CN102597431A - 为燃烧矿物燃料的电厂设备补充装备二氧化碳分离器的方法 - Google Patents

为燃烧矿物燃料的电厂设备补充装备二氧化碳分离器的方法 Download PDF

Info

Publication number
CN102597431A
CN102597431A CN2010800493884A CN201080049388A CN102597431A CN 102597431 A CN102597431 A CN 102597431A CN 2010800493884 A CN2010800493884 A CN 2010800493884A CN 201080049388 A CN201080049388 A CN 201080049388A CN 102597431 A CN102597431 A CN 102597431A
Authority
CN
China
Prior art keywords
carbon dioxide
steam
dioxide separator
pipeline
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800493884A
Other languages
English (en)
Inventor
U.格鲁曼
U.马奇
A.皮卡德
M.罗斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN102597431A publication Critical patent/CN102597431A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49716Converting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明涉及一种为包括一个多缸汽轮机(2)的燃烧矿物燃料的电厂设备(1)补充装备二氧化碳分离器(5)的方法,其中,汽轮机(2)的通流性能要与为了运行二氧化碳分离器(5)所抽取的过程用汽(17)相适应,以及,二氧化碳分离器(5)通过过程用汽管路(6)与中间再热管路(33)连接,以及,辅助冷凝器(32)与二氧化碳分离器(3)并联,从而在有故障或故意关闭二氧化碳分离器(3)时,在辅助冷凝器(32)中冷凝多余的过程用汽(17)。

Description

为燃烧矿物燃料的电厂设备补充装备二氧化碳分离器的方法
技术领域
为了从燃烧矿物燃料的电厂设备,例如燃气和蒸汽轮机电厂设备(GUD)或燃煤的蒸汽动力装置(DKW)的废气中分离二氧化碳,需要大量的能量。
背景技术
在采用湿化学吸收-解吸法分离二氧化碳时,为了加热解吸过程必须加入热能形式的能量。为此通常使用电厂设备水汽循环中的低压蒸汽。
现存但未实施二氧化碳分离的GUD或DKW电厂,为了满足排放规范必须补充装备二氧化碳分离器。这些老设备通常还没有相应的补充装备二氧化碳分离器的应对措施(Capture Readyness)。
例如为了能铺设抽取低压蒸汽的附加管路,机房没有足够大的尺寸,或汽轮机或电厂过程为了抽取低压蒸汽没有相应的构型设计。在中压级和低压级具有单独外壳的汽轮机中,至少可以方便地在联通管上抽取低压蒸汽。而在中压级和低压级具有整体外壳的汽轮机中,为抽取所需要的大量蒸汽的事后改装往往不能实现,因为在这种情况下必须更换透平。然而从低压部分中的联通管上抽取低压蒸汽时,低压部分无论如何必须要与改变了的通流能力(蒸汽容积流量)相适应。
从电厂过程内部其他汽源抽取蒸汽同样是不经济的,或不可能以恰当的方式实施。例如从汽轮机的中间再热管路抽取,不采取其他措施将导致锅炉的不平衡负载。在不采取其他措施的情况下也必须排除抽取优质蒸汽用于二氧化碳分离器的可能性,因为这将导致不合理的能量损失。
在补充装备二氧化碳分离器时带来的另一个疑难问题是,当二氧化碳分离器关闭或产生故障时,此时不需要的低压热蒸汽突然成为多余的蒸汽。这种多余的蒸汽现在不能简单地重新引回汽轮机过程内,因为该汽轮机过程是针对有二氧化碳分离器工作设计的,亦即针对较小的蒸汽量设计的。
发明内容
因此本发明要解决的技术问题是,提供一种低成本补充装备二氧化碳分离器的方法,其中,即使在二氧化碳分离器不工作或关闭时,燃烧矿物燃料的电厂设备仍应能继续运行。
本发明的上述技术问题通过权利要求1的特征得以解决。
按本发明,对燃烧矿物燃料的电厂设备补充装备二氧化碳分离器。在这里,所述燃烧矿物燃料的电厂设备可以是具有废热锅炉(AHDE)的燃气和蒸汽轮机电厂设备(GUD),或具有燃烧锅炉(Boiler)的蒸汽动力装置(DKW)。此外,GUD或DKW设备还包括汽轮机。
本发明从一种中压和低压级具有整体外壳的汽轮机出发。除中压和低压级外,汽轮机还包括一个在单独外壳中的高压级。
按本发明为燃烧矿物燃料的电厂设备补充装备二氧化碳分离器分多个步骤实现,这些步骤可以同时或也可以按不同的顺序进行。
在这里,第一步,使汽轮机的中压和低压级适应新的通流性能,通流性能由于抽取过程蒸汽用于运行二氧化碳分离器而改变。在这种情况下或通过更换部件调整汽轮机路径,或取代部分低压级。方案的选择取决于存在的汽轮机以及所要抽取的蒸汽质量流量。下一步,将二氧化碳分离器通过过程用汽管路与中间再热管路连接。此外,在二氧化碳分离器关闭的情况下,从联通管抽取低压蒸汽。因此,在另一个步骤中,将辅助冷凝器与二氧化碳分离器并联。辅助冷凝器用于在有故障或故意关闭二氧化碳分离器时,在辅助冷凝器中冷凝同时形成的多余的过程用汽。
按本发明有利的扩展设计,二氧化碳分离器通过过程用汽管路与热的中间再热管路连接,从而提供再热蒸汽作为过程用汽。与之不同,二氧化碳分离器有利地通过过程用汽管路与冷的中间再热管路连接,从而提供已部分膨胀的蒸汽作为过程用汽。
按一种特殊的扩展设计,在过程用汽管路内连接背压式汽轮机。通过背压式汽轮机将抽取的过程用汽置于过程用汽状态。通过与背压式汽轮机连接的发电机产生电能。因此过程用汽的剩余能量可利用于生产电能。
按本发明另一项有利的扩展设计规定,二氧化碳分离器通过凝结水回水管与汽轮机的冷凝器连接。凝结水回水管允许在解吸过程中使用过的过程用汽返回电厂设备的给水循环中。
燃烧矿物燃料的电厂设备有利地设计为燃气和蒸汽轮机电厂设备(GUD),其中锅炉是一种废热锅炉。与之不同,燃烧矿物燃料的电厂设备也可以设计为蒸汽轮机电厂设备,其中锅炉是一种燃烧锅炉。
附图说明
下面借助附图详细说明本发明。其中:
图1表示燃烧矿物燃料的电厂设备,它通过按本发明的方法补充装备有二氧化碳分离器;
图2表示图1所示补充装备后的燃烧矿物燃料的电厂设备的一种扩展设计;
图3表示燃烧矿物燃料的电厂设备,它通过按本发明另一种实施形式的方法补充装备有二氧化碳分离器;以及
图4表示图3所示补充装备后的燃烧矿物燃料的电厂设备的一种扩展设计。
具体实施方式
图1表示具有二氧化碳分离器5的燃烧矿物燃料的电厂设备1。在这里,燃烧矿物燃料的电厂设备1设计为燃气和蒸汽轮机电厂设备(GUD)12。图中简化表示燃气和蒸汽轮机电厂设备12,它主要由燃气轮机13、蒸汽轮机2、发电机20和连接在燃气轮机13废气通道内设计为废热锅炉15的锅炉4组成。汽轮机2由高压级24与中压和低压级25组成。燃气轮机13、发电机20和汽轮机2处于公共的轴8上。冷凝器22连接在汽轮机2的下游。
高压级24在新汽供给方面通过新汽管路23与锅炉4连接,以及在蒸汽回流方面通过蒸汽回流管路3或冷的中间再热管路16与锅炉4连接。中压和低压级25通过热的中间再热管路31与锅炉4连接。在热的中间再热管路31上连接过程用汽管路6,用于抽取过程用汽17。
在补充装备时,首先调整汽轮机2的中压和低压级25的通流性能。这通过更换部件或通过调整部分中压和低压级25实现。接着,二氧化碳分离器5经由换热器21通过过程用汽管路6与热的中间再热管路31连接。此外,平行于二氧化碳分离器5铺设旁通管34,在旁通管内连接辅助冷凝器32。
从换热器21通过凝结水回水管29将冷凝水引入冷凝器22。为此使凝结水回水管29与冷凝器22相应地连接。最后,设冷凝水管路30,它连接冷凝器22与锅炉4,以闭合给水循环。
在接通二氧化碳分离器5运行燃烧矿物燃料的电厂设备1时,现在从热的中间再热管路31抽取过程用汽17,并通过过程用汽管路6供给换热器21,它又将热量排放给二氧化碳分离器5。在这种工作情况下,打开在旁通管34支线下游连接在过程用汽管路6内的第一阀35。关闭在辅助冷凝器32上游连接在旁通管34内的第二阀36。
若在二氧化碳分离器5中发生故障或将其关闭时,必须继续从热的中间再热管路31取出过程用汽17,因为通过补充装备,现在中压和低压级25不再设计用于承接这部分蒸汽。所以这些过程用汽通过旁通管34引入辅助冷凝器32内。为此关闭第一阀35以及打开在旁通管34内的第二阀36。
图2表示图1所示补充装备后的燃烧矿物燃料的电厂设备的一种扩展设计,它通过按本发明的方法补充装备有二氧化碳分离器。在图2所示的实施形式中,除汽轮机2外设有背压式汽轮机7,它连接在过程用汽管路6内。在背压式汽轮机7内进行过程用汽17成为饱和蒸汽26的膨胀过程18。在这里,过程用汽17通过与背压式汽轮机7连接的发电机9转换为电能。背压式汽轮机的出口温度约为290℃。
图3表示燃烧矿物燃料的电厂设备,它通过按本发明另一种实施形式的方法补充装备有二氧化碳分离器。在本实施例中,二氧化碳分离器5经由换热器21通过过程用汽管路6或饱和蒸汽管28与冷的中间再热管路16连接。没有设置背压式汽轮机。
图4表示如图3所示在冷的中间再热管路16上抽取过程用汽17或连接过程用汽管路6。按图4的扩展设计,现在与图2类似,在过程用汽管路17内连接背压式汽轮机7。背压式汽轮机7的出口温度约为160℃。与图2所示相同,设置发电用的发电机。

Claims (8)

1.一种为包括多缸的汽轮机(2)的燃烧矿物燃料的电厂设备(1)补充装备二氧化碳分离器(5)的方法,其中,
a)使汽轮机(2)的通流性能与为了运行二氧化碳分离器(5)所抽取的过程用汽(17)相适应,以及
b)将二氧化碳分离器(5)通过过程用汽管路(6)与中间再热管路(33)连接,以及
c)将辅助冷凝器(32)与二氧化碳分离器(3)并联,从而在有故障或故意关闭二氧化碳分离器(3)时,在辅助冷凝器(32)中冷凝多余的过程用汽(17)。
2.按照权利要求1所述的方法,其中,将二氧化碳分离器(5)通过过程用汽管路(6)与热的中间再热管路(31)连接,从而提供再热的蒸汽作为过程用汽(17)。
3.按照权利要求1所述的方法,其中,将二氧化碳分离器(5)通过过程用汽管路(6)与冷的中间再热管路(16)连接,从而提供已部分膨胀的蒸汽作为过程用汽(17)。
4.按照权利要求1至3之一所述的方法,其中,在过程用汽管路(6)内连接背压式汽轮机(7)。
5.按照权利要求1至4之一所述的方法,其中,将二氧化碳分离器(5)通过凝结水回水管(29)与汽轮机(2)的冷凝器(22)连接。
6.按照权利要求1至5之一所述的方法,其中,燃烧矿物燃料的电厂设备是燃气和蒸汽轮机电厂设备,其中锅炉是废热锅炉。
7.按照权利要求1至5之一所述的方法,其中,燃烧矿物燃料的电厂设备是蒸汽轮机电厂设备,其中锅炉是燃烧锅炉。
8.一种燃烧矿物燃料的电厂设备,它按照权利要求1至7之一所述的方法补充装备。
CN2010800493884A 2009-11-02 2010-11-02 为燃烧矿物燃料的电厂设备补充装备二氧化碳分离器的方法 Pending CN102597431A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009051646.8 2009-11-02
DE102009051646 2009-11-02
PCT/EP2010/066623 WO2011051494A2 (de) 2009-11-02 2010-11-02 Verfahren zum nachrüsten einer fossil befeuerten kraftwerksanlage mit einer kohlendioxid-abscheidevorrichtung

Publications (1)

Publication Number Publication Date
CN102597431A true CN102597431A (zh) 2012-07-18

Family

ID=43922683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800493884A Pending CN102597431A (zh) 2009-11-02 2010-11-02 为燃烧矿物燃料的电厂设备补充装备二氧化碳分离器的方法

Country Status (7)

Country Link
US (1) US9027348B2 (zh)
EP (1) EP2496797B1 (zh)
CN (1) CN102597431A (zh)
ES (1) ES2561217T3 (zh)
PL (1) PL2496797T3 (zh)
RU (1) RU2508455C2 (zh)
WO (1) WO2011051494A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2722195C (en) * 2009-11-25 2013-03-19 Hitachi, Ltd. Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
DE102010062623A1 (de) * 2010-12-08 2012-06-14 Siemens Aktiengesellschaft Verfahren zum Nachrüsten einer fossil befeuerten Kraftwerksanlage mit Heizdampfentnahme
DE102012208221A1 (de) * 2012-02-22 2013-08-22 Siemens Aktiengesellschaft Verfahren zum Nachrüsten eines Gasturbinenkraftwerks
JP2019190359A (ja) 2018-04-24 2019-10-31 三菱重工エンジニアリング株式会社 プラント及び燃焼排ガス処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445429A1 (en) * 2003-02-07 2004-08-11 Elsam Engineering A/S A steam turbine system
US20040221578A1 (en) * 2003-04-30 2004-11-11 Masaki Iijima Method and system for recovering carbon dioxide
WO2005045316A2 (en) * 2003-11-06 2005-05-19 Sargas As Purification works for thermal power plant
GB2470645A (en) * 2009-05-28 2010-12-01 Toshiba Kk Steam turbine power plant with carbon dioxide recovery
US20110048011A1 (en) * 2009-08-28 2011-03-03 Kabushiki Kaisha Toshiba Steam turbine power plant and operating method thereof
WO2011039263A1 (en) * 2009-09-29 2011-04-07 Alstom Technology Ltd. Power plant for co2 capture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU366267A1 (ru) * 1971-02-05 1973-01-16 Способ регулирования и защиты судовой паровой турбины с промперегревом
SU775356A1 (ru) * 1977-08-17 1980-10-30 Производственное Энергетическое Объединение "Харьковэнерго" Энергетическа установка
US4471620A (en) * 1981-11-13 1984-09-18 Westinghouse Electric Corp. Turbine low pressure bypass spray valve control system and method
RU1815336C (ru) * 1990-08-14 1993-05-15 Белорусский Политехнический Институт Способ регулировани нагрузки многоцилиндровой паровой турбины с регенеративными отборами пара
US8061002B2 (en) * 2006-06-29 2011-11-22 Siemens Energy, Inc. Combined cycle power generation
US20080011161A1 (en) * 2006-07-17 2008-01-17 General Electric Company Carbon dioxide capture systems and methods
GB0616832D0 (en) * 2006-08-25 2006-10-04 Alstom Technology Ltd Turbomachine
US20100205964A1 (en) * 2009-02-13 2010-08-19 General Electric Company Post-combustion processing in power plants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445429A1 (en) * 2003-02-07 2004-08-11 Elsam Engineering A/S A steam turbine system
US20040221578A1 (en) * 2003-04-30 2004-11-11 Masaki Iijima Method and system for recovering carbon dioxide
WO2005045316A2 (en) * 2003-11-06 2005-05-19 Sargas As Purification works for thermal power plant
GB2470645A (en) * 2009-05-28 2010-12-01 Toshiba Kk Steam turbine power plant with carbon dioxide recovery
US20110048011A1 (en) * 2009-08-28 2011-03-03 Kabushiki Kaisha Toshiba Steam turbine power plant and operating method thereof
WO2011039263A1 (en) * 2009-09-29 2011-04-07 Alstom Technology Ltd. Power plant for co2 capture
CN102596363A (zh) * 2009-09-29 2012-07-18 阿尔斯通技术有限公司 用于co2捕获的动力设备

Also Published As

Publication number Publication date
WO2011051494A2 (de) 2011-05-05
RU2012122825A (ru) 2013-12-10
US20120304644A1 (en) 2012-12-06
RU2508455C2 (ru) 2014-02-27
ES2561217T3 (es) 2016-02-25
US9027348B2 (en) 2015-05-12
EP2496797A2 (de) 2012-09-12
EP2496797B1 (de) 2016-01-13
PL2496797T3 (pl) 2016-06-30
WO2011051494A3 (de) 2012-03-15

Similar Documents

Publication Publication Date Title
AU2009218365B2 (en) Energy generating method using thermal cycles with high-pressure and moderate-temperature steam
RU2563447C2 (ru) Способ работы электростанции комбинированного цикла с когенерацией и электростанция комбинированного цикла для реализации этого способа
JP4838318B2 (ja) 発電方法及び発電プラント
KR101594323B1 (ko) 통합형 연료 가스 예열을 갖는 발전소
CN103452611A (zh) 一种联合循环的热电联供系统
Ohji et al. Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and IGCC power plants
RU2011129804A (ru) Газотурбинная установка, утилизационный парогенератор и способ эксплуатации утилизационного парогенератора
CN104533554B (zh) 一种用于一次再热机组的新型高效给水回热系统
CN102472117A (zh) 有汽轮机单元和过程蒸汽消耗器的蒸汽电厂设备以及有汽轮机单元和过程蒸汽消耗器的蒸汽电厂设备运行方法
KR20150128588A (ko) 열 통합형 산소 공급 시스템의 순산소 보일러 발전소
CN105953208A (zh) 一种锅炉启动分离旁路蒸汽利用装置及方法
KR20130139326A (ko) 화력 발전소 설비에서 가열 증기 추기 설비의 개조
CN102597431A (zh) 为燃烧矿物燃料的电厂设备补充装备二氧化碳分离器的方法
CN203499735U (zh) 一种联合循环的热电联供系统
KR101878536B1 (ko) 열 통합형 공기 분리 유닛을 갖는 순산소 보일러 발전소
CN102597432A (zh) 具有二氧化碳分离器燃烧矿物燃料的电厂设备和燃烧矿物燃料电厂设备的运行方法
CN101218426A (zh) 燃气和蒸汽轮机装置及其运行方法
CN104456519A (zh) 一种用于二次再热机组的新型高效给水回热系统
AU2010299977B2 (en) Steam power plant
CN104704205A (zh) 具有给水分流除气装置的燃气和蒸汽轮机设备
US20150027121A1 (en) Method to integrate regenerative rankine cycle into combined cycle applications
Ohji et al. Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and integrated gasification-combined cycle power plants
CN102859124B (zh) 为燃烧矿物燃料的电厂设备补充装备二氧化碳分离器的方法
CA2988273A1 (en) Method to integrate regenerative rankine cycle into combined cycle applications using an integrated heat recovery steam generator
CN212132387U (zh) 一种两级抽汽型的中温中压垃圾焚烧发电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120718