CN102622784B - 利用正交相控阵天线实现多车道自由流电子收费的方法 - Google Patents

利用正交相控阵天线实现多车道自由流电子收费的方法 Download PDF

Info

Publication number
CN102622784B
CN102622784B CN201210089004.2A CN201210089004A CN102622784B CN 102622784 B CN102622784 B CN 102622784B CN 201210089004 A CN201210089004 A CN 201210089004A CN 102622784 B CN102622784 B CN 102622784B
Authority
CN
China
Prior art keywords
vehicle
electronic label
carried electronic
phased array
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210089004.2A
Other languages
English (en)
Other versions
CN102622784A (zh
Inventor
薛金银
张北海
李全发
高文宝
桂杰
范士明
张晶晶
吴佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING SUTONG TECHNOLOGY Co Ltd
Original Assignee
BEIJING SUTONG TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING SUTONG TECHNOLOGY Co Ltd filed Critical BEIJING SUTONG TECHNOLOGY Co Ltd
Priority to CN201210089004.2A priority Critical patent/CN102622784B/zh
Publication of CN102622784A publication Critical patent/CN102622784A/zh
Application granted granted Critical
Publication of CN102622784B publication Critical patent/CN102622784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

一种利用正交相控阵天线实现多车道自由流电子收费的方法,包括步骤1:车辆检测与电子收费交易,步骤2:车辆位置匹配和合法性验证,步骤3:后台数据处理。在步骤1中:车路通信与电子标签定位子系统利用天线的正交相控阵辐射单元对上行信号进行接收扫描,检测车载电子标签相对于天线的横向和竖向的偏移角度,计算出车载电子标签的位置,车辆检测与定位子系统检测出车辆外形轮廓,提供车辆过站时间和位置信息,并触发图像抓拍;图像抓拍与车牌识别子系统进行车辆图像抓拍和车牌识别,步骤2中,车道逻辑协调控制系统对车载电子标签位置和车辆位置进行匹配,找出合法车辆和非法车辆,步骤3中,后台数据处理系统对步骤2中的定位匹配结果,电子不停车收费交易结果、车辆图像抓拍与车牌识别结果进行后续处理。

Description

利用正交相控阵天线实现多车道自由流电子收费的方法
技术领域
本发明涉及智能交通系统(Intelligent Transport System,简称:ITS)领域,涉及多车道自由流电子收费方法,特别涉及一种基于正交相控阵天线定位的多车道自由流电子收费方法。
背景技术
目前,我国很多省市都建设了高速公路电子不停车收费(Electronic TollCollection,简称ETC)系统。现有的高速公路电子收费系统采用单车道模式,安装车载电子标签的车辆需要进入指定的车道,以低速(目前高速公路ETC车道限速为20km/h)通过ETC车道;对于进入ETC车道的非法车辆,车道栏杆自动拦截,由人工干预处理。ETC系统是由ETC天线和车载电子标签通过无线通信的方式实现计费交易的,通信协议采用专用短程通信(Dedicated Short Range Communication,简称DSRC)协议,其处理过程为:ETC天线(Road Side Unit,简称RSU)周期性发射下行BST(Beacon Service Table,信标服务表)信号,安装有车载电子标签(或车载单元,On-Board Unit,简称OBU)的车辆驶入ETC收费区域时,收到BST信号,返回VST(Vehicle Service Table,车辆服务表)信号。VST信号中包含有车载电子标签的MAC(Media Access Control,媒体访问控制)地址、序列号和其他信息,其中车载电子标签的MAC地址是其与天线通信的主要识别码。天线收到上行DSRC数据帧后,以其MAC地址区分不同的车载电子标签;天线发给不同车载电子标签的下行数据帧,均以目标车载电子标签的MAC地址为下行帧的专有链路标识。车载电子标签只接收专有链路标识与自己的MAC地址相同的下行数据帧。天线收到VST信号之后,首先与车载电子标签进行加密认证,认证的目的是辨别车辆是否安装了合法注册的车载电子标签,认证通过后进行ETC收费交易。ETC交易通信结束后,天线发射结束指令,然后继续发射周期性的下行BST信号,等待后续车辆的驶入。现有的ETC天线有收发一体的结构,也有发射天线和接收天线分体的结构,但发射天线和接收天线都不具备车辆定位功能。虽然单车道模式的电子收费系统相对传统的人工收费有很大的技术进步,提高了车道通行能力,减少了交费服务时间,起到了节能减排的效果,但是仍然存在土建费用较高、通车速度相对较低、非法车辆需现场人工处理等不便。为了适应高速公路和城市道路无障碍通行和收费,一种被称为多车道自由流电子收费技术的技术被提出。多车道自由流电子收费是指在收费站点没有车道隔离设施,收费设施架设在车道上方的龙门架上,和过站车辆安装的车载电子标签通过无线通信的方式完成收费交易,车辆可按照正常车速(0-120km/h)、以任意方式(包括按车道、跨车道和变车道)通过收费站点。多车道自由流电子收费系统中的关键技术难题是,由于有未安装或者非法安装车载电子标签的车辆,除了对正常安装车载电子标签的车辆进行自动收费外,还要求对非法车辆能够进行现场自动辩别取证,目前,这仍是多车道自由流电子收费应用中需要解决的技术难题。
发明内容
为解决上述技术难题,本发明的目的是提供一种利用正交相控阵天线实现多车道自由流电子收费的方法,该方法可以对正常安装车载电子标签的车辆进行自动收费,还可以对异常和非法车辆进行自动辨别取证。
为实现上述目的,本发明采用以下技术方案:
一种利用正交相控阵天线实现多车道自由流电子收费的方法,其特征是:该方法包括以下步骤:
步骤1:车辆检测与电子收费交易,
车路通信与电子标签定位子系统通过天线发射周期性的下行信号,如果进入通信区域的车辆上没有安装车载电子标签,则天线接收不到该车辆的信息,车路通信与电子标签定位子系统无该车辆经过收费站信息,如果进入通信区域的车辆上安装有车载电子标签,则车载电子标签被下行信号唤酲,返回上行信号,车路通信与电子标签定位子系统收到上行信号后,对车载电子标签的合法性进行验证:若车载电子标签为非法车载电子标签,则车路通信与电子标签定位子系统不再与车载电子标签通信,若车载电子标签为合法注册的车载电子标签,则车路通信与电子标签定位子系统继续与车载电子标签进行通信,完成电子不停车收费交易,无论车载电子标签是否合法,车路通信与电子标签定位子系统利用天线的正交相控阵辐射单元对来自于车载电子标签的上行信号进行角度扫描,检测车载电子标签相对于天线的横向偏移角度和竖向偏移角度,并根据横向偏移角度和竖向偏移角度计算出车载电子标签的位置,然后,车路通信与电子标签定位子系统将车载电子标签的位置信息、电子收费交易结果、以及定位时间输出给车道逻辑协调控制系统;
在上述车路通信与电子标签定位子系统工作的同时,车辆检测与定位子系统通过车辆检测器检测是否有车辆进入检测区域,当有车辆进入检测区域后,车辆检测与定位子系统立即向车道逻辑协调控制系统输出抓拍启动信号,同时车辆检测器检测出车辆位置和车型,然后,车辆检测与定位子系统将车辆位置、经过收费站时间及车型信息输出给车道逻辑协调控制系统;
车道逻辑协调控制系统根据车辆检测与定位子系统提供的抓拍启动信号,触发图像抓拍与车牌识别子系统相应位置的摄像机进行车辆图像抓拍,并进行车牌自动识别,图像抓拍与车牌识别子系统将抓拍图像、车牌识别结果及抓拍时间输出给车道逻辑协调控制系统;
步骤2:车辆位置匹配和合法性验证,
由车道逻辑协调控制系统对车路通信与电子标签定位子系统提供的车载电子标签位置和车辆检测与定位子系统提供的车辆位置进行匹配:若在设定的时间段内,车辆检测与定位子系统检测到的车辆位置和车路通信与电子标签定位子系统检测到的车载电子标签位置在设定距离范围内,且车载电子标签为合法车载电子标签,则认为该车辆为合法车辆,若在设定的时间段内,车辆检测与定位子系统检测到的车辆位置和车路通信与电子标签定位子系统检测到的车载电子标签位置在设定距离范围内,但车载电子标签为非法车载电子标签,则认为该车辆为非法安装电子标签的车辆,若在设定的时间段内,车辆检测与定位子系统检测到有车辆通过,但是车路通信与电子标签定位子系统未检测到车载电子标签,则认为该车辆为未安装车载电子标签的车辆;
步骤3:后台数据处理,车道逻辑协调控制系统将步骤2中的定位匹配结果,电子不停车收费交易结果、车辆图像抓拍与车牌识别结果上传给后台数据处理系统,进行后续处理。
所述设定的时间段为100毫秒,所述车辆的设定距离范围为1米。所述天线由正交相控阵天线构成,该天线具有接收和发射功能,该天线有两组辐射单元,其中一组辐射单元横向排列,另一组辐射单元竖向排列,两组辐射单元呈十字交叉布置。所述天线由定向发射天线和相控阵接收天线构成,该相控阵接收天线有两组辐射单元,其中一组辐射单元横向排列,另一组辐射单元竖向排列,两组辐射单元呈十字交叉布置。为实施上述方法而采用的设备包括:以正交相控阵天线为核心单元的车路通信与电子标签定位子系统、以车辆检测器为核心单元的车辆检测与定位子系统、以摄像机为核心单元的图像抓拍与车牌识别子系统、以计算机为核心单元的车道逻辑协调控制系统,各系统中有相应的控制单元和数据处理单元。
本发明的创新之处在于:
采用横向和竖向角度扫描的相控阵天线接收车载电子标签返回的上行信号,获得车载电子标签相对于相控阵天线在横向方向和竖向方向的偏移角度,并根据三角公式计算出车载电子标签的位置坐标,采用车辆检测器检测车辆通行信息,无论车辆是否安装有车载电子标签,只要车辆经过收费站点,车辆的通行信息,即车辆经过收费站点的位置信息都会被车辆检测器检测到,并被抓拍设备抓拍到。上述通行信息、车载电子标签的位置信息、电子不停车收费信息都提交给车道逻辑协调控制系统,通过对车载电子标签的位置和车辆位置进行匹配,实现对正常车辆和非法车辆的判别。
本发明与传统的收费方法相比具有如下优点:
本发明收费站点的系统设备安装在道路上方的龙门架上或路侧,路面无限制车辆通行的设施如栏杆、收费岛等,收费稽查操作自动进行,无需人工值守,车辆在收费站点处自由通行,与普通道路行驶没有差异,因此其通行能力与一般道路相同,大大高于传统收费站点的通行能力,能够解决单车道模式的电子收费站点出现的拥挤排队问题,还能节约土地资源,降低相关土建费用。实现本方法的系统由多个子系统组成:车路通信与电子标签定位子系统、车辆检测与定位子系统、图像抓拍与车牌识别子系统、车道逻辑协调控制子系统和后台数据处理子系统。本发明的核心为车载电子标签定位技术,由相控阵天线在不同位置接收车载电子标签返回的上行信号,检测车载电子标签相对于相控阵天线在横向和竖向的偏移角度,根据三角公式计算出车载电子标签所在的位置,并与车辆检测器检测到的车辆位置进行匹配,实现对正常车辆和异常车辆的判别。相控阵天线的快速扫描定向和多目标检测能力有助于自由流系统定位精度和可靠性。
附图说明
图1是本发明实施例一的收费站点示意图。
图2是图1的俯视图。
图3是两个相控阵天线的检测范围示意图。
图4是一维直线相控阵天线角度扫描原理图。
图5是车载电子标签检测场景示意图。
图6是车载电子标签定位计算的第一种情形原理示意图。
图7是横向检测平面的位置示意图。
图8是竖向测平面的位置示意图。
图9是车载电子标签定位计算第一种情形的侧视图。
图10是车载电子标签定位计算的第一种情形的俯视图。
图11是正交相控阵天线横向阵元和竖向阵元的分布示意图。
图12是车载电子标签定位计算第三、第四种情形检测场景的俯视图。
图13是车载电子标签定位计算的第三种情形原理示意图。
图14是车载电子标签定位计算的第四种情形原理示意图。
图15是竖向扫描角度为负值时的车载电子标签位置示意图。
图16是横向扫描角度为负值时的车载电子标签位置示意图。
图17是车辆位置检测结果示意图。
图18是车载电子标签位置检测结果示意图。
图19是本发明实施例二的收费站点示意图。
具体实施方式
本发明是一种利用正交相控阵天线实现多车道自由流电子收费的方法,实现该方法的收费站点包括前、中、后三个龙门架,架设在道路上方,龙门架上安装相应的设备;该收费方法可对通过该站点并且安装有合法车载电子标签的车辆完成收费交易;对通过该站点的异常和非法车辆进行车辆及车牌图像抓拍,并自动识别车牌号信息;经过收费站点车辆的通行信息和交易信息上传到后台数据处理系统做进一步处理。下面对本方法的技术方案进行详述。本发明以标准的单向三车道收费站为例说明,图1和图2分别给出了自由流收费站的三维示意图和俯视图,其中单个车道宽度为3.75米,三条车道跨度为11.25米。收费站设架有前、中、后龙门架1、2、3,龙门架1、2、3净高大于5.5米,不影响路面车辆的正常通行。三车道路面上共有五辆车,分别是车辆V1、V2、V3、V4、V5。其中车辆V1上没有安装车载电子标签,车辆V2、V3、V4、V5上分别安装有车载电子标签OBU2、OBU3、OBU4、OBU5。收费站处的主要组成系统有:以相控阵天线为核心单元的车路通信与电子标签定位子系统,主要功能是与车载电子标签通信,完成收费交易,同时进行车载电子标签的定位;以车辆检测器为核心单元的车辆检测与定位子系统,主要功能是检测所在龙门架下方的车辆,提供车辆位置信息,并扫描车辆轮廓,进行车型分类;以摄像机为核心单元的车辆图像抓拍与车牌识别子系统,主要功能是进行图像抓拍和车牌识别等操作;以计算机为核心单元的车道逻辑协调控制系统,也称为车道控制器,是主系统,它负责收集、处理上述相关子系统的输出信息,完成现场的收费交易、取证和非法车辆认定等过程。车道逻辑协调控制系统将交易数据和车辆过站信息通过网络传输到后台数据库系统。同时,该系统负责监控以上各子系统的工作状态。各系统中有相应的控制单元和数据处理单元。其中:车路通信与电子标签定位子系统的控制单元安装在控制箱4中,车辆检测与定位子系统的控制单元安装在控制箱5中,图像抓拍与车牌识别子系统的控制单元安装在控制箱6中,车道逻辑协调控制系统的控制单元与计算单元安装在龙门架旁的设备箱7中,上述各系统的控制单元也可集中放置在龙门架附近的设备箱7中,通过连接线如网线、串口线等和上述核心硬件设备连接。
本实施例中,龙门架高度为6米、间距8米,相控阵天线有两个、抓拍摄像机共16个、车辆检测器有三个,请参照图1和图2,各设备的安装位置如下:两个相控阵天线A1、A2以及八个前排抓拍摄像机C1安装在前排龙门架1上,两个相控阵天线A1、A2的安装位置距离车道左侧边线b分别为3米、8.25米。两个相控阵天线A1、A2为正交相控阵天线,工作频段为5.8GHz;八个前排抓拍摄像机C1用于抓拍车辆前部图像,包括前车牌;三个车辆检测器L1、L2、L3安装在中排龙门架2上;八个后排抓拍摄像机C3安装在后排龙门架3上,用于抓拍车辆后部图像,包括后车牌。上述龙门架布局方式和设备安装位置,目的在于保证车辆检测器所在的中排龙门架正下方为自由流收费系统的主要工作区域,车辆经过中排龙门架正下方时,各子系统同时对车辆进行位置检测、数据通信和图像抓拍操作,由车道逻辑协调控制系统将各子系统的处理结果进行汇总和进一步处理。
以下是各子系统的工作原理。
车辆检测与定位子系统可以采用激光幕墙、视频检测、红外光栅等技术实现。在此采用激光幕墙方案进行描述。车辆检测与定位子系统(激光幕墙系统)对车辆穿越激光波束幕墙时反射光束的时间进行统计。车辆检测与定位子系统以激光发射器、接收器为核心,配置光电转换单元和上位机,激光发射器向地面方向连续不停的发射激光脉冲波,并在一断面内进行扫描,形成激光幕墙。激光接收器接收地面或车辆反射回来激光脉冲波,并经光电转换单元转换成电信号,输送给二号工控机。没有车辆进入检测区域时,激光接收器接收的激光脉冲波全部是由地面反射回来的;当有车辆进入检测区域,穿过激光波束幕墙时,车辆前端进入、后端离开的这一段时间内,地面反射和车辆反射的激光的能量不同。激光车辆检测器对光电信号进行滤波、放大、模数转换处理,再通过高速信号处理器(DSP),对数字化的光电信号进行傅利叶变换,将时域的信息转换为频域的信息,通过对频域的信息进行能量谱分析,可以计算出车辆的长度、高度、宽度,得到车辆外形轮廓,并根据车辆外形轮廓自动划分车辆类型,这一过程为公知成熟技术,故不再加以赘述。
为了实现整个车道断面所有车辆的检测定位,车辆检测与定位子系统可包含多台车辆检测器。本实施例为三车道收费站,共安装了三台车辆检测器L1、L2、L3,每个车道中线的上方安装一台。车辆检测器L1、L2、L3发射的激光波束形成一道幕墙,如果有车辆进入检测区域,穿过激光波束幕墙时,车辆前端进入、后端离开的这一段时间内,激光波束碰到车辆后,部分能量返回,当激光接收器收到返回激光波束时,车辆检测与定位子系统的控制单元根据回波能量计算进入其检测区域车辆的长度、高度、宽度坐标,并根据车辆外形轮廓自动划分车辆类型。车辆检测与定位子系统将检测结果,包括车辆位置、车型和过站时间信息一并上传给车道逻辑协调控制系统。
图像抓拍与车牌识别子系统主要进行图像抓拍和车牌识别等操作。抓拍设备采用高清摄像机,抓拍后的图像经过图像处理及字符识别(OCR)技术,获得车牌颜色和号码等信息。图像或者视频抓拍时间由车道逻辑协调控制系统控制,车道逻辑协调控制系统根据车辆检测与定位子系统检测到的车辆输入信号决定触发时间,触发相应的摄像机抓拍车辆图像。抓拍时车辆位于车辆检测器正下方附近。图像抓拍与车牌识别子系统将抓拍的车辆图像、车牌识别结果及抓拍时间上传给车道逻辑协调控制系统。
用车辆检测器检测车辆位置的技术为成熟技术,但是车载电子标签准确定位尚无成熟技术,因此本发明的关键是解决车载电子标签定位问题。
在进行原理说明之前,首先定义本发明的自由流收费站点处的方向指示:
在描述自由流收费站系统时,以行驶车辆的车头方向为前方,车尾为后方;在相控阵天线A1、A2对车载电子标签位置进行检测计算时,以相控阵天线所在的前排龙门架1为基准,三维坐标系定义为:行车方向为X轴,零点为相控阵天线所在的龙门架1正下方,X轴正向与行车方向相反;前排龙门架1正下方的直线为Y轴,与行车方向垂直,零点为车道最左侧,向右取正值;与地面垂直的方向为Z轴,零点为车道所在路面,向上取正值。所定义坐标系如图5所示。
图1所示的单向三车道自由流收费系统的通信区域俯视图如图3所示,其中G为ETC交易通信区域在行车方向的长度,约为3-4米,通信区域与车辆行驶方向垂直的中线是车牌抓拍的基准线K,基准线K正上方即为车辆检测器所在的中排龙门架2。J为相控阵天线A2的辐射面。图3中,相控阵天线A1与相控阵天线A2的辐射面宽度相同,仅通信区域由于安装位置的不同而有差异,两个相控阵天线覆盖了整个车道断面的有效通信区域。
自由流收费系统中,大部分车辆都是在天线通信区域内抓拍基准线K附近完成ETC交易的,天线扫描到车载电子标签的X轴数值差异较小;车载电子标签相对于地面的高度数值即Z坐标值是相对固定的;而Y轴坐标值,即车辆相对于车道边线的横向偏移,在同一时刻,两辆并排相邻行驶的车辆上的车载电子标签的Y轴距离大于2米,有明显的差异,因此,Y轴坐标值是车载电子标签定位的最主要参数。本发明中,车载电子标签的Y轴坐标值是由正交相控阵天线检测计算出的。本发明中的相控阵天线A1、A2为定向天线,为了保证对通信区域的控制,相控阵天线安装时有一定的下倾角,保证车载电子标签在通信区域G时通信效果最佳。
相控阵天线是由多个辐射单元(阵元)组成的,相控阵天线的目标检测能力取决于其辐射单元的排列方式。在本发明中,相控阵天线A1、A2采用正交相控阵,天线辐射单元沿两个相互正交的方向排列:横向和竖向,
横向排列的辐射单元对应于Y轴,与Y轴平行,竖向排列的辐射单元对应于Z轴,但天线安装时有一个下倾角,所以竖向排列的辐射单元与Z轴之间有一个夹角。横向排列的辐射单元(以下简称横向阵元)、竖向排列的辐射单元(以下简称竖向阵元)以十字交叉方式布置,交叉点在各自中点相交,夹角为90度。
横向阵元、竖向阵元分别扫描检测车载电子标签相对于天线横向和竖向的偏移角度。仅由横向阵元或竖向阵元组成的相控阵天线属于一维相控阵天线,同时由横向阵元和竖向阵元组成的相控阵天线属于二维相控阵天线,正交相控阵天线属于二维相控阵天线,正交相控阵天线可以看成是两个一维相控阵天线的组合。
在实际的射频电子器件实现中,受电子器件制作工艺的影响,相控阵天线的外观有多种形式,有的相控阵天线的外观可以看出各辐射单元的排列方式,有的相控阵天线的外观不能看出各辐射单元的排列方式,例如采用分体生产工艺的天线,各辐射单元的位置和布局从外观上可以看出,而采用整体生产工艺的天线,所有的辐射单元都被集成到一个辐射板上,从外观上只能看出是一个矩形平板,无论何种外观形式,只要该相控阵天线的辐射单元是按正交方式排列的,该相控阵天线就可用于本发明中。
下面描述一维相控阵天线的角度扫描原理。请参见图4,一维相控阵天线A由N个按直线排列的辐射单元组成,本实施例中N=6,各辐射单元r1、r2、r3、r4、r5、r6按等间距方式排列,间距为d,每个辐射单元后面接有一个可控的移相器,移相器通过改变一维相控阵天线A的六个辐射单元r1、r2、r3、r4、r5、r6之间的相位差
Figure BDA0000148369870000071
控制一维相控阵天线A的波束指向。当各辐射单元之间的相位差
Figure BDA0000148369870000072
变化时,一维相控阵天线A的波束指向也随之改变。相控阵天线A的波束指向是指天线最大发射/接收功率的方向。
在相对于相控阵天线A的法线F(垂直于阵列方向)的θ方向上有一个远场点目标信号源即车载电子标签,车载电子标签发出的上行信号到达相邻阵元(如辐射单元r1和r2)的行程差Δx=d·sinθ引起的相位差ΔΨ可表示为
ΔΨ = 2 π λ d · sin θ - - - ( 1 )
其中d为相邻阵元之间的距离,f为无线信号频率(本发明中载波在5.8GHz频段),λ为信号波长,计算公式为:
λ = c f - - - ( 2 )
其中c为光速,数值为3×108米/秒。设直线阵列第k个辐射单元的激励电流幅度为ak,以1号辐射单元r1的相位为基准,通过移相器设置相邻两个辐射单元的相位差为
Figure BDA0000148369870000083
相控阵天线A接收到的上述偏移角度为θ的远场点信号源的信号矢量之和可表示为:
其中
Figure BDA0000148369870000085
θd由相控阵天线A的控制单元设定。设天线各辐射单元等幅馈电,则各辐射单元归一化激励幅度为ak=1/N。利用等比级数公式,则公式(3)的归一化接收信号场强可表示为;
E ( θ ) = 1 N × 1 - e j 2 π λ Nd ( sin θ - sin θ d ) 1 - e j 2 π λ d ( sin θ - sin θ d ) - - - ( 4 )
由欧拉公式,上式可变为
E ( θ ) = 1 N × sin π λ Nd ( sin θ - sin θ d ) sin π λ d ( sin θ - sin θ d ) - - - ( 5 )
Figure BDA0000148369870000088
值较小,则上式可近似为
E ( θ ) = sin π λ Nd ( sin θ - sin θ d ) π λ Nd ( sin θ - sin θ d ) - - - ( 6 )
当sinθ-sinθd=0时,公式(6)取最大值。
θd即相控阵天线A的波束指向,也称扫描角度。相控阵天线A控制移相器参数,调整各阵元的相位差实现不同角度的扫描。当θd=θ,即天线扫描角度和目标入射角相等时,相控阵天线A有最大的发射/接收增益。
从公式(3)可以看出,通过改变相控阵天线A各辐射单元之间的相位差
Figure BDA00001483698700000810
就能控制相控阵天线的最大波束指向,实现特定方向的发射/接收增益最大化,这就是相控阵天线波束扫描的原理。
在实际产品应用中,相控阵天线的波束扫描是电扫描方式,通过数字波束形成(Digital Beam Forming,简称DBF)技术实现。该技术是将相控阵天线对各辐射单元的接收信号进行数字采样并加权求和的方式实现波束形成。DBF技术基于数字信号处理理论,具有快速响应时间、高数据采样率、多批目标跟踪、天线波束指向快速变化、时域和频域转换灵活等优点,可在微妙时间段内实现波束转换。采用数据信号处理技术后,微波信号的处理速度主要取决于电子器件和微处理器的能力。
本发明利用相控阵天线的扫描角度可控特点,对所属通信区域的上行信号进行扫描检测,根据车载电子标签返回的信号功率值,判断车载电子标签相对于相控阵天线的两个正交方向(横向和竖向)的角度偏移量,然后根据三角公式计算出车载电子标签的位置。车载电子标签位置检测与计算原理为本发明之核心内容,描述如下:
相控阵天线A1、A2都是正交相控阵天线,每个正交相控阵天线都具有横向阵元和竖向阵元,横向阵元与天线所在龙门架平行,竖向阵元与横向阵元排列方式相互正交,横向阵元和竖向阵元分别通过移相器改变各自阵元之间的相位差
Figure BDA0000148369870000091
对所属通信区域的上行DSRC信号进行角度扫描检测,获得车载电子标签相对天线在横向和竖向方向上的偏移角度。
车载电子标签相对于相控阵天线的横向偏移角度由横向阵元检测扫描。横向检测平面是相控阵天线法线F所在的、与XZ平面垂直的平面;横向扫描角度为车载电子标签与相控阵天线之间信号直射路径在横向检测平面的投影线与相控阵天线法线的夹角。横向扫描角度正负符号定义为:面向车辆,以相控阵天线法线方向为0度,向左偏移为负值,向右偏移为正值,设相控阵天线横向扫描范围为60度,左右各30度,则扫描角度统计范围为-30°~30度。每一个扫描角度对应一个接收信号功率采样值。当扫描角度步长为0.5度时,一个扫描周期有121个扫描角度,每个扫描角度对应一个上行(DSRC)信号接收功率采样值。
车载电子标签相对于相控阵天线的竖向偏移角度由竖向阵元检测扫描。竖向检测平面是相控阵天线法线F所在的铅垂面,该检测平面与XZ平面平行;竖向扫描角度为车载电子标签与相控阵天线之间信号直射路径在竖向检测平面的投影线与相控阵天线法线的夹角。竖向扫描角度正负符号定义为:面向车辆,以天线法线方向为0°,向上偏移为正值,向下偏移为负值,设天线竖向扫描范围为40°,上下各20°,则扫描角度统计范围为-20°~20°。每一个扫描角度对应一个接收信号功率值。当扫描角度步长为0.5度时,一个扫描周期有81个采样角度,每个采样角度对应一个上行(DSRC)信号接收功率采样值。不同的竖向扫描角度对应车道X轴的坐标值。
当没有车辆驶入时,相控阵天线横向阵元和竖向阵元的接收信号为噪声信号,横向和竖向的接收信号功率采样值差异较小。当有车载电子标签的车辆驶入天线通信区域时,车载电子标签返回上行信号,该上行信号以一定的入射角到达相控阵天线,该入射角的横向角度分量和纵向角度分量分别被相控阵天线横向阵元和竖向阵元检测到,
因为相控阵天线横向阵元和竖向阵元都在通过各自的移相器进行连续的角度扫描,每一个扫描角度对应一个接收信号功率值,以横向阵元为例,当上行信号达到时,其入射角的横向角度分量对应的信号接收功率采样值高于该角度附近的其它角度的信号功率采样值,其形成一个采样峰值(局部最大值),所以,只要确定了上行信号接收功率采样峰值,其对应的扫描角度就是车载电子标签相对于相控阵天线的横向偏移角度,在本发明中,
上行信号接收功率采样峰值(局部最大值)的判断方法是:对于第k个扫描角度,首先统计以该点为中心的相邻角度区间的接收功率采样值,例如统计范围设为正负10度,则需要统计角度连续的21个接收功率采样值。设第i个角度的接收功率采样值为pi,则首先计算第k个扫描角度的接收功率统计均值,计算公式为
P ave ( k ) = 1 21 Σ i = k - 10 i = k + 10 p i - - - ( 7 )
如果Pave(k)/pk<0.6,且pk=max{pk-2,pk-1,pk,pk+1,pk+2}时,第k个采样点为接收功率采样峰值。采用公式(7)计算时,对于扫描扇面边缘的采样点,可用采样点较少的一侧按照实际数量进行均值统计。如横向-29°的采样点(k=2),计算公式为 P ave ( 2 ) = 1 13 Σ i = 0 i = 12 p i .
ETC交易中,DSRC数据帧的上行基带传输速率为512kHz,每比特的信号周期为2微秒左右,单个DSRC上行数据帧时长约1~2毫秒。在1-2毫秒的DSRC上行数据帧传输时间内,车辆在行车方向的位移不到0.05米(车速在120千米/小时以下时),横向位移更小,因此只需要检测一个上行数据帧即可实现对车载电子标签的精确定位。相控阵天线采用电子扫描方式,扫描周期(即完成一次全角度信号检测的时间)可达微秒级,甚至可以实现对DSRC信号比特级数据的实时扫描检测。
在一个方向的一个角度扫描周期中,当相控阵天线的扫描角度与车载电子标签所在位置重合时,相控阵天线接收到一个上行信号功率峰值。如果在一个角度扫描周期内,同时有多个车载电子标签返回上行信号,则会出现多个接收功率峰值,每个接收功率峰值所对应的扫描角度代表了不同车载电子标签的位置。相控阵天线通过解析收到的不同角度的上行DSRC信号中的MAC地址识别不同的电子标签。
典型自由流收费交易的时间为30-50毫秒。一次交易中,车载电子标签会发送3-5次上行数据帧。进入相控阵天线通信区域的车辆,车辆上安装的车载电子标签会发送多个上行数据帧,相控阵天线一般以首次收到的数据帧为该电子标签定位的参考信号。相控阵天线的数据处理单元记录和处理天线的扫描结果。设天线扫描结果以1毫秒为记录单位,一个车载电子标签的一个上行数据帧(1-2毫秒)会生成1-2次记录。例如,在连续的10毫秒内,正交相控阵天线的扫描结果如表格1所示。表格1:
Figure BDA0000148369870000111
上表中,MAC地址为01000001的OBU1发出的上行数据帧在相控阵天线的数据处理单元中生成一条记录,该结果作为OBU 1的检测结果。而MAC地址为09000002的OBU2发出的上行数据帧在相控阵天线的数据处理单元中生成2条连续的记录,则可以将两次记录的接收功率采样峰值和扫描角度做平均,作为该电子标签的检测结果,时间取数据帧的起始时间,即09:00:01:576。
每一个相控阵天线的数据处理单元将上述检测结果以表格2的形式保存,存储内容包括:上行信号接收功率的采样峰值、该采样峰值对应的天线扫描角度、车载电子标签的MAC地址、采样时间,这4个参数一一对应的生成一条检测结果。
表格2:正交相控阵天线的检测记录表
Figure BDA0000148369870000112
表格2中,如果某个车载电子标签只有横向和竖向两个方向之一的角度扫描结果,则该结果无效。只有同时在两个正交方向上获得接收功率采样峰值,才作为一条检测记录保存在表格2中。
相控阵天线的数据处理单元根据表格2样式的检测记录计算检测到的车载电子标签的位置。每个正交相控阵天线的一条检测记录对应一个车载电子标签的位置。下面从一般情形到特殊情形,以车载电子标签OBU5为例进行说明,描述从两个正交方向的检测结果计算OBU位置的方法。
请参照图6的角度检测原理图,车载电子标签OBU5和相控阵天线A2的位置分别用R、Q点表示。R点到龙门架1上的垂点为T,R点在QT所在的铅垂面的垂点为P,L点为Q点在RP所在水平面的垂点,则四边形LPTQ为铅垂面矩形,三角形RPL为水平面直角三角形,其中∠RPL为直角,三角形RPT为铅垂面直角三角形,其中∠RPT为直角。
车载电子标签OBU5的横向偏移角度θ1由相控阵天线A2的横向阵元检测到。本实施例中,相控阵天线A2横向阵元(辐射单元)有六个,分别是辐射单元r1、r2、r3、r4、r5、r6,各辐射单元按等间距方式排列,如图11所示。横向偏移角度θ1位于横向检测平面内,横向检测平面是相控阵天线A2法线F所在的、与XZ平面垂直的平面;横向检测平面如图7中阴影线表示的FQT平面,横向扫描角度θ1为车载电子标签与相控阵天线之间信号直射路径RQ在横向检测平面FQT上的投影线R′Q与相控阵天线法线F的夹角,横向扫描角度θ1位于平面FQT中,
在计算车载电子标签的位置时,以平面RQT为参考平面,横向扫描角度θ1不一定在参考平面RQT上,但由于车辆进行收费交易的时间很短,绝大部分都发生在通信区域G内基准线K附近,参考平面RQT和横向检测平面FQT的夹角一般不大于15°,车载电子标签和相控阵天线的直射路径在横向检测平面的投影与相控阵天线法线的夹角θ1,与该夹角在参考平面RQT的投影角度(θ1′)的差异较小,两者的差异导致的定位误差对于车辆定位要求而言可以忽略不计。因此在下面的计算过程中,以θ1代替(θ1′)。
横向扫描角度正负符号定义为:面向车辆,以天线法线方向为0°,向左偏移为负值,向右偏移为正值,设天线横向扫描范围为60°,左右各30°,则扫描角度统计范围为-30°~30°。每一个扫描角度对应一个上行信号接收功率采样值。当扫描角度步长为0.5度时,一个扫描周期有121个采样角度,每个采样角度对应一个上行信号接收功率采样值。
车载电子标签OBU5的竖向偏移角度θ2由相控阵天线A2的竖向排列的阵元检测到。本实施例中,相控阵天线A2竖向阵元(辐射单元)有六个,分别是辐射单元r7、r8、r9、r10、r11、r12,各辐射单元按等间距方式排列,如图11所示。相控阵天线A2横向阵元与竖向阵元呈中心十字交叉布置。
车载电子标签OBU5相对于相控阵天线A2的竖向偏移角度θ2由竖向阵元检测扫描。竖向检测平面是相控阵天线法线F所在的铅垂面,如图8的阴影线所在的平面,竖向检测平面就是FQL平面,竖向扫描角度θ2为车载电子标签与相控阵天线之间信号直射路径RQ在竖向检测平面FQL的投影线R″Q与相控阵天线法线F的夹角,如图8、图9所示。
竖向扫描角度θ2正负符号定义为:面向车辆,以天线法线方向为0°,向上偏移为正值,向下偏移为负值,设天线竖向扫描范围为40°,上下各20°,则扫描角度统计范围为-20°~20°。每一个扫描角度对应一个上行信号接收功率采样值。当扫描角度步长为0.5度时,一个扫描周期有81个采样角度,每个采样角度对应一个上行信号接收功率采样值。不同的竖向扫描角度对应车道X轴的坐标值。
下面分四种情形描述本发明的车载电子标签位置计算方法,
情形一,一般情形,请参照图5、图6,相控阵天线A2对车载电子标签OBU5的横向和竖向扫描角度均不为0,设R点在龙门架1的垂点为T,R点在QT所在的铅垂面的垂点为P,L点为Q点在RP所在水平面的垂点,则四边形LPTQ为铅垂面矩形,三角形RPL为水平面直角三角形,其中∠RPL为直角,三角形RPT为铅垂面直角三角形,其中∠RPT为直角。
设n=TQ,则车载电子标签OBU5的Y轴坐标计算公式为:
Y(OUB5)=Y(A2)-n    (8)
其中Y(A2)为相控阵天线A2的Y轴坐标值,其中n的长度由三角形RTQ的边RT的长度w和角度θ1计算出。如图7所示,w的计算公式为
w=h1/cosβ    (9)
参见图9的侧视图,β角度的计算公式为
β=90-θ0+(±θ2)    (10)
其中θ0为相控阵天线的下倾角,即相控阵天线法线F和水平面的夹角;竖向扫描角度θ2正负符号定义为:面向车辆,以天线法线F方向为0°,向上偏移为正值,向下偏移为负值,所以:
如果车载电子标签OBU5在图9所示位置被相控阵天线A2扫描检测到,竖向扫描角度θ2为负值,本实施例都是以车载电子标签OBU5为例进行说明,实际上,如果车载电子标签OBU5(车辆V5)驶入收费站点时,其路径接近于车载电子标签OBU2(车辆V2)的行驶路径,那么相控阵天线A2对车载电子标签OBU5的竖向扫描角度θ2就为负值,
如果车载电子标签OBU5在图15所示位置被相控阵天线A2扫描检测到,竖向扫描角度θ2为正值,本实施例都是以车载电子标签OBU5为例进行说明,实际上,如果车载电子标签OBU5(车辆V5)驶入收费站点时,其路径接近于车载电子标签OBU4(车辆V4)的行驶路径,那么相控阵天线A2对车载电子标签OBU5的竖向扫描角度θ2就为正值,
n的计算公式为:
n=w·tanθ1    (11)
横向扫描角度θ1正负符号定义为:面向车辆,以相控阵天线法线F方向为0度,向左偏移为负值,向右偏移为正值,所以:如果车载电子标签OBU5在图10所示位置被相控阵天线A2扫描检测到,横向扫描角度θ1为负值,如果车载电子标签OBU5在图16所示位置被相控阵天线A2扫描检测到,横向扫描角度θ1为正值。
车载电子标签OBU5的Z轴坐标值Z(OBU5)由电子标签的安装高度决定,小型汽车的车载电子标签的安装位置都在后视镜附近,大客车的车载电子标签的安装位置在前车窗玻璃中间,都接近1.3米,在此取1.3米为车载电子标签高度值,Z(OBU5)=1.3米。
如图7所示,车载电子标签OBU5的X轴坐标等于RP的长度,RPT为直角三角形,∠RPT为直角,则可根据TP的长度和正切公式计算出车载电子标签OBU5的X轴坐标值。设TP的长度为h1,本实施例中,相控阵天线A2的安装高度为6米,车载电子标签在YZ平面的投影点P的Z坐标值Z(OUB2)=h2=1.3米,则h1=6-h2=4.7米,令β=∠RTP,车载电子标签OBU5的X轴坐标计算公式为
X(OBU5)=h1·tanβ    (12)
情形二,特殊情形,车载电子标签OBU5不位于相控阵天线A2法线的正前方,但相控阵天线A2对车载电子标签OBU5的竖向检测角度为0,即在图8所示的竖向检测平面FQL中,RQ在竖向检测平面FQL上的投影R″Q与相控阵天线A2的法线F重合,竖向检测角度θ2为零,车载电子标签的位置计算方法与情形一相同。
如图12所示,当车载电子标签与恰好位于天线法线正前方时还会出现两种特殊情形,下面分别详述:
情形三,特殊情形,请参照图13,车载电子标签OBU5恰好位于相控阵天线法线F正前方,这时L点和P点重合,T点和Q点重合,此时横向检测角度θ1=0,竖向检测角度θ2=∠RQF,β=∠RQL,β的计算公式与情形一相同,即公式(10)。此时由于Q点和T点重合,n=0,则车载电子标签OBU5的Y轴坐标计算公式为:Y(OBU5)=Y(A2)    (13)
车载电子标签OBU5的X轴坐标计算公式与公式(12)相同。
情形四,特殊情形,请参照图14,车载电子标签OBU5恰好位于相控阵天线法线F正前方时,且车载电子标签OBU5的X轴坐标位于通信区域G的基准线K上,这时L点和P点重合,T点和Q点重合,此时横向检测角度θ1=0,竖向检测角度θ2=0,车载电子标签OBU5的Y轴坐标计算公式与公式(13)相同,X轴坐标计算公式与公式(12)相同。
前排龙门架1上的各正交相控阵天线是并行独立工作的,每个正交相控阵天线都独立生成电子标签检测定位的结果。相控阵天线将定位结果和ETC收费交易结果提供给车路通信与电子标签定位子系统。
车路通信与电子标签定位子系统对各正交相控阵天线的检测结果进行比对后确认最终定位结果。如果在一个采样时刻,两个或者以上的相控阵天线检测到同一电子标签的信息,则取横向或者竖向接收功率采样峰值最大的检测结果作为最终结果。例如,相控阵天线A1和A2同时检测到车载电子标签OBU3的信号,检测记录如表格3所示:
表格3:两个正交相控阵天线检测到同一电子标签的情形
Figure BDA0000148369870000151
根据上表的检测结果,对比相控阵天线A1、A2的检测记录,相控阵天线A1的横向接收功率采样的峰值为最大,为-40dBm,因此选择相控阵天线A1的检测记录为车载电子标签OBU3的检测结果。
对于同一采样时刻,某个相控阵天线检测到不同电子标签的信息时,该不同电子标签的检测信息保留到下一步。
车道逻辑协调控制系统在进行车辆位置匹配时,主要依据为车辆驶过中排龙门架时所处的车道,更准确的说,是车辆中心点的Y轴坐标值,该参数由车辆检测器和相控阵天线同时提供。车道逻辑协调控制系统对比车辆检测器和相控阵天线检测出的车辆Y轴坐标值和过站时间,如果二者给出的车辆过站时间差和Y轴坐标值之差都小于设定的范围,则认为匹配成功,二者检测到同一辆车,如果该车辆正常完成ETC收费交易,则为合法车辆;否则,
如果二者不匹配,且只有车辆检测器的车辆信息,而相控阵天线没有收到相应的车载电子标签信息,则认为是无车载电子标签车辆,或者所安装的车载电子标签发生异常,未能成功交易。
实施例1:本实施例中,车路通信与车载电子标签定位子系统主要由收发一体的相控阵天线组成,相控阵天线完成发射下行信号、接收车载电子标签的上行信号、扫描检测车载电子标签相对于天线的角度。
步骤1:车辆检测与电子收费交易
车路通信与电子标签定位子系统的相控阵天线A1、A2定期发射下行BST唤醒信号,安装有车载电子标签的车辆驶入ETC收费区域时,收到下行BST信号,返回上行信号(VST信号),
相控阵天线A1、A2接收车载电子标签返回的上行VST信号后,对车载电子标签进行合法性验证,验证过程为:天线下发授权码,电子标签收到后,根据授权码计算出鉴别码,并将数据和鉴别码一起返回给相控阵天线,相控阵天线对鉴别码进行验证。验证通过后进行电子不停车(ETC)收费交易;如果验证不成功,将该车载电子标签的信息和验证未通过信息记录保存。无论验证成功与否,相控阵天线A1、A2对上行DSRC信号进行接收扫描,检测车载电子标签相对于各相控阵天线的横向和竖向偏移角度,车路通信与电子标签定位子系统根据相控阵天线A1、A2的检测记录表内容,按照公式(8)-(12)计算出车载电子标签的位置,正交相控阵天线的安装方式为:横向阵元与龙门架平行,竖向阵元与龙门架1的铅垂线方向之间有一个夹角,这个夹角为相控阵天线安装的下倾角,为30.4度(θ0=30.4)。两个相控阵天线A1、A2的XY坐标位置分别为(0,3)、和(0,8.25)。相控阵天线A1、A2对5个车辆进行角度扫描,扫描结果如表格4:
表格4:正交相控阵天线角度扫描和定位结果
Figure BDA0000148369870000161
其中,相控阵天线A1和A2同时检测到车载电子标签OBU3,但相控阵天线A1检测到的功率值大于相控阵天线A2检测到的功率值,如表格3中的数据显示。根据表格3的比较结果,相控阵天线A1的检测记录用于对车载电子标签OBU3进行定位。
根据相控阵天线A1的检测记录,车载电子标签OBU2的位置计算如下:
β=90-θ0+(±θ2)=90-30.4-2=57.6,X(OBU2)=h1*tan(β)=4.7*tan(57.6)=7.4米,w=h1/cos(β)=4.7/cos(57.6)=8.77米,n=w*tan(θ1)=8.77*tan(-2)=-0.3米,Y(OBU2)=Y(A1)-n=3-(-0.3)=3.3米。
根据相控阵天线A1的检测记录,车载电子标签OBU3的位置计算如下:
β=90-θ0+(±θ2)=90-30.4+3.8=63.4,
X(OBU3)=h1*tan(β)=4.7*tan(63.4)=9.4米,
w=h1/cos(β)=4.7/cos(63.4)=10.5米,n=w*tan(θ1)=10.5*tan(-13.4)=-2.5米,Y(OBU3)=Y(A1)-n=3-(-2.5)=5.5米。
根据相控阵天线A2的检测记录,车载电子标签OBU4的位置计算如下:
β=90-θ0+(±θ2)=90-30.4+7.4=67,X(OBU4)=h1*tan(β)=4.7*tan(67)=11.1米,w=h1/cos(β)=4.7/cos(67)=12米,n=w*tan(θ1)=12*tan(1.8)=0.38米,Y(OBU4)=Y(A2)-n=8.25-0.38=7.87米。
根据相控阵天线A2的检测记录,车载电子标签OBU5的位置计算如下:
β=90θ0+(±θ2)=90-30.4+0=59.6,X(OBU5)=h1*tan(β)=4.7*tan(59.6)=8米,w=h1/cos(β)=4.7/cos(59.6)=9.3米,n=w*tan(θ1)=9.3*tan(-14)=-2.3米,Y(OBU5)=Y(A2)-n=8.25-(-2.3)=10.55米。
上述计算结束后,车路通信与电子标签定位子系统计算得到的车载电子标签定位结果,即X、Y轴的坐标值如表格4中的最后一行所示,对应的车载电子标签位置俯视图如图18所示。然后,车路通信与电子标签定位子系统将交易结果、车载电子标签位置以及电子标签定位时间输出给车道逻辑协调控制系统,如果车辆上没有安装车载电子标签,则车道天线无法与车载电子标签进行通信链路连接,车路通信与电子标签定位子系统不输出该车的任何信息给车道逻辑协调控制系统。
车辆激光定位:
在车路通信与电子标签定位子系统与电子标签通信的同时,车辆检测与定位子系统也自动检测车辆过站信息。当有车辆进入检测区域后,车辆检测器检测计算出车辆位置和车辆外形轮廓信息,同时根据车辆外形轮廓自动划分车型,然后车辆检测器将车辆位置、车型以及定位时间输出给车道逻辑协调控制系统,车辆检测与定位子系统获得的车辆位置信息如表格5所示,对应的车辆位置如图17所示。表格5:车辆检测器的定位结果
  车辆  车辆中心线Y坐标   检测时间(时分秒毫秒)
  车辆V1   1.20米   09:00:00:562
  车辆V2   3.10米   09:00:00:028
  车辆V3   5.20米   09:00:01:603
  车辆V4   7.85米   09:00:02:031
  车辆V5   11.05米   09:00:01:024
车辆图像抓拍:
车辆检测器检测到有车辆驶入车辆检测器下方时,会产生一个触发信号给车道逻辑协调控制系统,后者根据车辆检测器的定位结果,即车辆中心线Y坐标,触发相应的摄像机抓拍对应位置的车辆图像,并识别车牌信息,然后将抓拍图像、车牌识别结果和抓拍时间输出给车道逻辑协调控制系统。本实施例中,有8个等间隔分布的抓拍摄像机。图像抓拍系统不检验车辆的合法性,仅作留存证据。
步骤2:车辆位置匹配和合法性验证
由车道逻辑协调控制系统将天线检测到的车载电子标签位置和车辆检测器检测到的车辆位置进行匹配,辨别出合法车和非法车。由于车辆位置信息和车载电子标签位置信息是由两个系统检测出的,对于同一辆车,车辆检测器和相控阵天线给出的位置信息和过站时间信息会有一定的差异,考虑到实际系统的运行特点,在短时间内不可能有两辆车在相同位置出现,故两者检测时间差的合理范围为<100ms,检测到车辆位置和电子标签横向位置(y坐标)之差的合理范围为<1米。该匹配是建立在各个子系统时间严格同步的基础上的,因此车道逻辑控制系统会定期对各子系统的时间进行同步,以免出现时间漂移。位置匹配的具体过程如下:
车道逻辑协调控制系统比较车载电子标签的Y轴坐标(表格4最后一行)和车辆中心线位置的Y轴坐标(表格5)中的数据,表格4和表格5中的数据都以数据库的形式存储在车道逻辑协调控制系统的存储器中,
对于车辆V1来说,在09:00:00:562±100毫秒范围内,有车辆位置检测结果为1.2米,说明该车辆经过了收费站点,而无对应的车载电子标签位置,则认为该车辆V1为非法车辆。
对于车辆V2来说,在09:00:00:028±100毫秒范围内,有车辆位置检测结果为3.1米,说明该车辆经过了收费站点,也有对应的相控阵天线检测结果为3.3米,二者距离差0.2米,小于设定值1米,且车载电子标签为合法车载电子标签,则认为该车辆V2为合法车辆。
对于车辆V3来说,在09:00:01:603±100毫秒范围内,有车辆位置检测结果为5.2米,说明该车辆经过了收费站点,也有对应的相控阵天线检测结果为5.5米,二者距离差0.3米,小于设定值1米,且车载电子标签为合法车载电子标签,则认为该车辆V3为合法车辆。
对于车辆V4来说,在09:00:02:031±100毫秒范围内,有车辆位置检测结果为7.85米,说明该车辆经过了收费站点,也有对应的相控阵天线检测结果为7.87米,二者距离差0.05米,小于设定值1米,且车载电子标签为合法车载电子标签,则认为该车辆V4为合法车辆。
对于车辆V5来说,在09:00:01:024±100毫秒范围内,有车辆位置检测结果为11.05米,说明该车辆经过了收费站点,也有对应的相控阵天线检测结果为10.5米,二者距离差0.5米,小于设定值1米,但车载电子标签为未经合法注册的车载电子标签,则认为该车辆V5为非法车辆。
步骤3:后台数据处理
车道逻辑协调控制系统将步骤2中的定位匹配结果,电子不停车收费交易结果、车辆图像抓拍与车牌识别结果上传给后台数据处理系统,进行后续处理,例如,根据图像抓拍的证据,追缴车辆V1、V5的通行费。
实施例2:请参照图19,本实施例与上述实施例的原理相同,不同之处在于:相控阵天线A1、A2只具有接收功能,在相控阵天线A1、A2的上方分别安装有定向发射天线A3、A4,定向发射天线A3、A4发射下行数据,相控阵天线A1、A2接收上行数据的同时,检测车载电子标签的位置,系统工作流程和检测的结果与实施例1中的数据相同。

Claims (4)

1.一种利用正交相控阵天线实现多车道自由流电子收费的方法,其特征是:该方法包括以下步骤:
步骤1:车辆检测与电子收费交易,
车路通信与电子标签定位子系统通过天线发射周期性的下行信号,如果进入通信区域的车辆上没有安装车载电子标签,
则天线接收不到该车辆的信息,车路通信与电子标签定位子系统无该车辆经过收费站信息,
如果进入通信区域的车辆上安装有车载电子标签,则车载电子标签被下行信号唤酲,返回上行信号,车路通信与电子标签定位子系统收到上行信号后,对车载电子标签的合法性进行验证:
若车载电子标签为非法车载电子标签,则车路通信与电子标签定位子系统不再与车载电子标签通信,若车载电子标签为合法注册的车载电子标签,则车路通信与电子标签定位子系统继续与车载电子标签进行通信,完成电子不停车收费交易,
无论车载电子标签是否合法,车路通信与电子标签定位子系统利用天线的正交相控阵辐射单元对来自于车载电子标签的上行信号进行角度扫描,检测车载电子标签相对于天线的横向偏移角度和竖向偏移角度,并根据横向偏移角度和竖向偏移角度计算出车载电子标签的位置,然后,车路通信与电子标签定位子系统将车载电子标签的位置信息、电子收费交易结果、以及定位时间输出给车道逻辑协调控制系统;
在上述车路通信与电子标签定位子系统工作的同时,车辆检测与定位子系统通过车辆检测器检测是否有车辆进入检测区域,当有车辆进入检测区域后,车辆检测与定位子系统立即向车道逻辑协调控制系统输出抓拍启动信号,同时车辆检测器检测出车辆位置和车型,然后,车辆检测与定位子系统将车辆位置、经过收费站时间及车型信息输出给车道逻辑协调控制系统;
车道逻辑协调控制系统根据车辆检测与定位子系统提供的抓拍启动信号,触发图像抓拍与车牌识别子系统相应位置的摄像机进行车辆图像抓拍,并进行车牌自动识别,图像抓拍与车牌识别子系统将抓拍图像、车牌识别结果及抓拍时间输出给车道逻辑协调控制系统;
步骤2:车辆位置匹配和合法性验证,
由车道逻辑协调控制系统对车路通信与电子标签定位子系统提供的车载电子标签位置和车辆检测与定位子系统提供的车辆位置进行匹配:
若在设定的时间段内,车辆检测与定位子系统检测到的车辆位置和车路通信与电子标签定位子系统检测到的车载电子标签位置在设定距离范围内,且车载电子标签为合法车载电子标签,则认为该车辆为合法车辆,
若在设定的时间段内,车辆检测与定位子系统检测到的车辆位置和车路通信与电子标签定位子系统检测到的车载电子标签位置在设定距离范围内,但车载电子标签为非法车载电子标签,则认为该车辆为非法安装电子标签的车辆,
若在设定的时间段内,车辆检测与定位子系统检测到有车辆通过,但是车路通信与电子标签定位子系统未检测到车载电子标签,则认为该车辆为未安装车载电子标签的车辆;
步骤3:后台数据处理,
车道逻辑协调控制系统将步骤2中的定位匹配结果,电子不停车收费交易结果、车辆图像抓拍与车牌识别结果上传给后台数据处理系统,进行后续处理。
2.如权利要求1所述的利用正交相控阵天线实现多车道自由流电子收费的方法,其特征是:所述设定的时间段为100毫秒,所述车辆的设定距离范围为1米。
3.如权利要求1所述的利用正交相控阵天线实现多车道自由流电子收费的方法,其特征是:所述天线由正交相控阵天线构成,该天线具有接收和发射功能,该天线有两组辐射单元,其中一组辐射单元横向排列,另一组辐射单元竖向排列,两组辐射单元呈十字交叉布置。
4.如权利要求1所述的利用正交相控阵天线实现多车道自由流电子收费的方法,其特征是:所述天线由定向发射天线和相控阵接收天线构成,该相控阵接收天线有两组辐射单元,其中一组辐射单元横向排列,另一组辐射单元竖向排列,两组辐射单元呈十字交叉布置。
CN201210089004.2A 2012-03-29 2012-03-29 利用正交相控阵天线实现多车道自由流电子收费的方法 Active CN102622784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210089004.2A CN102622784B (zh) 2012-03-29 2012-03-29 利用正交相控阵天线实现多车道自由流电子收费的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210089004.2A CN102622784B (zh) 2012-03-29 2012-03-29 利用正交相控阵天线实现多车道自由流电子收费的方法

Publications (2)

Publication Number Publication Date
CN102622784A CN102622784A (zh) 2012-08-01
CN102622784B true CN102622784B (zh) 2014-03-05

Family

ID=46562684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210089004.2A Active CN102622784B (zh) 2012-03-29 2012-03-29 利用正交相控阵天线实现多车道自由流电子收费的方法

Country Status (1)

Country Link
CN (1) CN102622784B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103150772A (zh) * 2013-02-20 2013-06-12 北京速通科技有限公司 一种路侧设置的多车道自由流电子收费系统
CN103268640B (zh) * 2013-05-10 2016-02-03 北京速通科技有限公司 基于多波束天线的多车道自由流电子收费系统及方法
CN103268639B (zh) * 2013-05-10 2016-01-20 北京速通科技有限公司 基于多波束天线的电子不停车收费etc车道防干扰的方法
CN104574531B (zh) * 2014-02-11 2017-03-15 深圳市金溢科技股份有限公司 通过obu进行收费管理的方法和系统、rsu及后台系统
CN105321213B (zh) * 2014-06-18 2018-03-02 深圳市金溢科技股份有限公司 一种路内停车收费管理方法及系统
CN104134239A (zh) * 2014-07-28 2014-11-05 中国科学院自动化研究所 一种城市智能交通中提高电子收费可靠性的系统及方法
CN104574954B (zh) * 2014-11-26 2018-01-16 深圳市金溢科技股份有限公司 一种基于自由流系统的车辆稽查方法、控制设备及系统
CN107430676A (zh) * 2015-01-30 2017-12-01 麻省理工学院 应答器定位
CN104821089A (zh) * 2015-05-18 2015-08-05 深圳市骄冠科技实业有限公司 一种基于具有通讯功能射频车牌的分车道车辆定位系统
US11247774B2 (en) 2015-07-29 2022-02-15 Hitachi, Ltd. Moving body identification system and identification method
CN107576935B (zh) * 2016-07-04 2024-06-25 广州市埃特斯通讯设备有限公司 一种基于卫星载波相位定位原理的obu定位装置及方法
CN107578483A (zh) * 2017-08-21 2018-01-12 深圳市金溢科技股份有限公司 一种电子不停车收费交易方法、服务器及系统
CN108873896B (zh) * 2018-06-15 2021-07-02 驭势科技(北京)有限公司 一种车道线模拟方法、装置及存储介质
CN111508223B (zh) * 2019-01-30 2021-11-26 杭州海康威视数字技术股份有限公司 车辆通行检测方法和车辆通行检测装置
CN110223403A (zh) * 2019-06-14 2019-09-10 北京聚利科技股份有限公司 车辆计费方法、装置和系统
CN110211250A (zh) * 2019-06-20 2019-09-06 深圳成谷科技有限公司 射频与视频结合的车辆防逃费方法及系统
CN110460979B (zh) * 2019-08-19 2022-10-14 北京德百利泰科技有限公司 一种堆取料机无线通讯系统及方法
CN110728759B (zh) * 2019-10-23 2021-07-30 招商华软信息有限公司 一种etc门架交易成功率检测方法、装置、计算设备和介质
CN111145369A (zh) * 2019-12-31 2020-05-12 深圳市金溢科技股份有限公司 开关调度方法、车辆收费方法、工控机及车辆收费系统
CN111951565B (zh) * 2020-08-25 2021-07-02 上海建工集团股份有限公司 一种施工现场智慧车辆围栏管理方法
US20230024769A1 (en) * 2021-07-22 2023-01-26 Zebra Technologies Corporation Systems and Methods for Adaptive Beam Steering for Throughways

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219613B1 (en) * 2000-04-18 2001-04-17 Mark Iv Industries Limited Vehicle position determination system and method
WO2005109347A1 (de) * 2004-05-10 2005-11-17 Robert Bosch Gmbh Verfahren und vorrichtung zur positionsbestimmung für ein gebührenerfassungssystem
CN101329775A (zh) * 2008-07-25 2008-12-24 交通部公路科学研究院 电子不停车收费系统的控制方法
CN101350109A (zh) * 2008-09-05 2009-01-21 交通部公路科学研究所 多车道自由流视频车辆定位和控制方法
WO2010105349A1 (en) * 2009-03-20 2010-09-23 Mark Iv Industries Corp. Adaptive communication in an electronic toll collection system
CN102157033A (zh) * 2011-05-11 2011-08-17 广州新软计算机技术有限公司 一种多交易手段的电子不停车收费车道系统及实现方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219613B1 (en) * 2000-04-18 2001-04-17 Mark Iv Industries Limited Vehicle position determination system and method
CA2344013C (en) * 2000-04-18 2004-06-29 Mark Iv Industries Limited Vehicle position determination system & method
WO2005109347A1 (de) * 2004-05-10 2005-11-17 Robert Bosch Gmbh Verfahren und vorrichtung zur positionsbestimmung für ein gebührenerfassungssystem
EP1754202A1 (de) * 2004-05-10 2007-02-21 Robert Bosch Gmbh Verfahren und vorrichtung zur positionsbestimmung für ein gebührenerfassungssystem
CN101329775A (zh) * 2008-07-25 2008-12-24 交通部公路科学研究院 电子不停车收费系统的控制方法
CN101350109A (zh) * 2008-09-05 2009-01-21 交通部公路科学研究所 多车道自由流视频车辆定位和控制方法
WO2010105349A1 (en) * 2009-03-20 2010-09-23 Mark Iv Industries Corp. Adaptive communication in an electronic toll collection system
CN102157033A (zh) * 2011-05-11 2011-08-17 广州新软计算机技术有限公司 一种多交易手段的电子不停车收费车道系统及实现方法

Also Published As

Publication number Publication date
CN102622784A (zh) 2012-08-01

Similar Documents

Publication Publication Date Title
CN102622784B (zh) 利用正交相控阵天线实现多车道自由流电子收费的方法
CN102622785B (zh) 利用一维相控阵天线实现多车道自由流电子收费的方法
CN102622783B (zh) 一种基于精确位置匹配的多车道自由流电子收费方法
CN103268640B (zh) 基于多波束天线的多车道自由流电子收费系统及方法
CN103514746B (zh) 基于dsrc的车速测量方法、装置及dsrc应用系统
CN103268639B (zh) 基于多波束天线的电子不停车收费etc车道防干扰的方法
CN102087786B (zh) 基于信息融合的智能交通人、车、路的信息处理方法及系统
CN1199136C (zh) 费用征收系统及其通讯方法
CN103021035A (zh) 一种使用激光雷达的长通信区电子不停车收费系统
CN102097013A (zh) 一种etc系统中车载单元的定位装置和方法
CN206249433U (zh) Etc路侧装置及etc
CN103901399B (zh) 一种利用无源多波束天线进行定位的方法和系统
CN103150772A (zh) 一种路侧设置的多车道自由流电子收费系统
CN204904364U (zh) 一种多车道自由流收费系统
CN203118069U (zh) 一种etc路侧单元
CA2810364A1 (en) Method and devices for identifying a vehicle using a location
CN102063742A (zh) 一种解决电子自动收费系统邻道干扰的方法、系统及装置
CN103778670B (zh) 基于dsrc的防跟车干扰方法、定位方法、etc方法及系统
CN110473425A (zh) 停车管理的方法、停车收费方法及相关设备
CN103514750A (zh) 基于dsrc的防跟车干扰方法、装置及应用系统
CN103514637A (zh) 基于dsrc的防邻道干扰方法、装置及应用系统
CN102176009A (zh) 一种基于微波测距的天线定位方法和装置
CN103078686A (zh) 用于降低etc系统中邻道干扰的方法、系统及装置
CN107146291B (zh) 获取车辆位置的方法、装置及不停车收费方法、系统
CN109544710A (zh) 一种智能路侧单元系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant