CN102594192A - 基于非线性规划的阶梯波脉宽调制方法 - Google Patents

基于非线性规划的阶梯波脉宽调制方法 Download PDF

Info

Publication number
CN102594192A
CN102594192A CN2010105651265A CN201010565126A CN102594192A CN 102594192 A CN102594192 A CN 102594192A CN 2010105651265 A CN2010105651265 A CN 2010105651265A CN 201010565126 A CN201010565126 A CN 201010565126A CN 102594192 A CN102594192 A CN 102594192A
Authority
CN
China
Prior art keywords
value
phase voltage
voltage
level
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105651265A
Other languages
English (en)
Other versions
CN102594192B (zh
Inventor
李广凯
赵成勇
徐政
李科
许树楷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Research Institute of Southern Power Grid Co Ltd
Original Assignee
Zhejiang University ZJU
North China Electric Power University
Power Grid Technology Research Center of China Southern Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, North China Electric Power University, Power Grid Technology Research Center of China Southern Power Grid Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201010565126.5A priority Critical patent/CN102594192B/zh
Publication of CN102594192A publication Critical patent/CN102594192A/zh
Application granted granted Critical
Publication of CN102594192B publication Critical patent/CN102594192B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明是一种基于非线性规划的阶梯波脉宽调制方法。本发明根据调制度的增大或减小,相应地计算出所需投入或切除部分子模块个数,达到所要的交流电压输出。然后,通过选取触发角的初值。再借助理论输出阶梯波形的傅里叶变换结果,以换流器输出的阶梯波中基波分量相对于给定的调制波的逼近误差最小为目标,建立该调制方法的非线性规划数学模型。最后,即可得到相应电平数和调制度下触发角的解。本发明弥补了特定次谐波消去法计算量大、不能在线实时运算的缺陷。开关器件一个周波仅开关一次,开关损耗很小是其显著的优点。本发明可扩展性较好,理论上可胜任任意电平数目电压源换流器的触发脉冲控制任务,且还具有较强的可移植性,适用于模块化多电平换流器,也适应于电平数较高的级联H桥型电压源换流器。

Description

基于非线性规划的阶梯波脉宽调制方法
技术领域
本发明属于基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电和FACTS领域,具体涉及模块化多电平换流器(Modular Multilevel Converter,MMC)或级联H桥型电压源换流器的直接脉宽调制(Direct Pulse Width Modulation,DPWM)技术,特别是一种基于非线性规划的阶梯波脉宽调制方法。
背景技术
1990年,加拿大McGill大学的Boon-Teck Ooi等人首次提出采用基于全控功率开关器件的电压源换流器(Voltage Source Converter,VSC)和PWM调制技术的直流输电概念。这种以电压源换流器、可关断器件和脉宽调制(PWM)技术为基础的新一代直流输电技术,国际上电力方面的权威学术组织CIGRE和IEEE将其正式称为VSC-HVDC,即“电压源换流器型高压直流输电”。
在现有电压源换流器型高压直流输电工程中广泛采用两电平VSC和三电平二极管箝位式VSC作为换流设备,无一例外地采用几十乃至上百个IGBT的直接串联来满足换流器高电压和大功率的要求。但由于串联的功率器件以及各自驱动电路的动态和静态特性不可能完全一致,因此它们在阻断状态和开关过程中,每个器件的压降不可能相同,需要复杂的动、静态均压电路。均压电路会导致系统控制复杂,损耗增加,且对驱动电路的要求也大大提高,要求延迟时间接近,并尽量短,以使得单个桥臂上所有级联的IGBT必须以毫秒的开关精度同时开通和关断。导致换流器交流馈出点电压幅度变化和梯度都很高,由此会带来较高的换流器阀应力及高频的电磁干扰(EMI)、电磁辐射和谐波污染等不利影响,客观上要求必须装设体积庞大和笨重的滤波装置。于是,多电平换流器便应运而生。
多电平换流器拓扑结构主要有二极管箝位式多电平换流器、飞跨电容型多电平换流器、级联H桥型多电平换流器和模块化多电平换流器(图1)。由于电网的电压很高,采用二极管箝位式多电平换流器和飞跨电容型多电平换流器的电平数超过五电平后的拓扑结构就变得很复杂了,不利于控制策略地实现;同样级联H桥型多电平换流器需要若干个独立直流电源(当采用不控整流得到这些直流电源时,为减少对电网的谐波干扰,通常采用多绕组曲折变压器的多重化来实现。这种变压器体积庞大,成本高,设计困难),不易实现四象限运行的缺点阻碍了其在VSC-HVDC中的应用。于是,Siemens公司另辟蹊径,设计出模块化多电平电压源换流器(MMC)的拓扑结构(见图1(d))。
多电平变换器的PWM控制技术与多电平变换器拓扑结构的提出是共生的,因为它不仅决定多电平变换器的实现与否,而且对多电平变换器的电压输出波形质量、系统损耗的减少与效率的提高都有直接的影响。多电平变换器功能的实现,不仅要有适当的电路拓扑结构做基础,还要有相应的PWM控制方式作为保障,才能保证系统高性能和高效率的运行。
在过去的二十多年里,大量的多电平变换器PWM控制方法被提出,它们基本上都来源于业已成熟的两电平PWM技术。多电平变换器的调制策略,从广义的范畴看,分为载波PWM技术和空间矢量PWM技术;按照开关频率的高低,可以分为基频调制和高频调制。其中,基频调制是指在一个工频周期中,每个开关器件只是开关一次或两次,产生阶梯波的输出电压。这种调制方法中比较有代表性的是阶梯波调制和开关点预制调制(见图2)。高频调制是指在输出电压的一个工频周期中,每个开关器件开关许多次。这类调制方法主要包括正弦脉宽调制(SPWM)和空间矢量调制(SVPWM)。此外,由于空间矢量的数目是电平数的立方,当电平数很高时,各状态对应的空间矢量冗余度很高,如何定位并在较短时间挑选出合适的空间矢量都会相当困难,甚至无法执行。载波移相(PSPWM)的优点是实现简便,在不提高开关频率的条件下使等效开关频率提高到原来的2N倍,有助于提高整个系统的等效载波比,从而大大减小输出谐波。然而,其电压利用率并不高,器件开关频率偏高,开关损耗较多。
由于模块化多电平换流器自身所具有的“模块化”构造特点,可以简便地得到较高电平的多电平输出,波形品质较优。理想情况下,当输出电平无限增大时,即会达到标准的正弦波,因此模块化多电平换流器可以摒弃传统的PWM高频调制方式,转而采用具有低开关频率的多电平控制方式。
开关点预制PWM方法(图2(b))是在阶梯波上预制“凹槽”用于消除特定次谐波,需要离线计算出这些“凹槽”的位置信息并存于存储器中,运行时,实时读出后进行输出控制。因此,这种方法受到计算时间和存储容量的限制。
阶梯波调制法(图2(a))实际上是对作为模拟信号的参考电压的一个量化逼近过程,它对功率半导体器件的开关频率没有很高的要求,所以可以用于低开关频率的大功率器件,如GTO实现,控制上硬件实现方便。该方法的缺点是,由于开关频率较低,输出电压谐波含量较大,常用于电力系统无功补偿等场合。这类方法的代表应属特定次谐波消去法(Selective Harmonic Elimination,SHE),它的特点是触发角度先根据欲消去的任意某些次谐波离线计算出来,使得器件的开关频率很低、效率提高并可以使用空冷。其缺点是触发角度的计算是基于稳态波形的傅里叶级数,通过求解一系列超越方程组得到的。所以,对于较高电平换流器(如用于直流输电和无功补偿的MMC),对应非线性超越方程组的阶数比电平数还要高,有时几乎是无法求解的。
发明内容
本发明的目的在于考虑上述问题而提供一种弥补现有多电平换流器PWM调制方法的不足,更适合拓扑结构换流器的简单而有效的基于非线性规划的阶梯波脉宽调制方法。本发明更好地促进这种类型电压源换流器在高压直流输电、新能源并网、静止无功补偿器、有源滤波器、电力牵引等工业领域的发展。
本发明的技术方案是:本发明基于非线性规划的阶梯波脉宽调制方法,由于N电平MMC输出的相电压波形具有1/4周期奇对称性,通过选择周期内M个触发角(
Figure DEST_PATH_DEST_PATH_IMAGE002
),使得换流器输出的阶梯波中基波分量逼近于给定的调制波,其中M值的取值原则及方法如下:
(1)确定M
定义N脉冲数字脉宽调制(NP-DPWM)的调制度m
其中
Figure DEST_PATH_DEST_PATH_IMAGE004
Figure DEST_PATH_DEST_PATH_IMAGE005
Figure DEST_PATH_DEST_PATH_IMAGE006
分别为调制波电压峰值的瞬时值、额定值和标么值,而且正常运行时U dc是两极直流母线间电压;
NP-DPWM的调制度上限m max由桥臂上子模块的冗余度决定,但是m max≥1;若令稳态运行时调制度m=1,则随着m的增大或减小,换流器会通过投入或切除各桥臂上的子模块数以使输出阶梯波的幅值逼近调制波,当时单个电平的幅值没有变化;
m=1时,MMC输出相电压的电平数为N 0;当m≠1时,各桥臂需要投入或切除的子模块个数?N
Figure DEST_PATH_DEST_PATH_IMAGE008
投切后得到MMC输出相电压的新电平个数N 1
Figure DEST_PATH_DEST_PATH_IMAGE009
于是,当电平数N 1为奇数时,
Figure DEST_PATH_DEST_PATH_IMAGE010
;当N 1为偶数时,
Figure DEST_PATH_DEST_PATH_IMAGE011
(2)傅里叶变换
对换流器输出的阶梯波电压u ao进行傅里叶级数展开,以确定基波分量大小。
Figure DEST_PATH_DEST_PATH_IMAGE012
a)相电压电平数N 1为奇数(如图5(a))时,经计算可得
Figure DEST_PATH_DEST_PATH_IMAGE013
Figure DEST_PATH_DEST_PATH_IMAGE015
式中U C 代表各子模块电容的额定电压,且
Figure DEST_PATH_DEST_PATH_IMAGE016
综上可知,
Figure DEST_PATH_DEST_PATH_IMAGE017
b)相电压电平数N 1为偶数(如图5(b))时,经计算可得
Figure DEST_PATH_DEST_PATH_IMAGE019
综上可知,
(3)建立数学模型
根据上述阶梯波电压的傅里叶分析,便可确定每种情况下的非线性规划数学模型;
a)相电压电平数N 1为奇数时,NP-DPWM对应的非线性规划的数学模型为
Figure DEST_PATH_DEST_PATH_IMAGE021
其中U C*是电容电压的标么值,且令U dc* = 2 p.u.时,
Figure DEST_PATH_DEST_PATH_IMAGE022
b)相电压电平数N 1为偶数时,NP-DPWM对应的非线性规划的数学模型为
Figure DEST_PATH_DEST_PATH_IMAGE023
上述触发角初值的选择方法如下:
a)相电压电平数N 1为奇数
Figure DEST_PATH_DEST_PATH_IMAGE024
,触发角初值的取值方法如下:
b)相电压电平数N 1为偶数
Figure DEST_PATH_DEST_PATH_IMAGE026
,触发角初值的取值方法如下:
Figure DEST_PATH_DEST_PATH_IMAGE027
Figure DEST_PATH_DEST_PATH_IMAGE028
上述仿真验证方法如下:
借助MATLAB/LabVIEW交互混合仿真,在MATLAB仿真环境下编写了NP-DPWM的程序,得到触发角和输出相电压波形的采样值,再实时送到LabVIEW仿真平台下进行准确地谐波分析,计及稳态运行时系统电压的极限波动范围是± 10%,令调制度0.9 ≤≤ 1.1,得到不同电平数和调制度m下MMC输出相电压的THD值。
本发明提出的基于非线性规划的阶梯波脉宽调制(NP-DPWM)方法继承了阶梯波调制方法的优点,每个功率半导体开关器件一个周波仅开关一次,开关损耗比传统较高频率的脉宽调制小很多。先是通过对MMC稳态输出相电压阶梯波形进行傅里叶级数展开,然后,以阶梯波中基波分量与调制波最逼近为目标函数,运用非线性规划理论求解出一系列触发角度。本发明与特定次谐波消去法相比,虽然以牺牲波形总谐波畸变率为代价,却实现了在线实时计算以满足高电压大功率任意电平换流器的运行需要,即实现了精度和速度的折中。在电平数目比较低时,理论波形的谐波分析结果显示该调制方法对应的THD值并不坏,而是很理想。并且,电平数越高,该调制方法与那些精确调制方法所生成的波形质量的差别越小,优势越明显,理论上可以胜任任意电平数目电压源换流器的触发脉冲控制任务,可扩展性较好。本发明所提出的调制方法的调制度上限m max由桥臂子模块的冗余度决定,但是m max≥1。若令稳态运行时调制度m=1,则随着m的增大(或减小),换流器各桥臂会通过投入(或切除)子模块数以使输出阶梯波的幅值逼近调制波,当时单个电平的幅值没有变化。也就是说,本发明考虑了工程实际中MMC调制度的可变性,对输出相电压的电平数目相应的作了增减,实现了更准确的逼近。本发明的可移植性强。所提出的调制方法针对的是阶梯波直接脉宽调制,由于级联H桥型电压源换流器与模块化多电平换流器的输出波形均为阶梯波,故该方法不仅适用于模块化多电平换流器,同样也适应于电平数较高的级联H桥型电压源换流器。本发明是一种方便实用的基于非线性规划的阶梯波脉宽调制方法。
附图说明
图1为典型多电平拓扑结构(只画出一相):(a)二极管箝位式;(b)飞跨电容器式;(c)级联H桥式;(d)模块化多电平换流器;
图2为基频调制原理:(a)阶梯波调制方法(b)开关点预制PWM方法;
图3为采用NP-DPWM调制的11电平模块化多电平换流器相电压波形生成原理;
图4 基于非线性规划的阶梯波脉宽调制原理,其中曲线u p为调制波,曲线 u ao 为相电压波;
图5为MMC输出相电压波形:其中(a)11电平,
Figure DEST_PATH_DEST_PATH_IMAGE029
;(b)12电平,
Figure DEST_PATH_DEST_PATH_IMAGE030
图6为触发角初值与交点角的位置关系:(a)11电平,
Figure DEST_PATH_DEST_PATH_IMAGE031
;(b)12电平,
Figure DEST_PATH_DEST_PATH_IMAGE032
图7为换流器输出相电压的谐波畸变率(THD)值随电平数和调制度m的变化趋势;从上向下1, 2和3三条曲线的调制度分别为m=0.9, m=1.0和m=1.1时的情况,其中随着m的增大谐波畸变率减小,m=1.1的时候谐波畸变率最小。
具体实施方法
结合图1(d)所示的模块化多电平换流器的拓扑结构示意图,经分析可知采用NP-DPWM调制的相电压波形生成原理如图3所示。由于N电平MMC输出的相电压波形具有1/4周期奇对称性,所以,NP-DPWM的工作原理就是通过选择合适的周期内M个触发角(
Figure DEST_PATH_727775DEST_PATH_IMAGE002
),使得换流器输出的阶梯波中基波分量逼近于给定的调制波(见图4)。下面首先介绍M值的取值原则。
(1)确定M
对于市场上主流的两电平或三电平电压源换流器(ABB公司生产的HVDC Light)而言,由于采用平面压接式IGBT,器件直接压接而没有引线,一旦IGBT出现故障,必须将换流器停运以完成更换。为了提高换流器的可用性,模块化多电平换流器考虑了子模块冗余设计,以便在子模块发生故障时迅速闭合子模块出口的快速开关以旁路掉故障子模块,并自动将冗余的子模块投运,保证了换流器故障时的不间断运行。
定义NP-DPWM的调制度m
Figure DEST_PATH_507512DEST_PATH_IMAGE003
其中
Figure DEST_PATH_902722DEST_PATH_IMAGE004
Figure DEST_PATH_779411DEST_PATH_IMAGE005
Figure DEST_PATH_601873DEST_PATH_IMAGE006
分别为调制波电压峰值的瞬时值、额定值和标么值,而且正常运行时
Figure DEST_PATH_681956DEST_PATH_IMAGE007
U dc是两极直流母线间电压。
正是基于上述事实,NP-DPWM的调制度上限m max由桥臂上子模块的冗余度决定,但是m max≥1。若令稳态运行时调制度m=1,则随着m的增大(或减小),换流器会通过投入(或切除)各桥臂上的子模块数以使输出阶梯波的幅值逼近调制波,当时单个电平的幅值没有变化。
m=1时,MMC输出相电压的电平数为N 0;当m≠1时,各桥臂需要投入(切除)的子模块个数?N
投切后得到MMC输出相电压的新电平个数N 1
Figure DEST_PATH_DEST_PATH_IMAGE034
于是,当电平数N 1为奇数时,;当N 1为偶数时,
Figure DEST_PATH_612052DEST_PATH_IMAGE011
(2)傅里叶变换
对换流器输出的阶梯波电压u ao进行傅里叶级数展开,以确定基波分量大小。
Figure DEST_PATH_DEST_PATH_IMAGE035
a)相电压电平数N 1为奇数(如图5(a))时,经计算可得
Figure DEST_PATH_DEST_PATH_IMAGE036
Figure DEST_PATH_DEST_PATH_IMAGE037
Figure DEST_PATH_480782DEST_PATH_IMAGE015
式中U C 代表各子模块电容的额定电压,且
Figure DEST_PATH_235111DEST_PATH_IMAGE016
综上可知,
Figure DEST_PATH_DEST_PATH_IMAGE038
b)相电压电平数N 1为偶数(如图5(b))时,经计算可得
Figure DEST_PATH_785172DEST_PATH_IMAGE018
Figure DEST_PATH_308557DEST_PATH_IMAGE019
综上可知,
Figure DEST_PATH_DEST_PATH_IMAGE039
(3)建立数学模型
根据上述阶梯波电压的傅里叶分析,便可确定每种情况下的非线性规划数学模型。
a)相电压电平数N 1为奇数时,NP-DPWM对应的非线性规划的数学模型为
Figure DEST_PATH_DEST_PATH_IMAGE040
其中U C*是电容电压的标么值,且令U dc* = 2 p.u.时,
b)相电压电平数N 1为偶数时,NP-DPWM对应的非线性规划的数学模型为
Figure DEST_PATH_855393DEST_PATH_IMAGE023
(4)选择触发角初值
为了实现在线实时计算以满足高电压大功率任意电平换流器的运行需要,该调制方法使用非线性规划理论求解的触发角度可能为局部最优解,因此,初值的选择显得十分重要,下面给出一种简便的选法。
a)相电压电平数N 1为奇数
Figure DEST_PATH_DEST_PATH_IMAGE041
,结合图5(a)和图6(a),触发角初值的取值方法如下
Figure DEST_PATH_192834DEST_PATH_IMAGE025
b)相电压电平数N 1为偶数
Figure DEST_PATH_836305DEST_PATH_IMAGE026
,结合图5(b)和图6(b),触发角初值的取值方法如下
Figure DEST_PATH_984521DEST_PATH_IMAGE027
Figure DEST_PATH_713442DEST_PATH_IMAGE028
(5)仿真验证
借助MATLAB/LabVIEW交互混合仿真,在MATLAB仿真环境下编写了NP-DPWM的程序,得到触发角和输出相电压波形的采样值,再实时送到LabVIEW仿真平台下进行准确地谐波分析。计及稳态运行时系统电压的极限波动范围是± 10%,令调制度0.9 ≤≤ 1.1。得到不同电平数和调制度m下MMC输出相电压的THD值如表1所示,其整体的变化趋势如图7所示。
表1 N电平MMC在相应调制度m下相电压的THD值(%)
m N 7 9 11 13 15 17 19 21 26 31
0.9 14.8879 11.1302 9.1041 7.7920 6.7496 6.5320 5.2964 4.7422 3.7427 3.1564
1.0 13.5062 10.2140 8.2438 7.0689 5.9844 5.2762 4.7422 4.1488 3.4336 2.8200
1.1 13.1560 9.4527 7.4875 6.4674 6.1589 4.8221 4.2223 3.8891 3.3034 2.5520
m N 41 50 51 52 61 71 81 91 101 111
0.9 2.3192 2.1321 1.8829 1.9586 1.6147 1.2866 1.2053 1.1172 0.8533 0.7806
1.0 2.1837 1.7154 1.6226 1.6730 1.4065 1.2015 1.0046 0.8533 0.8496 0.7514
1.1 1.8605 1.8121 1.5757 1.7984 1.2731 1.1074 0.9385 0.7806 0.7514 0.6727
m N 121 131 141 151 161 171 181 191 201 211
0.9 0.6983 0.7315 0.6775 0.6349 0.5805 0.5244 0.5064 0.4511 0.4614 0.4021
1.0 0.7404 0.6047 0.5753 0.5354 0.5292 0.5050 0.4614 0.4461 0.4454 0.4208
1.1 0.5982 0.5681 0.5148 0.5334 0.5074 0.4410 0.4361 0.3998 0.3977 0.3352
IEEE 519-1992规定HVDC与电网连接点处的相电压THD≤ 2 %,由表1可知,当N ≥ 51时均可以满足此限值。所以,对于模块化多电平换流器在中、高压领域的应用,比如高压直流输电、静止无功补偿和电力机车驱动,为了达到相应的电压等级,换流器每桥臂上级联的子模块数较多。这样一来,该调制方法既满足了在线实时控制,又符合了电压总谐波畸变率的标准。

Claims (3)

1.一种基于非线性规划的阶梯波脉宽调制方法,其特征在于由于N电平模块化多电平电压源换流器(MMC)输出的相电压波形具有1/4周期奇对称性,通过选择                                                
Figure 2010105651265100001DEST_PATH_IMAGE001
周期内M个触发角(
Figure DEST_PATH_IMAGE002
),使得换流器输出的阶梯波中基波分量逼近于给定的调制波,其中M值的取值原则及方法如下:
(1)确定M
定义N脉冲数字脉宽调制(NP-DPWM)的调制度m
Figure DEST_PATH_IMAGE003
其中
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
Figure DEST_PATH_IMAGE006
分别为调制波电压峰值的瞬时值、额定值和标么值,而且正常运行时
Figure DEST_PATH_IMAGE007
U dc是两极直流母线间电压;
NP-DPWM的调制度上限m max由桥臂上子模块的冗余度决定,但是m max≥1;若令稳态运行时调制度m=1,则随着m的增大或减小,换流器会通过投入或切除各桥臂上的子模块数以使输出阶梯波的幅值逼近调制波,当时单个电平的幅值没有变化;
m=1时,MMC输出相电压的电平数为N 0;当m≠1时,各桥臂需要投入或切除的子模块个数?N
Figure DEST_PATH_IMAGE008
投切后得到MMC输出相电压的新电平个数N 1
Figure DEST_PATH_IMAGE009
于是,当电平数N 1为奇数时,
Figure DEST_PATH_IMAGE010
;当N 1为偶数时,
Figure DEST_PATH_IMAGE011
(2)傅里叶变换
对换流器输出的阶梯波电压u ao进行傅里叶级数展开,以确定基波分量大小
Figure DEST_PATH_IMAGE012
a)相电压电平数N 1为奇数(如图5(a))时,经计算可得
Figure DEST_PATH_IMAGE013
Figure DEST_PATH_IMAGE014
式中U C 代表各子模块电容的额定电压,且
Figure DEST_PATH_IMAGE016
综上可知,
Figure DEST_PATH_IMAGE017
b)相电压电平数N 1为偶数(如图5(b))时,经计算可得
Figure DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE019
综上可知,
Figure DEST_PATH_IMAGE020
(3)建立数学模型
根据上述阶梯波电压的傅里叶分析,便可确定每种情况下的非线性规划数学模型;
a)相电压电平数N 1为奇数时,NP-DPWM对应的非线性规划的数学模型为
其中U C*是电容电压的标么值,且令U dc* = 2 p.u.时,
Figure DEST_PATH_IMAGE022
b)相电压电平数N 1为偶数时,NP-DPWM对应的非线性规划的数学模型为
Figure DEST_PATH_IMAGE023
2.根据权利要求1所述的基于非线性规划的阶梯波脉宽调制方法,其特征在于上述触发角初值的选择方法如下:
a)相电压电平数N 1为奇数
,触发角初值的取值方法如下:
Figure DEST_PATH_IMAGE025
b)相电压电平数N 1为偶数
Figure DEST_PATH_IMAGE026
,触发角初值的取值方法如下:
Figure DEST_PATH_IMAGE027
Figure DEST_PATH_IMAGE028
3.根据权利要求1所述的基于非线性规划的阶梯波脉宽调制方法,其特征在于上述仿真验证方法如下:
借助MATLAB/LabVIEW交互混合仿真,在MATLAB仿真环境下编写了NP-DPWM的程序,得到触发角和输出相电压波形的采样值,再实时送到LabVIEW仿真平台下进行准确地谐波分析,计及稳态运行时系统电压的极限波动范围是± 10%,令调制度0.9 ≤ ≤ 1.1,得到不同电平数和调制度m下MMC输出相电压的THD值。
CN201010565126.5A 2010-11-30 2010-11-30 基于非线性规划的阶梯波脉宽调制方法 Active CN102594192B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010565126.5A CN102594192B (zh) 2010-11-30 2010-11-30 基于非线性规划的阶梯波脉宽调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010565126.5A CN102594192B (zh) 2010-11-30 2010-11-30 基于非线性规划的阶梯波脉宽调制方法

Publications (2)

Publication Number Publication Date
CN102594192A true CN102594192A (zh) 2012-07-18
CN102594192B CN102594192B (zh) 2014-12-10

Family

ID=46482481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010565126.5A Active CN102594192B (zh) 2010-11-30 2010-11-30 基于非线性规划的阶梯波脉宽调制方法

Country Status (1)

Country Link
CN (1) CN102594192B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018583A (zh) * 2012-08-03 2013-04-03 中国能源建设集团广东省电力设计研究院 基于mmc柔性直流输电系统电平数选择验证方法
CN103199729A (zh) * 2013-04-10 2013-07-10 国家电网公司 一种模块化多电平变流器子模块分组阶梯波调制方法
CN103532417A (zh) * 2013-10-31 2014-01-22 哈尔滨工业大学 一种拓扑可变型并网逆变器的控制方法
CN104410256A (zh) * 2014-12-10 2015-03-11 湖南大学 一种含模块化多电平变流器的有源滤波系统及其控制方法
CN104953590A (zh) * 2015-06-18 2015-09-30 国家电网公司 基于mmc拓扑结构的统一潮流控制器的谐波分析方法
CN104993510A (zh) * 2015-08-06 2015-10-21 国家电网公司 基于模块化多电平换流器的柔性直流输电系统
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105680710A (zh) * 2015-08-04 2016-06-15 许昌开普电气研究院 一种应用于模块化多电平换流器的桥臂电流阈值降频法
CN106130022A (zh) * 2016-08-15 2016-11-16 兰州交通大学 一种含飞跨电容的混合apf拓扑结构及广义逆解耦控制器
CN106208704A (zh) * 2016-07-18 2016-12-07 上海交通大学 隔离型模块化多电平dc‑dc变换器的桥臂间移相调制方法
CN107846153A (zh) * 2017-11-08 2018-03-27 华北电力大学(保定) Mmc换流器的混合调制算法
CN107888095A (zh) * 2017-12-18 2018-04-06 中国矿业大学(北京) 基于维也纳整流模块的大功率混合级联电力电子变流器
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10218285B2 (en) 2015-10-19 2019-02-26 Siemens Aktiengesellschaft Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
CN110995042A (zh) * 2019-12-18 2020-04-10 华中科技大学 飞跨电容三电平逆变器的变开关频率pwm控制方法和系统
CN111464064A (zh) * 2020-05-09 2020-07-28 湖南人文科技学院 多电平直流链路逆变器及其谐波抑制方法
CN112688543A (zh) * 2020-12-16 2021-04-20 西安理工大学 一种三电平npc变换器特定谐波消去方法
CN115276442A (zh) * 2022-07-06 2022-11-01 电子科技大学 一种降低模块化多电平变换器输出电流总谐波失真的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650289A1 (en) * 1993-10-04 1995-04-26 Eastman Kodak Company Method and apparatus for generating a halftone pattern for a multi-level output device
JP2006080964A (ja) * 2004-09-10 2006-03-23 Nakayo Telecommun Inc 通信方法および通信装置
US20070015473A1 (en) * 2002-01-18 2007-01-18 American Technology Corporation Modulator-amplifier
US20090091384A1 (en) * 2007-06-28 2009-04-09 Sorrells David F Systems and methods of RF power transmission, modulation and amplification
CN101594045A (zh) * 2009-07-06 2009-12-02 中国电力科学研究院 一种模块化多电平换流器的特定消谐方法
WO2010093217A2 (ko) * 2009-02-16 2010-08-19 엘지전자주식회사 다중 안테나 시스템에서 데이터의 전송방법
CN101814853A (zh) * 2010-04-27 2010-08-25 浙江大学 基于等效电路模型的模块化多电平换流器的控制方法
CN101854061A (zh) * 2010-04-30 2010-10-06 浙江大学 一种三相模块化多电平换流器环流抑制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650289A1 (en) * 1993-10-04 1995-04-26 Eastman Kodak Company Method and apparatus for generating a halftone pattern for a multi-level output device
US20070015473A1 (en) * 2002-01-18 2007-01-18 American Technology Corporation Modulator-amplifier
JP2006080964A (ja) * 2004-09-10 2006-03-23 Nakayo Telecommun Inc 通信方法および通信装置
US20090091384A1 (en) * 2007-06-28 2009-04-09 Sorrells David F Systems and methods of RF power transmission, modulation and amplification
WO2010093217A2 (ko) * 2009-02-16 2010-08-19 엘지전자주식회사 다중 안테나 시스템에서 데이터의 전송방법
CN101594045A (zh) * 2009-07-06 2009-12-02 中国电力科学研究院 一种模块化多电平换流器的特定消谐方法
CN101814853A (zh) * 2010-04-27 2010-08-25 浙江大学 基于等效电路模型的模块化多电平换流器的控制方法
CN101854061A (zh) * 2010-04-30 2010-10-06 浙江大学 一种三相模块化多电平换流器环流抑制方法

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018583A (zh) * 2012-08-03 2013-04-03 中国能源建设集团广东省电力设计研究院 基于mmc柔性直流输电系统电平数选择验证方法
CN103018583B (zh) * 2012-08-03 2016-02-03 中国能源建设集团广东省电力设计研究院有限公司 基于mmc柔性直流输电系统电平数选择验证方法
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
CN103199729B (zh) * 2013-04-10 2016-01-20 国家电网公司 一种模块化多电平变流器子模块分组阶梯波调制方法
CN103199729A (zh) * 2013-04-10 2013-07-10 国家电网公司 一种模块化多电平变流器子模块分组阶梯波调制方法
WO2014166261A1 (zh) * 2013-04-10 2014-10-16 国家电网公司 一种模块化多电平变流器子模块分组阶梯波调制方法
CN103532417B (zh) * 2013-10-31 2015-10-28 哈尔滨工业大学 一种拓扑可变型并网逆变器的控制方法
CN103532417A (zh) * 2013-10-31 2014-01-22 哈尔滨工业大学 一种拓扑可变型并网逆变器的控制方法
US10680505B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10153685B2 (en) 2014-03-26 2018-12-11 Solaredge Technologies Ltd. Power ripple compensation
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10700588B2 (en) 2014-03-26 2020-06-30 Solaredge Technologies Ltd. Multi-level inverter
US10680506B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10404154B2 (en) 2014-03-26 2019-09-03 Solaredge Technologies Ltd Multi-level inverter with flying capacitor topology
CN104410256A (zh) * 2014-12-10 2015-03-11 湖南大学 一种含模块化多电平变流器的有源滤波系统及其控制方法
CN104953590A (zh) * 2015-06-18 2015-09-30 国家电网公司 基于mmc拓扑结构的统一潮流控制器的谐波分析方法
CN105680710A (zh) * 2015-08-04 2016-06-15 许昌开普电气研究院 一种应用于模块化多电平换流器的桥臂电流阈值降频法
CN105680710B (zh) * 2015-08-04 2018-04-06 许昌开普电气研究院 一种应用于模块化多电平换流器的桥臂电流阈值降频法
CN104993510A (zh) * 2015-08-06 2015-10-21 国家电网公司 基于模块化多电平换流器的柔性直流输电系统
US10218285B2 (en) 2015-10-19 2019-02-26 Siemens Aktiengesellschaft Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
CN106208704B (zh) * 2016-07-18 2019-08-23 上海交通大学 隔离型模块化多电平dc-dc变换器的桥臂间移相调制方法
CN106208704A (zh) * 2016-07-18 2016-12-07 上海交通大学 隔离型模块化多电平dc‑dc变换器的桥臂间移相调制方法
CN106130022B (zh) * 2016-08-15 2018-12-11 兰州交通大学 一种含飞跨电容的混合apf拓扑结构及广义逆解耦控制器
CN106130022A (zh) * 2016-08-15 2016-11-16 兰州交通大学 一种含飞跨电容的混合apf拓扑结构及广义逆解耦控制器
CN107846153A (zh) * 2017-11-08 2018-03-27 华北电力大学(保定) Mmc换流器的混合调制算法
CN107888095A (zh) * 2017-12-18 2018-04-06 中国矿业大学(北京) 基于维也纳整流模块的大功率混合级联电力电子变流器
CN110995042A (zh) * 2019-12-18 2020-04-10 华中科技大学 飞跨电容三电平逆变器的变开关频率pwm控制方法和系统
CN111464064B (zh) * 2020-05-09 2021-06-04 湖南人文科技学院 多电平直流链路逆变器的谐波抑制方法
CN111464064A (zh) * 2020-05-09 2020-07-28 湖南人文科技学院 多电平直流链路逆变器及其谐波抑制方法
CN112688543A (zh) * 2020-12-16 2021-04-20 西安理工大学 一种三电平npc变换器特定谐波消去方法
CN115276442A (zh) * 2022-07-06 2022-11-01 电子科技大学 一种降低模块化多电平变换器输出电流总谐波失真的方法
CN115276442B (zh) * 2022-07-06 2024-04-02 电子科技大学 一种降低模块化多电平变换器输出电流总谐波失真的方法

Also Published As

Publication number Publication date
CN102594192B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN102594192B (zh) 基于非线性规划的阶梯波脉宽调制方法
Feldman et al. A hybrid modular multilevel voltage source converter for HVDC power transmission
Babaei Optimal topologies for cascaded sub-multilevel converters
Abildgaard et al. Modelling and control of the modular multilevel converter (MMC)
Qin et al. A zero-sequence voltage injection-based control strategy for a parallel hybrid modular multilevel HVDC converter system
Nair et al. A very high resolution stacked multilevel inverter topology for adjustable speed drives
Wang et al. Topologies and control strategies of cascaded bridgeless multilevel rectifiers
Jin et al. A novel submodule voltage balancing scheme for modular multilevel cascade converter—Double-star chopper-cells (MMCC-DSCC) based STATCOM
Liao et al. DC-side harmonic analysis and DC filter design in hybrid HVDC transmission systems
Kaya et al. A push–pull series connected modular multilevel converter for HVdc applications
Marzoughi et al. Analysis of capacitor voltage ripple minimization in modular multilevel converter based on average model
Banaei et al. Mitigation of voltage sag, swell and power factor correction using solid-state transformer based matrix converter in output stage
Luo et al. Small signal model of modular multilevel matrix converter for fractional frequency transmission system
Bieber et al. A hybrid five-level modular multilevel converter with high efficiency and small energy storage requirements for HVDC transmission
Kulothungan et al. Fundamental device switching frequency control of current-fed nine-level inverter for solar application
Ghias et al. On reducing power losses in stack multicell converters with optimal voltage balancing method
Mu et al. The generation mechanism and elimination strategy of narrow-and error-pulse for cascaded H-bridge NL-PWM modulation
Droguett et al. Nearest level control for a three-phase to single-phase modular multilevel converter for solid state transformers
Sun et al. The harmonic analysis and the arm capacitor parameters selection of module multilevel matrix converter
Karthi et al. Performance analysis on various controllers of VSC—HVDC transmission systems
Kumar et al. A comparative study of SPWM and SVPWM controlled HVDC Light systems
Suraj et al. Comparative analysis of Li-Ion battery charging with different rectifier topologies
Srikanth Performance of SVPWM based vector controlled HVDC light transmission system under balanced fault condition
Reguig Berra et al. Virtual flux direct power‐backstepping control of 5‐level T‐type multiterminal VSC‐HVDC system
Zabihinejad et al. Design of direct power controller for a high power neutral point clamped converter using real time simulator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210827

Address after: 510700 3rd, 4th and 5th floors of building J1 and 3rd floor of building J3, No.11 Kexiang Road, Science City, Luogang District, Guangzhou City, Guangdong Province

Patentee after: China Southern Power Grid Research Institute Co.,Ltd.

Patentee after: ZHEJIANG University

Address before: 510623 Guangdong city of Guangzhou province Tianhe District Pearl River Metro Chinese Sui Road No. 6

Patentee before: CSG POWER GRID TECHNOLOGY RESEARCH CENTER

Patentee before: NORTH CHINA ELECTRIC POWER University (BAODING)

Patentee before: ZHEJIANG University