CN102544230A - A Method of Growing Cd1-xZnxTe Films with Variable Bandgap Width - Google Patents
A Method of Growing Cd1-xZnxTe Films with Variable Bandgap Width Download PDFInfo
- Publication number
- CN102544230A CN102544230A CN2012100399239A CN201210039923A CN102544230A CN 102544230 A CN102544230 A CN 102544230A CN 2012100399239 A CN2012100399239 A CN 2012100399239A CN 201210039923 A CN201210039923 A CN 201210039923A CN 102544230 A CN102544230 A CN 102544230A
- Authority
- CN
- China
- Prior art keywords
- film
- czt
- sublimation
- films
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000000859 sublimation Methods 0.000 claims abstract description 30
- 230000008022 sublimation Effects 0.000 claims abstract description 30
- 238000000151 deposition Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 7
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 238000004821 distillation Methods 0.000 claims 2
- 239000010408 film Substances 0.000 abstract description 36
- 239000010409 thin film Substances 0.000 abstract description 18
- 239000013078 crystal Substances 0.000 abstract description 11
- 229910004611 CdZnTe Inorganic materials 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000005092 sublimation method Methods 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 3
- 239000006096 absorbing agent Substances 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract 2
- 230000001737 promoting effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 3
- 229910007709 ZnTe Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明涉及的是一种Cd1-xZnxTe(CZT)薄膜的制备方法,属于无机非金属材料器件制造工艺领域。其中CZT薄膜制备方法是:采用掺少量Zn(x小于1%)的Cd1-xZnxTe多晶或单晶圆盘做升华源,用近空间升华法直接制备x<50%的Cd1-xZnxTe薄膜。采用CZT薄膜制备作为叠层太阳能电池顶层吸收层有利于促进低成本、高转化效率太阳能电池的发展,同时CdZnTe薄膜也可应用于高能粒子探测器。
The invention relates to a preparation method of a Cd 1-x Zn x Te (CZT) thin film, which belongs to the field of manufacturing technology of inorganic non-metallic material devices. The CZT thin film preparation method is: use Cd 1-x Zn x Te polycrystalline or single crystal disk doped with a small amount of Zn (x is less than 1%) as the sublimation source, and directly prepare Cd 1 with x<50% by the near-space sublimation method -x Zn x Te film. The use of CZT thin films as the top absorber layer of tandem solar cells is conducive to promoting the development of low-cost, high-conversion-efficiency solar cells, and CdZnTe thin films can also be used in high-energy particle detectors.
Description
技术领域 technical field
本发明涉及一种生长可变禁带宽度的Cd1-xZnxTe薄膜的方法,属于无机非金属材料器件制造工艺领域。 The invention relates to a method for growing a Cd 1-x Zn x Te thin film with a variable forbidden band width, and belongs to the field of manufacturing technology of inorganic non-metallic material devices.
背景技术 Background technique
能源是人类文明赖以发展的重要物质基础。当今世界,随着地球资源的日益减少和人类对能源需求的不断增加,能源危机已经迫在眉睫。为了生存和发展,人类必须寻求可以替代常规能源的可再生的洁净新能源,其中首选太阳能发电。太阳能具有储存巨大,永不枯竭,清洁无污染、不受地域限制等优点,是人类最重要的新能源。利用太阳能电池的光伏效应进行发电,已经成为太阳能规模利用的最重要的方式。 Energy is an important material basis for the development of human civilization. In today's world, with the dwindling of earth resources and the increasing demand for energy, the energy crisis is imminent. In order to survive and develop, human beings must seek renewable and clean new energy sources that can replace conventional energy sources, among which solar power generation is the first choice. Solar energy has the advantages of huge storage, inexhaustibility, cleanness and pollution-free, and no geographical restrictions. It is the most important new energy source for human beings. Using the photovoltaic effect of solar cells to generate electricity has become the most important way for large-scale utilization of solar energy.
目前太阳能电池主要包括晶体硅电池和薄膜太阳能电池,其中薄膜太阳能电池因高温下输出特性好,弱化性好,污染少,有利于环境保护,发电量高,可塑性好,生产用料少,价格便宜等优点成为太阳能光伏电池的发展趋势。但是当前薄膜电池组件的转换效率还比较低,其中最高的铜铟镓硒(CIGS)电池的实验室最高效率为19.9%而工业上量产的效率才13.1%。为了进一步提高该薄膜太阳能电池的效率,可以通过双结叠层电池来实现。即让波长较短的光被顶层的宽隙材料电池吸收,波长较长的光能透射进去让较窄禁带宽度材料电池利用,从而最大限度地将光能变成电能,提高转换效率。国际上认为用禁带宽度为0.9 eV的CIGS材料做叠层太阳能电池的底层电池,而相应的顶层电池理想材料的禁带宽度应该为1.6eV左右。对此,大家广泛研究的主要是Cd1-xZnxTe(CZT)薄膜,其禁带宽度可以随Zn含量的不同在1.45(CdTe)~2.26eV(ZnTe)之间连续可调。而掺Zn10%(at.%)的CdZnTe薄膜也可做高能粒子探测器。目前,国际上主要采用近空间升华法制备CdTe薄膜然后用磁控溅射方法在CdTe薄膜上生长ZnTe薄膜,接着对薄膜进行退火,这样在CdTe/ZnTe的界面处生成CZT薄膜,这种方法生长CdZnTe薄膜的工艺比较复杂,而且CZT薄膜中Zn含量不容易控制。也有研究小组采用Cd1-xZnxTe粉末为近空间升华源来尝试生长Cd1-xZnxTe薄膜,研究发现即使采用x最大为0.7的Cd1-xZnxTe源,也无法生长出x大于0.1的Cd1-xZnxTe薄膜。因此本发明提出采用掺少量Zn(x小于1%)的Cd1-xZnxTe多晶或单晶圆盘做升华源,在较高真空下用近空间升华法直接制备x<50%的Cd1-xZnxTe薄膜。 At present, solar cells mainly include crystalline silicon cells and thin-film solar cells. Among them, thin-film solar cells have good output characteristics at high temperatures, good attenuation, less pollution, are conducive to environmental protection, high power generation, good plasticity, less production materials, and low prices. And other advantages become the development trend of solar photovoltaic cells. However, the conversion efficiency of current thin-film battery components is still relatively low. Among them, the highest laboratory efficiency of copper indium gallium selenide (CIGS) battery is 19.9%, while the efficiency of industrial mass production is only 13.1%. In order to further improve the efficiency of this thin film solar cell, it can be realized by a double-junction tandem cell. That is, let the light with shorter wavelength be absorbed by the wide-gap material cell on the top layer, and the light with longer wavelength can be transmitted in to be used by the material cell with narrower bandgap width, so as to maximize the conversion of light energy into electrical energy and improve conversion efficiency. Internationally, it is believed that the CIGS material with a bandgap of 0.9 eV is used as the bottom cell of the tandem solar cell, and the corresponding bandgap of the ideal material for the top cell should be about 1.6eV. In this regard, the Cd 1-x Zn x Te (CZT) film is widely studied, and its forbidden band width can be continuously adjusted between 1.45 (CdTe) and 2.26eV (ZnTe) with different Zn content. The CdZnTe film doped with Zn10% (at.%) can also be used as a high-energy particle detector. At present, the CdTe film is mainly prepared by the near-space sublimation method in the world, and then the ZnTe film is grown on the CdTe film by the magnetron sputtering method, and then the film is annealed, so that the CZT film is formed at the interface of CdTe/ZnTe. The process of CdZnTe film is complicated, and the Zn content in CZT film is not easy to control. There are also research groups using Cd 1-x Zn x Te powder as the near-space sublimation source to try to grow Cd 1-x Zn x Te thin films, and found that even if the Cd 1-x Zn x Te source with a maximum x of 0.7 is used, it cannot grow Cd 1-x Zn x Te films with x greater than 0.1 were produced. Therefore, the present invention proposes to use a Cd 1-x Zn x Te polycrystalline or single crystal disk doped with a small amount of Zn (x is less than 1%) as a sublimation source, and directly prepares a Cd 1-x Zn x Te polycrystalline disc with a near space sublimation method of x<50% in a relatively high vacuum. Cd 1-x Zn x Te films.
发明内容 Contents of the invention
本发明的内容是采用掺少量Zn4% (at.%)的CdZnTe多晶或单晶圆盘做升华源,用近空间升华法直接制备CZT薄膜作为太阳能电池的吸收层,随着衬底温度的变化生长的CZT薄膜中Zn含量会发生变化,从而可以制备不同禁带宽度的CZT薄膜,这可以为制备高转换效率的薄膜太阳能电池提供一种新材料和新工艺。 The content of the present invention is to adopt the CdZnTe polycrystalline or single-crystal disc doped with a small amount of Zn4% (at.%) to make the sublimation source, directly prepare the CZT thin film as the absorption layer of the solar cell with the sublimation method in close space, with the increase of the substrate temperature The Zn content in the variable-grown CZT film will change, so that CZT films with different bandgap widths can be prepared, which can provide a new material and new process for preparing thin-film solar cells with high conversion efficiency.
本发明的主要特征在于本发明中获得的CZT薄膜,采用较简单的工艺制备出Zn比例较高的不同禁带宽度的CZT薄膜做太阳能电池的吸收层。 The main feature of the present invention is that the CZT thin film obtained in the present invention adopts a simpler process to prepare CZT thin films with higher Zn ratio and different forbidden band widths as the absorbing layer of the solar cell.
为达到上述目的,本发明采用下述技术方案及步骤: To achieve the above object, the present invention adopts following technical solutions and steps:
将透明导电玻璃(SnO2:F)放入近空间升华沉积设备的样品台上,在上面沉积CZT薄膜;沉积薄膜前先用真空泵对升华室抽真空至5Pa,升华源为掺Zn 4% (at.%)的CdZnTe晶体圆盘,升华源温度650°C,样品衬底温度300~500°C,腔体气压为1 Pa~10KPa,升华时间为30分钟,最终可实现x为5%-50%的Cd1-xZnxTe薄膜的可控沉积。 Put the transparent conductive glass (SnO 2 :F) on the sample stage of the near-space sublimation deposition equipment, and deposit the CZT film on it; before depositing the film, use a vacuum pump to evacuate the sublimation chamber to 5Pa, and the sublimation source is doped with Zn 4% ( at.%) CdZnTe crystal disk, the sublimation source temperature is 650°C, the sample substrate temperature is 300-500°C, the cavity pressure is 1 Pa-10KPa, the sublimation time is 30 minutes, and the final x can be achieved at 5%- Controlled deposition of 50% Cd 1-x Zn x Te films.
本发明同现有技术相比,具有如下显著优点: Compared with the prior art, the present invention has the following significant advantages:
(1)本发明的CZT薄膜太阳能电池,采用掺Zn 4% (at.%)的CdZnTe多晶或单晶晶体圆盘做为升华源,用我们自制的CdZnTe晶体单源生长CZT薄膜工艺操作方便,仅需调节衬底温度就可以生长变禁带宽度的CZT薄膜。 (1) The CZT thin film solar cell of the present invention adopts CdZnTe polycrystalline or single crystal crystal discs doped with Zn 4% (at.%) as the sublimation source, and the CZT thin film process is easy to operate with our self-made CdZnTe crystal single source growth process , CZT films with variable bandgap width can be grown only by adjusting the substrate temperature.
(2)改变样品衬底温度从300°C到500°C,使薄膜中Zn掺杂量从8.5%到45.8% (at.%),可以生成禁带宽度1.5eV变化到1.7eV左右的CZT薄膜,而目前国际上的研究机构使用掺Zn 较少的Cd1-x ZnxTe粉末做升华源,很难制备出Zn含量大于10%的CZT薄膜。我们制备出的高Zn含量的CZT薄膜非常适合做叠层电池的顶层吸收层,从而提高CIGS/CZT叠层薄膜太阳能电池的光电转换效率。同时此工艺方法也可应用于薄膜CdZnTe高能粒子探测器。 (2) Change the temperature of the sample substrate from 300°C to 500°C, so that the Zn doping amount in the film is from 8.5% to 45.8% (at.%), and a CZT with a bandgap width of 1.5eV to about 1.7eV can be generated At present, international research institutions use Cd 1-x Zn x Te powder doped with less Zn as the sublimation source, and it is difficult to prepare CZT films with a Zn content greater than 10%. The CZT film with high Zn content prepared by us is very suitable as the top absorber layer of stacked cells, so as to improve the photoelectric conversion efficiency of CIGS/CZT stacked thin film solar cells. At the same time, this process method can also be applied to thin-film CdZnTe high-energy particle detectors.
附图说明 Description of drawings
图1:不同衬底温度下制备的CZT薄膜X射线衍射图。 Figure 1: X-ray diffraction patterns of CZT films prepared at different substrate temperatures.
图2:不同衬底温度下制备的CZT薄膜的扫描电子显微镜图(a)300℃、(b)400℃、(c)450℃、(d)500℃。 Figure 2: Scanning electron microscope images of CZT films prepared at different substrate temperatures (a) 300°C, (b) 400°C, (c) 450°C, (d) 500°C.
具体实施方式 Detailed ways
现将本发明的实例具体叙述于后。 The examples of the present invention will now be described in detail below.
实施例 1:Example 1:
将透明导电玻璃(SnO2:F)放入近空间升华沉积设备的样品台上,在上面沉积CZT薄膜;沉积薄膜前先用真空泵对升华室抽真空至5Pa,升华源为掺少量Zn的Cd1-xZnxTe单晶圆盘,其中x=4%,源温度650°C,样品衬底温度500°C,腔体气压为10Pa,升华时间为30分钟。通过测量计算,该薄膜的禁带宽度为1.7eV。
Put the transparent conductive glass (SnO 2 :F) on the sample stage of the near-space sublimation deposition equipment, and deposit CZT film on it; before depositing the film, use a vacuum pump to evacuate the sublimation chamber to 5Pa, and the sublimation source is Cd doped with a small amount of Zn 1-x Zn x Te single crystal disc, where x=4%, source temperature 650°C,
实施例2:Example 2:
将透明导电玻璃(SnO2:F)放入近空间升华沉积设备的样品台上,在上面沉积CZT薄膜;沉积薄膜前先用真空泵对升华室抽真空至5Pa,升华源为掺少量Zn的Cd1-xZnxTe单晶圆盘,其中x=4%,源温度650°C,样品衬底温度450°C,腔体气压为10Pa,升华时间为30分钟。通过测量计算,该薄膜的禁带宽度为1.6eV。
Put the transparent conductive glass (SnO 2 :F) on the sample stage of the near-space sublimation deposition equipment, and deposit CZT film on it; before depositing the film, use a vacuum pump to evacuate the sublimation chamber to 5Pa, and the sublimation source is Cd doped with a small amount of Zn 1-x Zn x Te single crystal disc, where x=4%, source temperature 650°C,
实施例3:Example 3:
将透明导电玻璃(SnO2:F)放入近空间升华沉积设备的样品台上,在上面沉积CZT薄膜;沉积薄膜前先用真空泵对升华室抽真空至5Pa,升华源为掺少量Zn的Cd1-xZnxTe单晶圆盘,其中x=4%,源温度650°C,样品衬底温度400°C,腔体气压为10Pa,升华时间为30分钟。通过测量计算,该薄膜的禁带宽度为1.53eV。
Put the transparent conductive glass (SnO 2 :F) on the sample stage of the near-space sublimation deposition equipment, and deposit CZT film on it; before depositing the film, use a vacuum pump to evacuate the sublimation chamber to 5Pa, and the sublimation source is Cd doped with a small amount of Zn 1-x Zn x Te single crystal disk, where x=4%, source temperature 650°C,
实施例4:Example 4:
将透明导电玻璃(SnO2:F)放入近空间升华沉积设备的样品台上,在上面沉积CZT薄膜;沉积薄膜前先用真空泵对升华室抽真空至5Pa,升华源为掺少量Zn的Cd1-xZnxTe单晶圆盘,其中x=4%,源温度650°C,样品衬底温度300°C,腔体气压为10Pa,升华时间为30分钟。通过测量计算,该薄膜的禁带宽度为1.5eV。
Put the transparent conductive glass (SnO 2 :F) on the sample stage of the near-space sublimation deposition equipment, and deposit CZT film on it; before depositing the film, use a vacuum pump to evacuate the sublimation chamber to 5Pa, and the sublimation source is Cd doped with a small amount of Zn 1-x Zn x Te single crystal disk, where x=4%, source temperature 650°C,
表1:不同衬底温度下制备的CZT薄膜的Zn含量和禁带宽度 Table 1: Zn content and forbidden band width of CZT films prepared at different substrate temperatures
Claims (1)
- One kind the growth variable energy gap Cd 1-xZn xThe method of Te film, this method has following technical process:With transparent conducting glass SnO 2: F puts on the sample stage of near space distillation depositing device, deposits Cd in the above 1-xZn xThe Te film; Earlier sublimation chamber is evacuated to 5Pa before the deposit film with vacuum pump; The Cd of a small amount of Zn is mixed in employing 1-xZn xTe polycrystalline or monocrystalline disk are done sublimation source, x=4% wherein, and 550-650 ° of C of sublimation source temperature, 300~500 ° of C of sample substrate temperature, cavity air pressure is lower than 10 Pa, and the distillation time is 30 minutes, can realize that finally x is the Cd of 5%-50% 1-xZn xThe controllable deposition of Te film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100399239A CN102544230A (en) | 2012-02-22 | 2012-02-22 | A Method of Growing Cd1-xZnxTe Films with Variable Bandgap Width |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100399239A CN102544230A (en) | 2012-02-22 | 2012-02-22 | A Method of Growing Cd1-xZnxTe Films with Variable Bandgap Width |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102544230A true CN102544230A (en) | 2012-07-04 |
Family
ID=46350672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100399239A Pending CN102544230A (en) | 2012-02-22 | 2012-02-22 | A Method of Growing Cd1-xZnxTe Films with Variable Bandgap Width |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102544230A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103343389A (en) * | 2013-07-05 | 2013-10-09 | 上海大学 | Preparation method for CdZnTe film with cylindrical structure |
CN104952977A (en) * | 2015-05-15 | 2015-09-30 | 欧贝黎新能源科技股份有限公司 | Manufacturing method of inorganic thin film solar cell |
CN105161565A (en) * | 2015-06-29 | 2015-12-16 | 上海大学 | CdZnTe photoelectric detector comprising graphene transition layer, and preparation method for CdZnTe photoelectric detector |
CN108456847A (en) * | 2015-09-14 | 2018-08-28 | 北京师范大学 | The method of DLC films deposited and CZT semiconductor detectors on polycrystalline CZT |
CN110148627A (en) * | 2019-04-28 | 2019-08-20 | 上海大学 | CZT film composite material and preparation method thereof with metal buffer layer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102234765A (en) * | 2010-04-23 | 2011-11-09 | 昆明物理研究所 | Preparation method of target material for growing tellurium cadmium mercury film |
-
2012
- 2012-02-22 CN CN2012100399239A patent/CN102544230A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102234765A (en) * | 2010-04-23 | 2011-11-09 | 昆明物理研究所 | Preparation method of target material for growing tellurium cadmium mercury film |
Non-Patent Citations (1)
Title |
---|
袁研研等: "CSS法制备CdZnTe薄膜时衬底温度的影响规律", 《功能材料》, vol. 42, no. 5, 31 October 2011 (2011-10-31), pages 890 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103343389A (en) * | 2013-07-05 | 2013-10-09 | 上海大学 | Preparation method for CdZnTe film with cylindrical structure |
CN104952977A (en) * | 2015-05-15 | 2015-09-30 | 欧贝黎新能源科技股份有限公司 | Manufacturing method of inorganic thin film solar cell |
CN105161565A (en) * | 2015-06-29 | 2015-12-16 | 上海大学 | CdZnTe photoelectric detector comprising graphene transition layer, and preparation method for CdZnTe photoelectric detector |
CN108456847A (en) * | 2015-09-14 | 2018-08-28 | 北京师范大学 | The method of DLC films deposited and CZT semiconductor detectors on polycrystalline CZT |
CN108456847B (en) * | 2015-09-14 | 2019-11-01 | 北京师范大学 | The method of DLC films deposited and CZT semiconductor detector on polycrystalline CZT |
CN110148627A (en) * | 2019-04-28 | 2019-08-20 | 上海大学 | CZT film composite material and preparation method thereof with metal buffer layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102306666B (en) | Copper indium gallium selenium (CIGS) solar battery with gradient energy band and preparation method thereof | |
CN203481251U (en) | Thin film solar cell | |
CN102751388B (en) | A kind of preparation method of copper indium gallium selenide thin film solar cell | |
CN102800747A (en) | Preparation method of ZnS-cladded ZnO nanoarray core-shell structure | |
CN103077980A (en) | CIGS (copper indium gallium selenium) thin film solar cell and preparation method thereof | |
CN102176471B (en) | Textured structural ZnO:B (BZO)/ZnO:Ga/H (HGZO) composite thin film and application | |
CN102544230A (en) | A Method of Growing Cd1-xZnxTe Films with Variable Bandgap Width | |
CN102610673A (en) | Copper zinc tin sulfur compound thin-film solar cell and preparation method thereof | |
Kuwahata et al. | Impact of Zn1-xMgxO: Al transparent electrode for buffer-less Cu (In, Ga) Se2 solar cells | |
Hsueh et al. | Crystalline-Si photovoltaic devices with ZnO nanowires | |
CN103400903A (en) | Preparation method for improving grain size and density of CZTS film | |
CN103325879A (en) | High efficient three-lamination-layer heterojunction film solar cell and preparation method thereof | |
WO2013185506A1 (en) | Method for preparing copper indium gallium diselenide thin-film solar cell | |
CN103219413A (en) | Graphene radial heterojunction solar cell and preparation method thereof | |
CN102983215A (en) | Method for preparing silicon thin-film solar cells with silicon nano-wire structures | |
CN101820003B (en) | Double layer zinc oxide transparent conductive film for thin film solar cell and preparation method thereof | |
CN102629645A (en) | Method for producing novel CdS-CdZnTe thin-film solar cell | |
CN101615640A (en) | Zinc oxide based solar battery and preparation method thereof | |
CN101882653A (en) | Preparation method of solar cell based on nanometer CdS film | |
CN106711288A (en) | Method for manufacturing nano-crystalline silicon thin-film solar cell | |
CN102005487B (en) | Light absorption layer material for flexible thin film solar cell and preparation method thereof | |
CN105047736B (en) | Preparation method for cadmium-free buffer layer material of CIGS thin film solar cell | |
CN104377252A (en) | Flexible copper-based chalcogenide semiconductor thin-film solar cell window layer structure | |
CN103346213A (en) | Preparation method for solar cell absorbing layer | |
CN103280488A (en) | Preparation method of manganese-doped titanium dioxide film for strengthening photoelectric response of visible light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120704 |