CN102584256B - 用于在连接有激光器的炉中进行材料表面处理的连续方法 - Google Patents

用于在连接有激光器的炉中进行材料表面处理的连续方法 Download PDF

Info

Publication number
CN102584256B
CN102584256B CN201210022441.2A CN201210022441A CN102584256B CN 102584256 B CN102584256 B CN 102584256B CN 201210022441 A CN201210022441 A CN 201210022441A CN 102584256 B CN102584256 B CN 102584256B
Authority
CN
China
Prior art keywords
parts
laser beam
mirror
continuation method
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210022441.2A
Other languages
English (en)
Other versions
CN102584256A (zh
Inventor
路易斯·卡洛斯·埃斯特帕米兰
格尔曼·弗朗西斯科·富恩特莱斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Publication of CN102584256A publication Critical patent/CN102584256A/zh
Application granted granted Critical
Publication of CN102584256B publication Critical patent/CN102584256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • F27B9/2469Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor the conveyor being constituted by rollable bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Laser Beam Processing (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本文披露了用于在连接有激光器的炉中进行材料表面处理的连续方法,更具体地,本发明涉及一种用于部件的表面处理的连续方法,包括步骤:将部件放入连续炉中;在垂直于所述部件在所述连续炉中的移动方向的扫描线上,在部件的表面上方施加激光束,并且其超出部件的侧边;在施加激光束之前和之后,将部件加热至初始加热温度,该初始加热温度低于部件的熔点并且低于在与激光束接触期间部件的表面温度;以及在加热部件之后,一旦已经施加所述激光束,通过逐渐降低温度,使所述部件冷却。本发明应用聚焦在部件上的激光辐射,同时通过传统加热维持部件本体处于低温下,能够在表面上达到非常高的温度。

Description

用于在连接有激光器的炉中进行材料表面处理的连续方法
本申请是申请日为2007年3月6日、申请号为200780011481.4、名称为“用于材料表面处理的具有耦合激光器的连续炉”的发明申请的分案申请。
技术领域
地板砖以及其它工业和技术、传统和高性能陶瓷的生产,其中的一些采用现有技术无法实现。
耐火材料的加工。
建筑和技术玻璃的加工。
生产涂料。
改变材料的表面。
背景技术
自从几十年前商业化激光投入使用以来,实际上就已经采用激光进行材料的处理。使用激光对各种各样的材料进行的切割、标记和焊接操作,如今在许多工业部门是常见的事,并且有高性能的商业化系统应用于工业环境中。激光对于高产工艺(highly productiveprocess)的可靠性、灵活性和适应性,连同激光提供的其他益处(尤其是残余物减少和更健康的工作环境),以及它们的逐渐小型化和提高的效率,预示着其对于一般材料工业中的新型转化工艺(transformation process)的适应性显著提高。
对本发明涉及的,通过背景技术而描述的科学和技术背景概括如下:
陶瓷材料的生产一般与高温有关,而高温是与各种所需的组分、微结构及其性能有关的特定烧结工艺的特征[Introduction toCeramics,W.D.Kingery,H.K.Bowen,D.R.Uhlmann,Wiley,NewYork(1976),2nd Edition]。例如,在瓷砖工业中,用于铺地和覆面(cladding)的大多数产品通常具有1100~1300℃的烧结温度。为了生产工业数量的这些产品,最近几十年已经开发出了非常长的连续炉(连续式加热炉或前进式干燥炉,continuous furlace),其中基于陶瓷辊的使用来支撑和传送部件。
这段时期获得的最大进步大概是一次烧结法(single-firing)的开发,一次烧成法为优化烧结工艺并使其持续时间减至最少、避免使用多次烧结(multiple firing)以及允许部件在单一工序中进行装饰(生色,decorate)和压实(consolidate)提供了可能性。[MateriasPrimas y Aditivos Cerámicos,L.
Figure BDA0000133533420000021
and J.B.CardaCastelló,Enciclopedia Cerámica,tome II.1.Faenza Editrice Ibérica,S.L.,Castellón(2002)]。尽管结果已经是令人满意的并且在许多情况下是激动人心的,然而这种技术水平看起来已经到了要革新的程度,只有质量改变才能使改善陶瓷材料的特性成为可能,从而使它们与近年来已得到相当革新的其他选择(例如,化合物)相比仍然具有竞争力[Esmaltes y Pigmentos Cerámicos,P.Escribano López,J.B.Carda Castelló,E.Cordoncillo Cordoncillo,Enciclopedia Cerámica,tome 1,Faenza Editrice Ibérica,S.L.,Castellón(2001)]。
要获得具有显著改善的特性和性能的产品,引人注目的方法是提高表面上的烧结温度。然而,为了实现这个目的,需要不对陶瓷材料的本体造成过热的非传统处理方式,其中陶瓷材料的整体稳定性建立在先前提及的温度范围内。任何对表面处理温度的提高必然意味着供热中的技术改变,因为传统炉(conventional kiln)对部件均匀加热,是为了避免张力和由此发生的变形和/或开裂,这通常会通过各种破碎而退变为材料的分解。
激光是用于结合至自动化工业过程的最可行的技术之一,另外,其容许选择性地加热材料表面[Laser Applications in SurfaceScience and Technology,H.-G.Rubahn,Wiley,Chichester(1999)]。在许多不同的工业部门,包括冶金[J.de Damborenea,Surfacemodification of metals by high power lasers,Surface&CoatingsTechnol.100-101(1998)377-382]、聚合物[C.-M.Chan,T.-M.Ko,H.Hiraoka,Polymer surface modification by plasmas and photons,Surface Science Reports 24(1996)1-54]、木材[B.H.Zhou,S.M.Mahdavian,Experimental and theoretical analyses of cuttingnon-metallic materials by low power CO2-laser,J.Materials ProcessingTechnol.146(2004)188-192]、电子陶瓷[W.Pierre,A.Rushton,M.Gill,P.Fox,W.O’Neill,Femtosecond laser microstructuring ofalumina ceramic,Appl.Surf Sci.248(2005)213-217]等部门中使用激光。激光基本上用于标记、切割、表面处理和焊接[K.Sugioka et al,Advanced materials processing based on interaction of laser beam anda medium,J.Photochemistry and Photobiology A:Chemistry,158(2003)171-178;UV laser marking in III-Vs Review 17(2004)30;J.Qi,K.L.Wang,Y.M.Zhu,A study on the laser marking process ofstainless steel,J.Mater.Processing Technol.139(2003)273-276]。
从本发明的观点来看,最接近的现有技术(nearestapproximation)包括由作者发表并在其实验室进行的有关共晶陶瓷[A.Larrea,G.F.de la Fuente,R.I.Merino,V.M.Orera,ZrO2-Al2O3Melt Growth Eutectic plates produced by laser processing,J.Eur.Ceram.Soc.22(2002)191-198]和有关超导体[M.Mora,J.C.Diez,C.I.López-Gascón,E.Martínez,G.de la Fuente,IEEE Trans.Appl.Supercon.13(2003)3188-3191]的研究。尽管如此,与本文中所描述的内容相比,在这些情况下所使用的方法和设备以及光学系统(光学器件,optics)方面,仍然存在着本质上的不同。实际上,除了光学装置和部件的加热之外,扫描激光系统,代表着它们之间的关键性差异。
尽管我们认为它们不会影响本发明的新颖性,然而这里我们仍将提及两个专利文献:EP 0836405(德国优先权DE 4316829)“Method and arrangement for surface treatment with temperaturecontrol,particularly for superficial hardening with laser radiation”(用于使用温度控制进行表面处理,特别是用于使用激光辐射进行表面硬化的方法和装置)和西班牙ES 2170525(来自标明西班牙的欧洲专利并且其又基于US 944428的优先权)“Method for connectingsurface mount components to a substrate”(用于将表面装配部件连接于衬底的方法)。前者提出的问题与本发明所考虑的问题相似,但仅在激光束的应用方面与本发明一致;后者使用激光束以提高由炉所提供的用于处理部件的能量,然而由于寻求的目的不同,操作方式与本发明完全不同。
发明内容
在诸如陶瓷工业的工业部门中(其中供热(热源)基本的),激光技术能够提供大规模的表面处理,从传统技术的观点来看这在先前是无法想象的。本发明通过将激光器引入传统的处理系统中,在能量消耗和CO2排放方面提供益处,这使过去不能独立发展的工艺在经济上具有吸引力并且有利可图,并且同时完成采用现有技术而不可能完成的新工艺。
本发明的系统目标是由通过传统的光学装置(光学手段,opticalmeans)连接有激光器的连续炉构成,其容许在各种光学-机械构造中用激光束扫描对部件进行表面处理,光学-机械构造除了其他之外,对应于以下中的任一项:
·采用固定焦距透镜的检流计系统。
·采用平面透镜的检流计系统。
·圆柱形透镜系统。
·抛物线-凸镜系统。
·用于在上表面和下表面上平行地、连续地以及对称地进行处理的光束分裂系统。
·具有平面镜的上述系统的组合。
本发明应用聚焦在部件上的激光辐射,同时通过传统加热维持部件本体处于低温下,能够在表面上达到非常高的温度(高达3000℃)。这使得能够获得具有高机械或功能性能(电子、光学等)的涂层,例如具有目前所不能达到的高熔点的特殊釉料(specialglaze)。这样,通过降低部件本体的温度,除了可以减小处理系统的大小之外,能够实现工序中的能量耗损和CO2排放中的高节省。
附图说明
图1.本发明的炉对象(炉体)的示意图。
图2.陶瓷部件的扫描系统的图示。
图3.激光发射系统的简图。
图4.当激光束产生虚线时扫描区域的宽度的特写。
具体实施方式
使用检流计镜(galvanometric mirror)从而用激光束扫描具体的材料表面的设备(装置)是众所周知的。这能使表面达到几千摄氏度的温度,并由此实现多种目标。然而,令人惊讶的是,人们已经发现,当采用该技术用于陶瓷和其他相似类型的部件时,尽管能够达到所需的温度,然而结果却完全不令人满意,这是因为,由于在表面上产生机械张力和粗糙导致表面开裂。
同样,用作加热、处理和转化材料的系统的炉多年来也已经为人所知。引入合适类型的仪器能够使炉更为有效地被使用和控制。然而,在某些炉中进行的工艺中,可发生结构改变,其导致产生不需要的材料性能。在其他情况下,极大的物理差异,如材料的熔点,使得不可能仅使用传统炉来实施某些工艺。
由本发明发明人所进行的实验的结果可知,如果从开始就采用以下参数,会发现这些问题将不存在:
1.在用激光束处理部件的表面之前和之后,在传统炉中以低于其熔点达几百度的温度加热部件。这可防止开裂。
2.激光束应仅在部件的一条线的上方以摆动方式移动。扫描表面应通过部件垂直于扫描线的机械行进而实现。这将防止粗糙。
3.扫描必须超过如图2的B-B’截面中所示的部件边缘(部件侧边)。这将防止微-开裂和较小粗糙。
4.激光束发生器的类型必须根据材料进行选择,从而防止由激光束提供的能量由于“颜色”一致而被表面吸收。
图1和图2示出了本发明的设备对象的非常简略的图示。基本上,其由护道(拉拨机或工作台,bench)1组成,其包括用于传送待处理陶瓷部件6的传统系统(在图中描绘为滚柱式输送装置(roller conveyer),3),陶瓷部件6通过开口2引入传统炉4中。炉在其顶部具有专用功能部件(特定特征,special feature)进口5(稍微水平倾斜),从而允许激光束通过它并落到待处理的陶瓷部件6上(在图2的立面图中更清楚地显示)。进口5的倾斜设计是为了使炉的辐射(在约500℃的温度下),尤其是部件6的辐射(甚至比炉更热),被大多数提取出来。
图2示出了本发明的主要组件,包括一个平面图和两个截面图(A-A’和B-B’),示出了如何使用激光束发生系统和对应的偏转器(deflector)生成一个扇面,其越过陶瓷部件6的表面边缘,在陶瓷对象的表面上产生一条“热”线,当由滚柱3或其等同传送系统所传送的部件向前行进时该“热”线向后移动。
外壳(炉封,enclosure)4通过电阻或气体或燃料燃烧进行加热,并且是绝热的以便提高能量效率。外壳分为具有独立温度控制的不同区,以便实现对于加热和冷却温度所需要的值。
如所提及的,所述外壳具有用于引入激光束的合适开口,以及运送待处理部件的传送系统。传送速度可变化,并根据处理材料和所执行的工艺进行调节。
激光发生系统及其偏转器
尽管单独来看该系统是基于工业设备(commercial unit)的,然而由于其形成了本发明的组件(assembly)的重要部分,因而有必要对其进行描述并针对本发明的组件对其进行改装。该系统包括:
·辐射发生和发射腔。这可以具有发射从紫外线到红外线不同辐射的不同类型。最常见的是那些对应于约10.6μm的CO2激光器,以及包括0.8μm~1.1μm波长的不同形式的二极管激光器和Nd激光器。
·发射光束的操控。为了实现本发明中的基本原理,即部件的线性扫描,所述扫描通过检流计系统(galvanometer system)或通过一系列使光束成形并使其变得适合于工艺类型、处理材料和所用激光的透镜组合来实施。
图3示出了可适用于本发明目的的一种方式的简图。为了清楚的目的,我们应该指出,该图未遵循任何比例。
激光源7发射所选类型的辐射(标记为锯齿形线),其落在组件的第一镜8上;该镜可以通过检流计系统保持固定或关于轴AB摆动从而将光束传送至与前一个相似的第二镜9,第二镜9使激光落在透镜10上,透镜10又将光束引至部件6上方(在部件6上方实施该工艺)。当镜9关于其CD轴摆动时,其使光束的焦点在点线11的EF部分上移动,该部分宽于部件6的宽度。通过光束扫描而产生的加热可以在部件6的表面上形成熔化材料的带12(或者如果这是目标,则进行热处理)。这种方式,通过将光束扫描与部件6的移动相结合,使整个表面都进行所期望的热处理。
如所提及的,可选地,镜8还可以关于其轴AB通过两种摆动的组合来进行摆动,以这种方式激光束的扫描产生锯齿形线13(如在图4的下图中所示),而不是产生图3(和图4的上图)的直线11,其导致热处理区12的宽度的增加。
当把本发明应用于大尺寸的部件时,到达部件边端的光束由于离光学中心较远而传送较少的能量,而通过安装平面镜可解决该问题。
控制系统
整个系统包括如下所述用于控制所需强度、发射时间、辐射的停留和移动的计算机软件:
一旦系统已安装,操作的第一步涉及对一般参数(generalparameter)的设置。这些一般参数包括:
·工作面积,引入二维值,以及
·焦距,即透镜和操作部件(work piece)之间的距离。
接着,选择光束移动的类型。
软件(商业化)提供了不同的可能性;例如,可以使用其中光束沿连续线行进的向量模式(vector mode)。
最后,设置功率参数。
在该阶段,设定以下参数的值:
·占空比(duty cycle)的值,该值是每脉冲光束的发射-停留时间(次数,times)的百分比。
·工作频率,该值代表光束每秒发射-关闭的次数。
·光束速度,是光束的速度的值,以m/min计。
输入这些参数之后,将其储存在文件中,并给出初始循环次序(cycle order)。
实施例
接下来,我们描述在激光炉中对工业感兴趣的陶瓷材料进行的典型处理。由具有泥釉(slip)和绢印(serigraphy)的红色粘土支撑(red paste support)组成的部件引入激光炉的预热区。部件的载体由移动的滚柱构成,其为部件通过炉的不同区域设置小于8m/h的速度。
该炉是传统类型的,其中部件进行线形移动,并且通过电元件进行加热;针对本实验专门使用了
Figure BDA0000133533420000101
品牌的电炉,型号ER-20。线形移动是通过一系列的滚柱(由适合于炉的工作温度的材料制成)来实现,其通过传统的发动机-减速器-小齿轮-链机械系统进行驱动。炉分成四个区,其中从室温到所需的最大值(其可以是1300℃),对温度进行控制,目的是保证炉对各个处理正确的值。这种控制是采用热电偶和可编程控制器来实现的,其指示和确立每个区中的加热和冷却工艺的温度值。
炉外壳在其顶部具有进口(稍微水平倾斜),其能够使激光束穿过它而落到待处理的部件上。
单独控制加热区和冷却区的温度,以模拟工业炉中的循环。如所提及的,通过在炉顶部的水平进口将激光束引入加热区。当部件穿过所述区域时,该激光束通过在部件上方进行扫描来发挥作用。部件遵照由该炉建立的循环,以恒定速度移动,其中加热和冷却曲线通过施加于不同炉区的温度和其中部件的传送速度来确定。在该实施例中用于部件的热区的温度大约为600℃,而工艺结果与通过工业设备的传统方法所获得的结果没有区别,在传统工业设备中如果不使用激光,则必须达到1300℃的温度。在该具体情况下,本方法的优点在于以下事实:炉温度比工业过程中的温度低几百度,结果节省了能量,并大量减少了燃烧工艺(用于加热所述炉)所产生的二氧化碳排放。部件的尺寸大约为10cm宽×20cm长,8mm厚。
所用系统为通过无线电频率激发的功率为300W的CO2激光发生器。该激光器以其RTC 3PC接口卡(interface card)装有
Figure BDA0000133533420000111
检流计系统。

Claims (7)

1.用于部件(6)的表面处理的连续方法,其特征在于,所述连续方法包括以下步骤:
将所述部件(6)放入连续炉中,其中所述部件(6)进行线形移动;
在垂直于所述部件(6)在所述连续炉中的移动方向的扫描线上,在所述部件(6)的表面上方施加激光束,并且其超出所述部件(6)的侧边;
在施加所述激光束之前和之后,将所述部件(6)加热至初始加热温度,所述初始加热温度低于所述部件(6)的熔点并且低于在与所述激光束接触期间所述部件(6)的表面的温度;以及
在加热所述部件(6)之后,一旦已经施加所述激光束,沿着所述部件(6)的线形移动通过逐渐降低温度,使所述部件(6)冷却。
2.根据权利要求1所述的用于部件(6)的表面处理的连续方法,特征在于,通过以下光学-机械构造来施加所述激光束:检流计或透镜(10)或镜(8,9)或具有平面镜的检流计、透镜(10)和镜(8,9)的组合。
3.根据权利要求2所述的用于部件(6)的表面处理的连续方法,特征在于,所述激光束落在第一镜(8)上,所述第一镜(8)将所述激光束传送第二镜(9),所述第二镜(9)将所述激光束引至透镜(10),所述透镜(10)又将所述激光束引至所述部件(6)上方。
4.根据权利要求3所述的用于部件(6)的表面处理的连续方法,特征在于,所述第一镜(8)在其轴AB上摆动。
5.根据权利要求3所述的用于部件(6)的表面处理的连续方法,特征在于,所述第一镜(8)是固定的。
6.根据权利要求3所述的用于部件(6)的表面处理的连续方法,特征在于,所述第二镜(9)在其轴CD上摆动。
7.根据权利要求2所述的用于部件(6)的表面处理的连续方法,特征在于,所述连续方法包括以下用于控制所述激光束的强度、发射时间、停留和移动的操作步骤:
a)设置以下一般参数:
引入所述部件(6)的二维值;和
引入所述透镜(10)和所述部件(6)之间的距离;
b)选择用于连续直线(11)或连续锯齿形线(13)行进的激光束移动的类型;
c)设置以下功率参数:
占空比的值;
工作频率;和
速度。
CN201210022441.2A 2006-03-07 2007-03-06 用于在连接有激光器的炉中进行材料表面处理的连续方法 Active CN102584256B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200600560A ES2294919B1 (es) 2006-03-07 2006-03-07 Horno continuo con laser acoplado para el tratamiento superficial de materiales.
ESP200600560 2006-03-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2007800114814A Division CN101410220B (zh) 2006-03-07 2007-03-06 用于材料表面处理的具有耦合激光器的连续炉

Publications (2)

Publication Number Publication Date
CN102584256A CN102584256A (zh) 2012-07-18
CN102584256B true CN102584256B (zh) 2014-03-26

Family

ID=38474621

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2007800114814A Active CN101410220B (zh) 2006-03-07 2007-03-06 用于材料表面处理的具有耦合激光器的连续炉
CN201210022441.2A Active CN102584256B (zh) 2006-03-07 2007-03-06 用于在连接有激光器的炉中进行材料表面处理的连续方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2007800114814A Active CN101410220B (zh) 2006-03-07 2007-03-06 用于材料表面处理的具有耦合激光器的连续炉

Country Status (5)

Country Link
US (1) US8278589B2 (zh)
EP (1) EP1992445B1 (zh)
CN (2) CN101410220B (zh)
ES (2) ES2294919B1 (zh)
WO (1) WO2007101900A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220732B4 (de) * 2013-10-14 2015-09-03 Trumpf Laser Gmbh Laserbearbeitungsmaschine und Schutzumhausung zur Bearbeitung eines Werkstücks
EP3242959B1 (en) * 2015-01-09 2019-05-01 Illinois Tool Works Inc. Inline laser-based system and method for thermal treatment of continuous products
WO2016111704A1 (en) 2015-01-09 2016-07-14 Illinois Tool Works Inc. Inline plasma-based system and method for thermal treatment of continuous products
EP3378847B1 (en) 2017-03-21 2021-09-01 Sociedad Anónima Minera Catalano-Aragonesa Procedure for decorating ceramic materials produced with inorganic polymers
CN107816888B (zh) * 2017-10-30 2023-06-20 京东方科技集团股份有限公司 烧结装置及其烧结方法
US20230322618A1 (en) 2020-03-02 2023-10-12 Consejo Superior De Investigaciones Científicas Method for modifying a vitreous material
CN113651523B (zh) * 2021-10-19 2022-01-28 北京大学 超高品质因子微棒腔制备装置及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US944428A (en) 1906-03-02 1909-12-28 Heinrich Goehrig Superheater.
JPS52143755A (en) * 1976-05-26 1977-11-30 Hitachi Ltd Laser, zone melting device
US4764102A (en) * 1986-04-22 1988-08-16 Ig-Technical Research Inc. Continuous elongate ceramic article manufacturing system
NO162957C (no) * 1986-04-30 1990-03-14 Norske Stats Oljeselskap Fremgangsmaate for fremstilling av et kromoksydbelegg.
JPH02310363A (ja) * 1989-05-24 1990-12-26 Mitsubishi Electric Corp レーザ蒸着装置
JPH0639572A (ja) * 1991-01-11 1994-02-15 Souei Tsusho Kk ウェハ割断装置
DE4130952A1 (de) * 1991-09-18 1993-04-01 Mtu Muenchen Gmbh Spiegelofen und heizverfahren
DE4234342C2 (de) 1992-10-12 1998-05-14 Fraunhofer Ges Forschung Verfahren zur Materialbearbeitung mit Laserstrahlung
US5857961A (en) 1995-06-07 1999-01-12 Clarus Medical Systems, Inc. Surgical instrument for use with a viewing system
US6064034A (en) * 1996-11-22 2000-05-16 Anolaze Corporation Laser marking process for vitrification of bricks and other vitrescent objects
US6107614A (en) * 1997-09-05 2000-08-22 Hed International Inc. Continuous microwave furnace having a plurality of furnace modules forming an improved heating configuration
US6852948B1 (en) * 1997-09-08 2005-02-08 Thermark, Llc High contrast surface marking using irradiation of electrostatically applied marking materials
EP1023821B1 (en) * 1997-10-06 2002-01-02 Ford Motor Company Method for connecting surface mount components to a substrate
DE19816442C2 (de) * 1998-04-14 2002-02-28 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Oberflächenstrukturierung von verlegten Fußbodenbelägen
CN2463100Y (zh) * 2001-02-13 2001-12-05 武汉华工激光工程有限责任公司 轧辊的激光表面处理设备
US6566626B2 (en) * 2001-07-03 2003-05-20 Laserglass Ltd. Method and apparatus for generating color images in a transparent medium
KR100885904B1 (ko) * 2001-08-10 2009-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레이저 어닐링장치 및 반도체장치의 제작방법
US6583385B1 (en) * 2001-12-19 2003-06-24 Visteon Global Technologies, Inc. Method for soldering surface mount components to a substrate using a laser
KR20030095313A (ko) * 2002-06-07 2003-12-18 후지 샤신 필름 가부시기가이샤 레이저 어닐링장치 및 레이저 박막형성장치
US6635846B1 (en) * 2002-08-02 2003-10-21 Albert S. Rieck Selective laser compounding for vitrescent markings
KR100462359B1 (ko) * 2004-08-18 2004-12-17 주식회사 이오테크닉스 폴리곤 미러를 이용한 레이저 가공장치 및 방법

Also Published As

Publication number Publication date
CN101410220A (zh) 2009-04-15
CN102584256A (zh) 2012-07-18
ES2294919B1 (es) 2009-02-16
WO2007101900A1 (es) 2007-09-13
EP1992445A1 (en) 2008-11-19
EP1992445B1 (en) 2019-08-07
ES2294919A1 (es) 2008-04-01
CN101410220B (zh) 2012-06-20
US20090230105A1 (en) 2009-09-17
US8278589B2 (en) 2012-10-02
EP1992445A4 (en) 2010-12-15
ES2764444T3 (es) 2020-06-03

Similar Documents

Publication Publication Date Title
CN102584256B (zh) 用于在连接有激光器的炉中进行材料表面处理的连续方法
Gahler et al. Direct laser sintering of Al2O3–SiO2 dental ceramic components by layer‐wise slurry deposition
US20170157850A1 (en) Multi-wavelength laser rapid prototyping system and method
US8502107B2 (en) Method and apparatus for making products by sintering and/or melting
EP2878409B1 (en) Method of and device for controlling an irradiation system
CN1043753C (zh) 陶瓷制品的局部表面上釉方法以及实施该方法的装置
CN107000321A (zh) 增材制造设备和方法
EP2292357A1 (en) Ceramic or glass-ceramic article and methods for producing such article
US20080085368A1 (en) Method and Apparatus for Coating a Substrate
US5847357A (en) Laser-assisted material spray processing
BR9107121A (pt) Processo para a producao de uma peca e peca
JP6276824B2 (ja) 加熱システムを含む三次元加工物の製造装置
CN1847416A (zh) 辊底式u型余热利用退火炉
EP3442732A1 (en) High-productivity apparatus for additive manufacturing and method of additive manufacturing
CN104985180A (zh) 一种增韧的金属间化合物及其制备方法及设备
WO2019031979A1 (en) ADDITIVE MANUFACTURING APPARATUS COMPRISING A THERMAL SHIELD TO PREVENT HEAT LOSSES FROM A BED OF POWDER
CN102358914A (zh) 激光表面淬火淬硬层深度均匀性控制方法及其装置
JP7023532B2 (ja) 発泡金属の製造方法
US20200038955A1 (en) Reactive precursors for unconventional additive manufactured components
CN101428978A (zh) 一种陶瓷或玻璃的烤花方法
CN101678510A (zh) 用于在沿着分割-或额定断裂线应用非对称的能量输入的情况下制造工件的方法
JP2024519974A (ja) 3dプリントのための熱伝達装置
Willert-Porada et al. Additive manufacturing of ceramic composites by laser assisted microwave plasma processing, LAMPP
CN203509349U (zh) 激光打点装置
JP3241066B2 (ja) レーザによるセラミックスの曲げ加工方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant