CN102576744A - 半导体层材料和异质结太阳能电池 - Google Patents

半导体层材料和异质结太阳能电池 Download PDF

Info

Publication number
CN102576744A
CN102576744A CN2010800382311A CN201080038231A CN102576744A CN 102576744 A CN102576744 A CN 102576744A CN 2010800382311 A CN2010800382311 A CN 2010800382311A CN 201080038231 A CN201080038231 A CN 201080038231A CN 102576744 A CN102576744 A CN 102576744A
Authority
CN
China
Prior art keywords
semiconductor layer
layer
layer material
ground floor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800382311A
Other languages
English (en)
Other versions
CN102576744B (zh
Inventor
T.瓦格纳
R.勒尔维尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN102576744A publication Critical patent/CN102576744A/zh
Application granted granted Critical
Publication of CN102576744B publication Critical patent/CN102576744B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

本发明涉及尤其是作为用于异质结太阳能电池的发射体材料使用的半导体层材料,其被构成为分别由多个交替地上下叠置地布置的第一和第二层组成的堆叠,其中第一层由元素的多晶半导体组成,并且第二层由半导体的亚化学计量的电绝缘化合物尤其是氧化物、碳化物或氮化物组成,并且其中通过退火这样不规则地对在第一和第二层之间的界面进行结构化,使得在相邻的通过第二层相互分开的第一层之间构造微接触区域。

Description

半导体层材料和异质结太阳能电池
技术领域
本发明涉及一种尤其是用于作为用于太阳能电池的发射体材料使用的半导体层材料以及一种异质结太阳能电池。
背景技术
在所谓的可再生能量下,太阳能在以下程度上变得有意义,即如何实现降低太阳能电池模块和整个设备的成本和提高能量产量并且从而总地使每单位产生的电能的成本接近在基于化石载能体产生能量时设置经济标准的值。各个电池的光电产量在此起重要作用。
与同质结电池相比,利用异质结太阳能电池可以由于发射体的较低的反向饱和电流而获得明显较高的电压。异质结电池的效率潜能绝对地超过同质结电池的效率潜能1-2%。迄今可用的异质结太阳能电池具有由非晶硅(aSi)组成的掺杂异质发射体,参见M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano的“Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT(Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”(Jpn. J. Appl. Phys., 31, 3518-22(1992))和T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Akahama, K. Wakisaka, S. Tsuda, S. Nakano的“High efficiency a-Si/c-Si heterojunction solar cell”(Conference Record of the 1st WCPEC, 夏威夷, 1994, 1219-1226)。
发射体的掺杂能够实现pn结的形成并且从而能够实现通过太阳光生成的载流子的提取。但是,通常在5nm和20nm之间厚的非晶硅层的最重要的任务在该情况下是钝化太阳能电池的晶片表面并且从而减小通过太阳光产生的载流子的复合速率,由此太阳能电池中的载流子的浓度提高。由于较高的载流子浓度,而在电池中发生准费米能级的较大的分裂,这与在太阳能电池处较高的可达电压意义相同。
不过,aSi发射体的高掺杂导致,在发射体中吸收的光不贡献于在太阳能电池中的电流产生;参见T. Mueller, S. Schwertheim, M. Scherff, W. R. Fahner的“High quality passivation for heterojunction solar cells by hydrogenated amorphous Silicon suboxide films”(Appl. Phys. Lett., 92, 033504 (2008))。在发射体中所吸收的光为能量转换而丢失。
作为在异质电池中aSi的替代材料已经测试由SiC或SiOx组成的钝化层,参见S. Miyajima, M. Sawamura, A. Yamada, M. Konagai的 “Properties of n-type hydrogenated nanocrystalline cubil Silicon carbide films deposited by VHF-PECVD at IowSubstrate temperatures”(J. Non cyrst. Solides, 354, 2350 (2008))。也已经研究了在异质结太阳能电池中使用嵌入到SiO2中的、由微晶硅组成的材料的可能性(SIPOS概念);参见E. Yablonovich, T. Gmitter, R. M. Swanson, Y. H. Kwark的“A 720 mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell”(Appl. Phys. Lett, 47, 1211(1985))。
最后所述类型的材料具有比较小的导电性,其限制应用可能性。该问题直至一定程度上通过另一比较新的材料解决,该另一比较新的材料由硅和亚化学计量的SiOx制成的交替的分别几个纳米厚的层组成,参见R. Rölver, B. Berghoff, D. Bätzner, B. Spangenberg, H. Kurz的“Charge transport in Si/SiO2 multiple quantum wells for all Silicon tandem solar cells”(Proceedings of the 22nd EU PVSEC, 米兰(2007)) 。此外,硅基础上的所谓叠层(Tandem)太阳能电池是已知的,其中使用由交替的Si层和SiOx层组成的堆叠作为太阳能电池的吸收光的层和产生载流子的层。
发明内容
本发明所基于的任务是提供一种用于实现异质结太阳能电池的发射体层的改善的解决方案,其尤其是将良好的钝化特性与足够高的导电性以及对于太阳光的有效分量的高透明度相关联。
该任务在提供适当的材料的意义上通过具有权利要求1的特征的半导体层材料的提供以及在产品解决方案的意义上通过具有权利要求9的特征的异质结太阳能电池解决。发明思想的有益的改进是从属权利要求的主题。
这里所建议的作为异质发射体的基于Si的纳米结构材料的最重要的优点是与迄今所使用的非晶硅相比小得多的光吸收作用,由此可以显著最小化在电“死(toten)”非晶Si层中由于光吸收作用的损耗。换句话说,本发明带来以下优点,即减小通过在发射体中所吸收的光子引起的损耗,这导致太阳能电池中的改善的电流产量并且从而导致较大的可达的效率,其中材料具有可比的电特性(表面钝化和导电性)。
本发明的基本思想是,提供一种新式的Si纳米结构材料,该Si纳米结构材料由于其纳米晶体结构而具有比迄今所使用的非晶Si高得多的光学透明度,但是同时显示相似良好的钝化特性和相似良好的导电性。预算表明,利用所建议的Si纳米结构发射体由于其较高的光学透明度而可以达到绝对地与具有常规非晶Si发射体的异质电池相比直至2%的效率改善。
该纳米结构材料尤其是通过在低于10nm的层厚范围中交替地沉积亚化学计量氧化硅(SiOx)层(可替代地也为碳化硅(SiCx)层或者氮化硅(SiNx)层)和硅层来产生。通过特别是在1000oC左右或在1000oC之上接着退火,发生在SiOx(可替代地SiCx,SiNx)中剩余的硅的相位分离并且由此发生有损于SiOx层[6]的Si层的各向同性生长。形成在相邻的多晶硅层之间的接触点,由此产生由Si晶体组成的导电网络。
所建议的层材料原则上除了这里所建议地作为异质结太阳能电池的发射体材料来使用之外也可以被使用。在现有任务的范围内特别有利的实施方案规定,通过第二层构成堆叠的限制层并且在其外侧,与之相邻的第一层的微接触区域暴露。
这里需要的概念“纳米结构材料”意味着,至少第一层具有纳米晶体结构。在优选的扩展方案中规定,第一和第二层的厚度分别处于1nm和20nm之间、优选2nm和10nm之间的范围中。此外规定,尤其是总厚度处于5nm和100nm之间、优选10nm和60nm之间的范围中。此外被认为有利的是,层的总数目处于4和20之间、优选地8和16之间。
如果掺杂所提及的类型的网络,则其在太阳能电池中可以被用作发射体。半导体材料(这里尤其是硅)在有利的扩展方案中以处于1018至1020cm-3、尤其是5×1018至5×1019cm-3范围中的浓度作为p材料用磷掺杂或者作为n材料用硼掺杂。通过该网络的仅在各个点形成与相邻层的接触的特性,当在异质结太阳能电池中使用时仅产生在发射体层和硅晶片之间的准点状的结,而晶片表面的大部分通过SiO2(可替代地SiC,SiN)钝化。由此保持晶片表面的良好钝化的也在常规的异质太阳能电池中被充分利用的优点。
附图说明
此外,本发明的优点和有益性从根据附图的以下阐述中得出。其中:
图1作为剖视图示出异质结太阳能电池的构造的示意图,
图2A和2B示出在沉积层堆叠(图2A)之后以及在接着退火(图2B)之后在半导体衬底上的根据本发明的半导体层材料的实施形式的示意剖视图,
图3示出非晶硅(实线)和根据本发明的半导体层材料(虚线)的吸收谱的比较式图形表示,和
图4作为电流密度电压特性曲线示出所建议的半导体层材料的不同实施形式的导电性的比较式图形表示。
具体实施方式
图1以示意剖视图示出在p型或n型导电的Si半导体衬底3上的异质结太阳能电池1的构造。在Si衬底3上布置异质发射体层5并且在该异质发射体层上布置TCO层7。在前侧,通过局部前侧接触部9补充层构造并且在后侧通过整面的后侧接触部11补充层构造。
图2A和2B示出在硅衬底30上的由半导体层材料组成的堆叠50’或50,所述半导体层材料在按照图1的太阳能电池构造的情况下可以被用作异质发射体层5。图2A示出在第一方法阶段之后用数字50’表示的堆叠,并且图2B示出在第二方法阶段之后然后用数字50表示的堆叠,并且堆叠的各个层的参考数字(参见下面)与此对应地被形成。
如在图2A中可以良好识别出的那样,层堆叠通过相继的、尤其是互相重叠地沉积的Si层51’“第一层”和作为第二层的SiO层52’构成。可以识别出,堆叠的与硅衬底30最近相邻的层是SiO层52’,也即这里也称为“第二层”的层。堆叠的覆盖层也通过这样的第二层52’构成。Si层51’被掺杂,并且SiO层52’是亚化学计量层,并且层厚分别低于10nm。
图2B示出在温度>1000oC时接着退火的结果中产生的构造50,其中在第一和第二层之间的界面这样不规则地被结构化,使得在分别通过第二层52相互分开的相邻的第一层51之间以及在与硅衬底30的界面处构成微接触区域(“点接触”)50a。构造具有对于根据本发明的层结构的功能重要的微接触区域的该结构与在退火时离解Si和亚化学计量SiO2相联系,在其范围中Si种子层各向同性地生长。在退火之后才实现在图1中所示类型的太阳能电池情况下接触用作异质发射体层的层堆叠的自由表面。
图3示出,有利地作为发射体材料的根据本发明所构建的半导体层材料的吸收系数(虚线)处于在大约680nm之下的范围中、也即在可见光的范围中,低于由非晶硅的可比层的吸收系数(实线)。
图4最后示出由具有在退火之前分别为60nm的总厚度和第一层的一致厚度(3nm)以及第二层的不同厚度(1.5-5nm)的Si和SiOx组成的不同构建的半导体层堆叠的电流密度电压特性曲线。可以识别出,相应的测量值良好地与分别计算的曲线一致(除了对于具有5nm厚的SiOx层的实施方案而言处于3V之下的电压之外)。尤其是也可以识别出,通过选择第二层的厚度有可能在广阔的范围中调整所建议的半导体层材料的导电性。
本发明的实施方案不局限于上述例子和所强调的方面,而是同样处于按照专业的商业范围内的大量变换也是可能的。

Claims (10)

1.尤其是用于作为异质结太阳能电池的发射体材料使用的半导体层材料,其被构成为分别由多个交替地上下重叠地布置的第一和第二层组成的堆叠,其中第一层由元素的多晶半导体组成,并且第二层由半导体的亚化学计量的电绝缘化合物尤其是氧化物、碳化物或氮化物组成,并且其中通过退火不规则地对在第一和第二层之间的界面进行结构化,使得在相邻的通过第二层相互分开的第一层之间构造微接触区域。
2.根据权利要求1所述的半导体层材料,其中所述堆叠的限制层由第二层构成,并且在其外侧,与之相邻的第一层的微接触区域暴露。
3.根据权利要求1或2所述的半导体层材料,其中半导体是硅。
4.根据前述权利要求之一所述的半导体层材料,其中半导体以处于1018至1020cm-3、尤其是5×1018至5×1019cm-3范围中的浓度作为p材料用磷掺杂或者作为n材料用硼掺杂。
5.根据前述权利要求之一所述的半导体层材料,其中至少第一层具有纳米晶体结构。
6.根据前述权利要求之一所述的半导体层材料,其中第一和第二层的厚度分别处于1nm和20nm之间、优选2nm和10nm之间的范围中。
7.根据前述权利要求之一所述的半导体层材料,其中总厚度处于5nm和100nm之间、优选10nm和60nm之间的范围中。
8.根据前述权利要求之一所述的半导体层材料,其中层的总数目处于4和20之间、优选地8和16之间。
9.异质结太阳能电池,具有半导体衬底和之上所布置的构成太阳能电池的外部表面的掺杂的异质发射体层,所述异质发射体层同时作为钝化层起作用并且通过根据权利要求2至8之一所述的半导体层材料构成,其中半导体层材料的外侧与半导体衬底相邻,在所述外侧处,第一层的微接触区域暴露。
10.根据权利要求9所述的异质结太阳能电池,其中半导体衬底是硅晶片。
CN201080038231.1A 2009-08-31 2010-07-07 半导体层材料和异质结太阳能电池 Expired - Fee Related CN102576744B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009029017.6 2009-08-31
DE102009029017A DE102009029017A1 (de) 2009-08-31 2009-08-31 Halbleiter-Schichtmaterial und Heteroübergangs-Solarzelle
PCT/EP2010/059695 WO2011023441A2 (de) 2009-08-31 2010-07-07 Halbleiter-schichtmaterial und heteroübergangs-solarzelle

Publications (2)

Publication Number Publication Date
CN102576744A true CN102576744A (zh) 2012-07-11
CN102576744B CN102576744B (zh) 2016-02-10

Family

ID=43524809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080038231.1A Expired - Fee Related CN102576744B (zh) 2009-08-31 2010-07-07 半导体层材料和异质结太阳能电池

Country Status (5)

Country Link
US (1) US20120211064A1 (zh)
EP (1) EP2474041A2 (zh)
CN (1) CN102576744B (zh)
DE (1) DE102009029017A1 (zh)
WO (1) WO2011023441A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120318336A1 (en) * 2011-06-17 2012-12-20 International Business Machines Corporation Contact for silicon heterojunction solar cells
EP2595193A1 (en) * 2011-11-16 2013-05-22 Hitachi, Ltd. Multiple quantum well structure
JP2014027119A (ja) * 2012-07-27 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> 太陽電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957478A (zh) * 2004-04-30 2007-05-02 新南创新有限公司 人造无定形半导体及其在太阳能电池中的应用
US20080110486A1 (en) * 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
CN101183689A (zh) * 2006-11-15 2008-05-21 通用电气公司 分级混合式非晶硅纳米线太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957478A (zh) * 2004-04-30 2007-05-02 新南创新有限公司 人造无定形半导体及其在太阳能电池中的应用
US20080110486A1 (en) * 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
CN101183689A (zh) * 2006-11-15 2008-05-21 通用电气公司 分级混合式非晶硅纳米线太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.ROLVER ET AL: "Si/SiO2 multiple quantum wells for all silicon tandem cells:Conductivity and photocurrent measurements", 《THIN SOLID FILMS》 *

Also Published As

Publication number Publication date
CN102576744B (zh) 2016-02-10
DE102009029017A1 (de) 2011-03-03
WO2011023441A3 (de) 2012-03-29
EP2474041A2 (de) 2012-07-11
WO2011023441A2 (de) 2011-03-03
US20120211064A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
CN102388466B (zh) 光伏电池
Taguchi et al. Obtaining a higher Voc in HIT cells
US9246033B2 (en) Contact for silicon heterojunction solar cells
EP3391419A1 (en) Tandem solar cell and method for manufacturing such a solar cell
US20050081910A1 (en) High efficiency tandem solar cells on silicon substrates using ultra thin germanium buffer layers
US20080110486A1 (en) Amorphous-crystalline tandem nanostructured solar cells
JP2018535554A (ja) 電荷担体の選択的接合を介して相互接続される複数の吸収体を備えた太陽電池
CN104681648A (zh) 太阳能电池及其制造方法
US11011662B2 (en) Field-effect photovoltaic elements
CN105390558A (zh) 太阳能电池及其制造方法
CN105244389B (zh) 太阳能电池
US20150340528A1 (en) Monolithic tandem voltage-matched multijuntion solar cells
KR101846444B1 (ko) 태양 전지
CN108352420B (zh) 光伏器件及其制造方法
US20140014169A1 (en) Nanostring mats, multi-junction devices, and methods for making same
EP2246905A2 (en) Multijunction photovoltaic structure with three-dimensional subcell and method thereof
EP0241226A2 (en) Semiconductor device and method of making it
CN102576744A (zh) 半导体层材料和异质结太阳能电池
US20140373919A1 (en) Photovoltaic cell and manufacturing process
US11239378B2 (en) Solar cell with reduced surface recombination
US11211512B2 (en) Semiconductor component having a highly doped quantum structure emitter
KR20090019600A (ko) 고효율 태양전지 및 그의 제조방법
KR101079027B1 (ko) 광기전력 장치의 제조 방법
JP5548908B2 (ja) 多接合太陽電池の製造方法
Rienäcker et al. Rear side dielectrics on interdigitating p+-(i)-n+ back-contact solar cells− hydrogenation vs. charge effects

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160210

Termination date: 20170707

CF01 Termination of patent right due to non-payment of annual fee