓷。
5.根据权利要求1所述的海洋背景噪声的声压监测装置,其特征在于:将所述第一、第二压电陶瓷按照同一极化方向对接粘合在一起,安装在所述平面反射镜的背面。
6.根据权利要求1至5中任一项所述的海洋背景噪声的声压监测装置,其特征在于:所述光路系统、控制系统和供电系统设置于一壳体中,所述壳体的左端或者右端开口,所述振动片垂直安装于所述开口处,进而与所述壳体形成一个密闭的腔室,且振动片的反射面朝向腔室内。
7.根据权利要求6所述的海洋背景噪声的声压监测装置,其特征在于:在所述第二反射镜与分光镜之间还设置有一扩束器,通过所述扩束器对激光器发出的激光光束的直径进行扩大。
8.根据权利要求6所述的海洋背景噪声的声压监测装置,其特征在于:在所述壳体中还设置有通信系统,连接所述的控制器,将控制器计算生成的海洋背景噪声的振幅ΔL上传至上位机进行显示和存储。
9.根据权利要求8所述的海洋背景噪声的声压监测装置,其特征在于:所述通信系统通过通讯线缆与上位机连接通信。
CN 201210155557 2012-05-18 2012-05-18 一种海洋背景噪声的声压监测装置 Expired - Fee Related CN102645269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210155557 CN102645269B (zh) 2012-05-18 2012-05-18 一种海洋背景噪声的声压监测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210155557 CN102645269B (zh) 2012-05-18 2012-05-18 一种海洋背景噪声的声压监测装置

Publications (2)

Publication Number Publication Date
CN102645269A CN102645269A (zh) 2012-08-22
CN102645269B true CN102645269B (zh) 2013-08-14

Family

ID=46658237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210155557 Expired - Fee Related CN102645269B (zh) 2012-05-18 2012-05-18 一种海洋背景噪声的声压监测装置

Country Status (1)

Country Link
CN (1) CN102645269B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674220B (zh) * 2013-12-30 2015-07-15 上海理工大学 测振系统
CN104729403B (zh) * 2015-03-30 2018-01-16 北方民族大学 一种多光束阶梯型平面反射镜激光干涉仪及其测量方法
CN104697440B (zh) * 2015-03-30 2018-04-10 北方民族大学 一种多光束阶梯角反射镜激光干涉仪及其测量方法
CN104697442B (zh) * 2015-03-30 2018-07-20 北方民族大学 一种移动补偿式平面反射镜激光干涉仪及使用方法
CN104697438B (zh) * 2015-03-30 2018-03-13 北方民族大学 一种移动补偿式角反射镜激光干涉仪的使用方法
CN105136020B (zh) * 2015-05-29 2017-11-10 北方民族大学 一种对比式抗干扰微动阶梯平面反射镜激光干涉仪及标定方法和测量方法
CN105091739B (zh) * 2015-05-29 2017-11-14 北方民族大学 一种对比式抗干扰微动阶梯角反射镜激光干涉仪及标定方法和测量方法
CN105043244B (zh) * 2015-05-29 2017-12-05 北方民族大学 一种对比式抗干扰微动角反射镜激光干涉仪及标定方法和测量方法
CN105300275B (zh) * 2015-11-27 2018-02-06 成都信息工程大学 一种采用波长修正式多光束阶梯平面反射镜激光干涉仪的测量方法
CN105333817B (zh) * 2015-11-27 2018-06-01 成都信息工程大学 采用激光波长修正式平面反射镜激光干涉仪的测量方法
CN105371755B (zh) * 2015-11-27 2018-02-06 成都信息工程大学 一种采用波长修正式多光束阶梯平面反射镜激光干涉仪的激光波长修正方法
CN105509637B (zh) * 2015-11-27 2018-02-06 成都信息工程大学 一种采用激光波长修正式平面反射镜激光干涉仪的激光波长修正方法
CN113296137B (zh) * 2020-02-24 2023-11-17 香港理工大学深圳研究院 干涉式形变监测方法、装置和接收机
CN113091881B (zh) * 2021-04-13 2023-06-30 河南省计量科学研究院 提高光子相关法空气声压测量精度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932588A (zh) * 2006-10-10 2007-03-21 南开大学 一种微机械光信号调制方法
CN102023050A (zh) * 2010-11-09 2011-04-20 山东省科学院海洋仪器仪表研究所 激光干涉式水听器
CN102103011A (zh) * 2010-11-09 2011-06-22 山东省科学院海洋仪器仪表研究所 高精度激光干涉式水听器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275515A (ja) * 2007-05-01 2008-11-13 Sony Corp 振動検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932588A (zh) * 2006-10-10 2007-03-21 南开大学 一种微机械光信号调制方法
CN102023050A (zh) * 2010-11-09 2011-04-20 山东省科学院海洋仪器仪表研究所 激光干涉式水听器
CN102103011A (zh) * 2010-11-09 2011-06-22 山东省科学院海洋仪器仪表研究所 高精度激光干涉式水听器

Also Published As

Publication number Publication date
CN102645269A (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
CN102645269B (zh) 一种海洋背景噪声的声压监测装置
CN102023050B (zh) 激光干涉式水听器
CN104808208B (zh) 一种基于激光声源探测水下目标方位及尺寸的测量系统及其测量方法
CN103411660B (zh) 光纤分布式声波监测系统
CN102168808A (zh) 分布式光纤振动传感器
CN202676278U (zh) 海洋背景噪声声压信号监测设备
CN105735971B (zh) 一种基于弹性波的钻孔深度检测系统及其检测方法
CN108896160A (zh) 一种光纤光栅地声传感系统的传感方法
CN105738972A (zh) 一种水下探测系统及水下探测方法
CN108037311A (zh) 一种基于声光效应的高精度海水流速测量方法
CN105277967A (zh) 一种水槽物理模型超声波自动检测系统及方法
US20210190985A1 (en) Marine Survey Data Acquisition at a Tow Line
NO20171361A1 (en) Marine vibrator source acceleration and pressure
CN102103011B (zh) 高精度激光干涉式水听器
CN104568846B (zh) 基于布里渊散射海水盐跃层的二维扫描探测法
AU2014327256A1 (en) Systems and methods for far field signature reconstruction using data from near field, mid field, and surface field sensors
CN204881836U (zh) 一种光纤光栅地声传感探头
CN102927924A (zh) 一种短基线差分式激光应变测量仪
CN201892568U (zh) 高精度激光干涉式水听器
CN201859009U (zh) 激光干涉式水听器
RU2092802C1 (ru) Способ определения уровней давления и пространственного расположения источников шумоизлучения движущегося объекта
AU2018205733B2 (en) Determining a notional source signature of a bubble
Li et al. Phase-shifted sensitivity calibration of fiber optic vector hydrophone based on heterodyne method
CN103344315B (zh) 一种光纤平衡干涉高速测振系统
CN109470353A (zh) 级联复用本征干涉型光纤光栅超声传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130814

Termination date: 20140518