CN102618007A - 一种聚碳酸酯/有机黏土复合材料及其制备方法 - Google Patents

一种聚碳酸酯/有机黏土复合材料及其制备方法 Download PDF

Info

Publication number
CN102618007A
CN102618007A CN2012100797768A CN201210079776A CN102618007A CN 102618007 A CN102618007 A CN 102618007A CN 2012100797768 A CN2012100797768 A CN 2012100797768A CN 201210079776 A CN201210079776 A CN 201210079776A CN 102618007 A CN102618007 A CN 102618007A
Authority
CN
China
Prior art keywords
matrix material
polycarbonate
polyorganosilicate
nanometer
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100797768A
Other languages
English (en)
Inventor
林德苗
程贺
韩志超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN2012100797768A priority Critical patent/CN102618007A/zh
Publication of CN102618007A publication Critical patent/CN102618007A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种聚碳酸酯/有机黏土复合材料及其制备方法。所述复合材料由聚碳酸酯和纳米有机黏土组成;所述复合材料中,所述纳米有机黏土的质量百分含量为1%~5%;本发明提供的制备方法包括如下步骤:将所述聚碳酸酯和纳米有机黏土在混合机中混合均匀后得到混合物;在氮气保护下,将所述混合物置于双螺杆挤出机中进行共混造粒即得所述复合材料。本发明使用传统双螺杆挤出法,以经济简单的方式制备得到了聚碳酸酯/有机黏土复合材料,在纳米有机黏土中黏土无机组分质量百分含量低于5%的情况下可以获得力学性能显著改善的复合材料,相比于传统的复合材料,该复合材料的密度较低,且力学性能优秀。

Description

一种聚碳酸酯/有机黏土复合材料及其制备方法
技术领域
本发明涉及一种聚碳酸酯/有机黏土复合材料及其制备方法。
背景技术
聚碳酸酯(PC)是一种重要的工程塑料,具有高熔融温度,优秀的物理化学性能和机械性能,广泛应用于建材行业、汽车制造业、医疗器械等领域。目前有许多关于PC复合材料研究的专利和文献见诸于报道,其中多种合金已经成功的实现商业化。例如中国专利申请(公开号分别为CN1733448A、CN1850905A和CN1232837A)和美国专利申请(公开号分别为USP6166133和USP5384353)报道了聚碳酸酯和丙乙烯-丁二烯-苯乙烯共聚物的共混物(PC/ABS),复合后的PC/ABS合金结合了两种材料的优异性能:ABS材料的易加工性和PC优秀的机械性能等。中国专利申请(CN1420910A)报道了基于抗冲击改性的聚对苯二甲酸乙二醇酯/聚碳酸酯共混物(PBT/PC)。使用传统填料对PC进行增强也多见诸于报道,包括玻璃纤维增强的聚碳酸酯树脂复合物(CN110634A、CN1122349A等)、滑石进行改性的聚碳酸酯复合物(CN101180365A)等。使用传统的填料对PC进行增强可以获得性能优秀的PC复合材料,但一般情况下,填料的含量必须较大,从而使得复合材料的密度大为增加,这显然对制备轻量化材料是不利的。而利用纳米粒子作为填料在所需填料很少的情况下,即可获得优秀的力学性能。
发明内容
本发明的目的是提供一种聚碳酸酯/有机黏土复合材料及其制备方法。
本发明所提供的一种聚碳酸酯/有机黏土复合材料,由聚碳酸酯和纳米有机黏土组成;所述复合材料中,所述纳米有机黏土的质量百分含量为1%~5%。
上述的复合材料中,所述纳米有机黏土的质量百分含量具体可为2.9%或3.9%。
上述的复合材料中,所述聚碳酸酯可为双酚A型聚碳酸酯;所述纳米有机黏土的原始粒径为2μm~20μm。
上述的复合材料中,在温度为300℃和负荷为1.2kg的条件下,所述双酚A型聚碳酸酯的熔体指数为10~12g/10min;所述双酚A型聚碳酸酯的重均分子量可为5.4×104~6.2×104g/mol,具体可为5.4×104g/mol或6.2×104g/mol。
上述的复合材料中,所述纳米有机黏土可为经铵盐插层处理的黏土(Southern ClayProducts公司生产,商品名为
Figure BDA0000146302370000011
30B);所述铵盐为甲基牛脂基双(2-羟乙基)季铵盐(methyl,tallow,bis-2-hydroxyethyl,quaternary ammonium),其中tallow为牛脂基,含有摩尔分数约为65%的C18,30%的C16和5%的C14烷基链。
上述的复合材料中,所述纳米有机黏土中黏土无机组分的质量百分含量可为70%。
上述的复合材料中,所述纳米有机黏土可为经聚己内酯原位聚合插层处理的黏土;所述聚己内酯的重均分子量可为1500g/mol。
上述的复合材料中,所述纳米有机黏土中黏土无机组分的质量百分含量可为53%,进而所述复合材料中所述黏土无机组分的质量百分含量为2%。
本发明还进一步提供了上述复合材料的制备方法,包括如下步骤:将所述聚碳酸酯和有机黏土在混合机中混合均匀后得到混合物;在氮气保护下,将所述混合物置于双螺杆挤出机中进行共混造粒即得所述复合材料。
上述的制备方法中,所述双螺杆挤出机为三段控温,各段的温度均科为240℃~260℃,所述双螺杆挤出机的机头温度可为260℃。
本发明使用传统双螺杆挤出法,以经济简单的方式制备得到了聚碳酸酯/有机黏土复合材料,在纳米有机黏土中黏土无机组分质量百分含量低于5%的情况下可以获得力学性能显著改善的复合材料,相比于传统的复合材料,该复合材料的密度较低,且力学性能优秀。
附图说明
图1为实施例2制备的复合材料的TEM照片。
图2为实施例2制备的复合材料的TEM照片。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中所用的经聚己内酯原位聚合插层处理的纳米有机黏土是按照如下方法制备的:在配备搅拌装置的100ml不锈钢高压反应釜中,将8克黏土(
Figure BDA0000146302370000021
30B)于85℃、真空下干燥过夜,再于氮气流中将8ml干燥的己内酯加入反应釜中,再加入0.14ml辛酸亚锡(Sn(oct)2)作为催化剂;上述反应物在85℃、28MPa、以超临界CO2为溶剂(85℃、28MPa条件下,CO2处于超临界状态)进行搅拌的条件下进行反应7天;反应结束后,将温度降至室温,将气压降至大气压,收集反应产物即可获得上述纳米有机黏土。
实施例1、制备聚碳酸酯/纳米有机黏土复合材料
将15克双酚A型聚碳酸酯(Sigmal-Aldrich公司生产,熔融指数为10g/10min(300℃/1.2kg),重均分子量为5.4×104g/mol)和0.45克原始粒径为2μm~20μm的纳米有机黏土(为经甲基牛脂基双(2-羟乙基)季铵盐插层处理的黏土,Southern ClayProducts公司生产,商品名为
Figure BDA0000146302370000031
30B,其中黏土无机组分的质量百分含量为70%)经混合机混匀后加入到双螺杆挤出机中,在氮气保护下进行共混造粒,该双螺杆挤出机各段的温度分别为240℃、250℃和260℃,机头的温度为260℃,然后经冷却、切料即得产品,进而该复合材料中黏土无机组分的质量百分含量为2%。
实施例2、制备聚碳酸酯/纳米有机黏土复合材料
将15克双酚A型聚碳酸酯(Sigmal-Aldrich公司生产,熔融指数为12g/10min(300℃/1.2kg),重均分子量为5.4×104g/mol)和0.61克原始粒径为2μm~20μm的纳米有机黏土(为经聚己内酯原位聚合插层处理的黏土,其中黏土无机组分的质量百分含量为53%,聚己内酯的重均分子量为1500g/mol)经混合机混合均匀后加入到双螺杆挤出机中,在氮气保护下进行共混造粒,该双螺杆挤出机各段的温度分别为240℃、250℃和260℃,机头的温度为260℃,然后经冷却、切料即得产品,进而该复合材料中黏土无机组分的质量百分含量为2%。
本实施例制备的复合材料的TEM照片如图1和图2所示,由低分辨率的图2可知,黏土粒子在双酚A型聚碳酸酯中分散均匀,以我们的方法制备的复合材料中不存在黏土粒子的聚集体。由高分辨率的图1可知,部分黏土粒子以剥离单片层的结构存在于双酚A型聚碳酸酯的基体当中。
实施例3、制备聚碳酸酯/纳米有机黏土复合材料
将15克双酚A型聚碳酸酯(Sigmal-Aldrich公司生产,熔融指数为10g/10min(300℃/1.2kg),重均分子量为6.2×104g/mol)和0.61克纳米有机黏土(为经聚己内酯原位聚合插层处理的黏土,其中黏土无机组分的质量百分含量为53%,聚己内酯的重均分子量为1500g/mol)经混合机混合均匀后加入到双螺杆挤出机中,在氮气保护下进行共混造粒,该双螺杆挤出机各段的温度分别为240℃、250℃和260℃,机头的温度为260℃,然后经冷却、切料即得产品,进而该复合材料中黏土无机组分的质量百分含量为2%。
本发明实施例1-3制备的复合材料与未改性的聚合物的性能比较见表1。
表1实施例1-3制备的复合材料与未改性的聚合物的性能
Figure BDA0000146302370000041
由表1中各数据可知,使用纳米有机黏土(特别是聚己内酯原位聚合插层处理的黏土)改性的双酚A型聚碳酸酯纳米复合材料,由于聚己内酯与双酚A型聚碳酸酯的相容性比较好,聚己内酯原位聚合插层处理的纳米有机黏土在双酚A型聚碳酸酯基体中可获得比较好的分散性,复合材料的力学性能因而得到显著改善,复合材料杨氏模量、拉伸强度和断裂伸长率比未改性前双酚A型聚碳酸酯均有显著的提高。

Claims (9)

1.一种聚碳酸酯/有机黏土复合材料,其特征在于:所述复合材料由聚碳酸酯和纳米有机黏土组成;所述复合材料中,所述纳米有机黏土的质量百分含量为1%~5%。
2.根据权利要求1所述的复合材料,其特征在于:所述聚碳酸酯为双酚A型聚碳酸酯;所述纳米有机黏土的原始粒径为2μm~20μm。
3.根据权利要求2所述的复合材料,其特征在于:在温度为300℃和负荷为1.2kg的条件下,所述双酚A型聚碳酸酯的熔体指数为10~12g/10min;所述双酚A型聚碳酸酯的重均分子量为5.4×104~6.2×104g/mol。
4.根据权利要求1-3中任一所述的复合材料,其特征在于:所述纳米有机黏土为经铵盐插层处理的黏土;所述铵盐为甲基牛脂基双(2-羟乙基)季铵盐。
5.根据权利要求4所述的复合材料,其特征在于:所述纳米有机黏土中黏土无机组分的质量百分含量为70%。
6.根据权利要求1-3中任一所述的复合材料,其特征在于:所述纳米有机黏土为经聚己内酯原位聚合插层处理的黏土;所述聚己内酯的重均分子量为1500g/mol。
7.根据权利要求6所述的复合材料,其特征在于:所述纳米有机黏土中黏土无机组分的质量百分含量为53%。
8.权利要求1-7中任一所述复合材料的制备方法,包括如下步骤:将所述聚碳酸酯和纳米有机黏土在混合机中混合均匀后得到混合物;在氮气保护下,将所述混合物置于双螺杆挤出机中进行共混造粒即得所述复合材料。
9.根据权利要求8所述的制备方法,其特征在于:所述双螺杆挤出机为三段控温,各段的温度均为240℃~260℃,所述双螺杆挤出机的机头温度为260℃。
CN2012100797768A 2012-03-23 2012-03-23 一种聚碳酸酯/有机黏土复合材料及其制备方法 Pending CN102618007A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100797768A CN102618007A (zh) 2012-03-23 2012-03-23 一种聚碳酸酯/有机黏土复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100797768A CN102618007A (zh) 2012-03-23 2012-03-23 一种聚碳酸酯/有机黏土复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN102618007A true CN102618007A (zh) 2012-08-01

Family

ID=46558235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100797768A Pending CN102618007A (zh) 2012-03-23 2012-03-23 一种聚碳酸酯/有机黏土复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102618007A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613905A (zh) * 2004-09-16 2005-05-11 上海交通大学 一种聚丙烯/有机蒙脱土纳米复合材料的制备方法
CN1842564A (zh) * 2003-09-22 2006-10-04 拜尔材料科学有限公司 聚碳酸酯组合物
CN1972991A (zh) * 2004-06-23 2007-05-30 阿克佐诺贝尔股份有限公司 含聚合物的组合物、其制备及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842564A (zh) * 2003-09-22 2006-10-04 拜尔材料科学有限公司 聚碳酸酯组合物
CN1972991A (zh) * 2004-06-23 2007-05-30 阿克佐诺贝尔股份有限公司 含聚合物的组合物、其制备及其应用
CN1613905A (zh) * 2004-09-16 2005-05-11 上海交通大学 一种聚丙烯/有机蒙脱土纳米复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Chem. Mater.》 19931231 Phillip B. Messersmith, et al. Polymer-layered silicate nanocomposites: in situ intercalative polymerization of epsilon-caprolactone in layered silicates 1064-1066 6-7 第5卷, 第8期 *
PHILLIP B. MESSERSMITH, ET AL.: "Polymer-layered silicate nanocomposites: in situ intercalative polymerization of ε-caprolactone in layered silicates", 《CHEM. MATER.》 *

Similar Documents

Publication Publication Date Title
Iyer et al. Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements
Huang et al. Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites
Claro et al. Biodegradable blends with potential use in packaging: A comparison of PLA/chitosan and PLA/cellulose acetate films
US9012534B2 (en) Composites of poly(hydroxy carboxylic acid) and carbon nanotubes
CN102585348A (zh) 一种增韧导电材料及其制备方法
CN107385537A (zh) 氧化石墨烯丙纶功能纤维的制备方法
CN103044837B (zh) Hips复合材料、其制备方法和应用
EP1670858A2 (en) Nanoclay-containing composites and methods of making them
Wang et al. Compatibilization of poly (lactic acid)/ethylene‐propylene‐diene rubber blends by using organic montmorillonite as a compatibilizer
Bheema et al. Enhanced thermo-mechanical, thermal and EMI shielding properties of MWNT/MAgPP/PP nanocomposites prepared by extrusion
JP4869615B2 (ja) 微細炭素繊維含有樹脂組成物の製造方法
Sierra-Ávila et al. Synthesis and Thermomechanical Characterization of Nylon 6/Cu Nanocomposites Produced by an Ultrasound‐Assisted Extrusion Method
Lei et al. Exfoliation of organic montmorillonite in iPP free of compatibilizer through the multistage stretching extrusion
Wahit et al. The effect of polyethylene-octene elastomer on the morphological and mechanical properties of polyamide 6/polypropylene nanocomposites
CN102618007A (zh) 一种聚碳酸酯/有机黏土复合材料及其制备方法
US20130030117A1 (en) Method of manufacturing polyamide and carbon nanotube composite using high shearing process
Li et al. A new method for preparing completely exfoliated epoxy/clay nanocomposites: nano-disassembling method
Oezkoc et al. Effects of microcompounding process parameters on the properties of ABS/polyamide‐6 blends based nanocomposites
Ma et al. Processing of Poly (propylene)/Carbon Nanotube Composites using scCO2‐Assisted Mixing
CN109705570B (zh) 一种适用于3d打印的特种热塑性复合材料及其制备方法
Li et al. Impact of processing method and surface functionality on carbon nanofiber dispersion in polyimide matrix and resulting mechanical properties
JP2023527295A (ja) カーボンナノチューブを用いた非混和性ポリマーの相溶化
CN112409711A (zh) 一种氧化石墨烯改性聚苯乙烯复合材料及其制备方法
Gul et al. A study on physical properties of melt blended acrylonitrile butadiene styrene/ethylene vinyl acetate modified with linear low density polyethylene and montmorillonite
Jin et al. Molecular dynamics simulation of the 3–15alkyphenol compatibilizer in highly toughened and robust polyamide 10, 12/MWCNT composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120801