CN102526744B - 一种药物组合物及其制备方法和应用 - Google Patents

一种药物组合物及其制备方法和应用 Download PDF

Info

Publication number
CN102526744B
CN102526744B CN 201010591760 CN201010591760A CN102526744B CN 102526744 B CN102526744 B CN 102526744B CN 201010591760 CN201010591760 CN 201010591760 CN 201010591760 A CN201010591760 A CN 201010591760A CN 102526744 B CN102526744 B CN 102526744B
Authority
CN
China
Prior art keywords
pharmaceutical composition
aspartic acid
poly
carrier
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010591760
Other languages
English (en)
Other versions
CN102526744A (zh
Inventor
陈春英
吴雁
焦芳
韩思媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Nanosccience and Technology China
Original Assignee
National Center for Nanosccience and Technology China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Nanosccience and Technology China filed Critical National Center for Nanosccience and Technology China
Priority to CN 201010591760 priority Critical patent/CN102526744B/zh
Publication of CN102526744A publication Critical patent/CN102526744A/zh
Application granted granted Critical
Publication of CN102526744B publication Critical patent/CN102526744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种药物组合物,所述药物组合物包括载体和负载在载体上的药物,其特征在于,该药物为水溶性药物,该载体为具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物,其中,n为15-30,x为10-120,y为10-120,z为10-120,A为具有式(2)所示结构的基团,R和R’各自独立地为碳原子数为15-21的烃基。本发明还提供了一种药物组合物的制备方法及其应用。本发明提供的药物组合物,特别是负载阿霉素的药物组合物,对肿瘤细胞,尤其是肺癌细胞、宫颈癌细胞和肝癌细胞都有较强的杀伤力,并具有持续释放作用和pH值敏感性。
Figure DDA0000038640060000011
式(1),
Figure DDA0000038640060000012
式(2)。

Description

一种药物组合物及其制备方法和应用
技术领域
本发明涉及一种药物组合物及其制备方法和应用。
背景技术
癌症是导致人类死亡的一个主要原因。在2007年全世界总死亡人数中,癌症占所有死亡人数的13%,达到790万。常规的癌症治疗方法有化学疗法、放射疗法、外科切除手术和生物治疗等。当今肿瘤治疗中存在很多问题,包括抗癌药物的非靶向系统分布、进入肿瘤后作用时间短以及治疗中产生的严重的毒副作用等。
目前各种治疗癌症的化学药物主要可以分为两大类,一大类是水溶性药物,另一大类是脂溶性药物。作为其代表的,水溶性药物如阿霉素,脂溶性药物如紫杉醇,都是具有很强的使癌细胞致死的小分子化学药物,阿霉素是一种广泛应用的抗肿瘤化疗药物,抗瘤谱较广,对多种肿瘤都表现出优异的抗肿瘤活性。阿霉素可抑制RNA和DNA的合成,属周期非特异性药物,对各种生长周期的肿瘤细胞都有杀伤作用。然而,阿霉素在临床应用中常造成的急性和亚急性的副作用有呕吐、骨髓抑制、脱发以及心脏毒性等,这些毒副作用严重限制了化疗药物的使用剂量和使用次数。因此,要将这些药物负载于载体上,利用载体将其运输至靶点细胞中。
随着纳米技术的快速发展,纳米技术应用于肿瘤治疗药物的输运方面的研究越来越多。纳米材料作为药物输送载体,可以提高药物的溶解性,延长药物在生物体内的循环时间,降低药物的毒副作用和提高药物的生物活性。然而,设计合适的纳米载药体系需要仔细斟酌药物的性能和对疾病的作用活性等。纳米载药体系需要有相应的功能,因此其结构应该是易于进行化学修饰的,聚合物作为纳米载药体系表现出明显的优势。当前,已经有十种以上的载有抗癌药物的聚合体纳米颗粒进入临床阶段,包括Xyotax,HPMA,MAG-CPT和HPMA-DOX等(Richards D A,Richards P,Bodkin D,et al.Efficacy and safety of paclitaxel poliglumex as first-line chemotherapy inpatients at high risk with advanced-stage non-small-cell lung cancer:results of aphase II study.Clin Lung Cancer,2005,7:215-220.Boddy A V,Plummer E R,Todd R,et al.A phase I and pharmacokinetic study of paclitaxel poliglumex(XYOTAX),investigating both 3-weekly and 2-weekly schedules.Clin CancerRes,2005,11:7834-7840)。一期和二期临床试验中,HPMA-DOX能大大降低蒽环类药物引起的毒性。
两亲性聚合物胶束属于纳米缔合胶体体系,是一种新型的药物载体,具有很高的内核载药容量和独特的体内分布特征。两亲性聚合物在结构上可以划分出亲水部分和疏水部分。由于这种独特的化学结构,在水溶液中能形成具有球形内核-外壳结构的聚合物胶束,其疏水部分构成内核,亲水部分形成外壳(Adams ML,Lavasanifar A,Kwon GS.Amphiphilic block copolymersfor drug delivery.Journal of Pharmaceutical Sciences,2003,92(7):1343-1355)。内核可以作为疏水性药物的容器,将药物增溶在核心,降低毒副作用,外壳可对药物起保护作用,提高药物的稳定性。在难溶性药物、大分子药物和基因治疗药物载体给药方面具有独特的优势。
因此,如何使药物稳定的进入癌症细胞、保持且能够持久的发挥杀死癌症细胞的活性以及尽可能少的引起副作用一直都是研究的热点。
发明内容
本发明的目的在于提供一种对肿瘤细胞具有较强的杀伤力、具有持续释放作用、血液循环稳定且易于在肿瘤细胞中释放的药物组合物。
本发明的另一个目的在于提供上述药物组合的制备方法和应用。
用亲水性聚合物可以有效保护纳米颗粒不被巨噬细胞吞噬,同时增加其水溶性,降低对酶降解的敏感性,因此能够提高纳米颗粒的生物相容性。聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺共聚物是是一种生物可降解的双亲性共聚物。亲水性链段和疏水性链段分别是聚天冬氨酸和脂肪族聚酯-磷脂酰乙醇胺。药物与双亲性聚合物作用可以自组装成胶束,这种载药聚合物胶束可以延长药物的血液循环时间,通过纳米颗粒的EPR效应使载药纳米粒子聚集在病理区域,能够表现出更好的疗效。
本发明提供了一种药物组合物,所述药物组合物包括载体和负载在载体上的药物,其特征在于,该药物为水溶性药物,该载体为具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物,
Figure BDA0000038640040000031
式(1),
其中,n为15-30,x为10-120,y为10-120,z为10-120,A为具有式(2)所示结构的基团,
Figure BDA0000038640040000032
式(2),
其中,R和R’各自独立地为碳原子数为15-21的烃基。
本发明还提供了一种药物组合物的制备方法,该方法包括将药物负载在载体上,其特征在于,所述载体为具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物,所述药物为水溶性药物。
此外,本发明还提供了上述药物组合物或通过上述方法制备得到的药物组合物在制备癌细胞抑制剂中的应用。
本发明提供的药物组合物,特别是负载阿霉素的药物组合物,对肿瘤细胞,尤其是肺癌细胞、宫颈癌细胞和肝癌细胞都有较强的杀伤力,并能够持续释放,此外,药物释放还具有pH敏感性,在pH7.4时药物释放较低,而在pH5.2的药物释放较高,这一方面有利于药物组合物在血液循环中的稳定存在,从而降低阿霉素带来的系统毒性。另一方面,由于肿瘤细胞内的pH值低于正常细胞的pH值,因此,这种药物释放的pH敏感性有利于其在肿瘤细胞的药物释放。
附图说明
图1a为本发明一种实施方式中的天冬氨酸的红外光谱图;图1b为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)接枝聚合物的红外光谱图;图1c为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯接枝聚合物的红外光谱图;图1d为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的红外光谱图。
图2a为核磁谱图库(Spectral Database for Organic Compounds SDB S)中天冬氨酸的核磁共振氢谱;图2b为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)接枝聚合物的核磁共振氢谱;图2c为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的核磁共振氢谱。
图3a为核磁谱图库(Spectral Database for Organic Compounds SDBS)中天冬氨酸的核磁共振碳谱;图3b为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)接枝聚合物的核磁共振碳谱;图3c为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的核磁共振碳谱。
图4a为本发明一种实施方式中的二棕榈酰磷脂酰乙醇胺的核磁共振磷谱图;图4b为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的核磁共振磷谱图。
图5为本发明一种实施方式中的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物纳米粒子的透射电镜图。
图6为聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物与阿霉素形成的药物组合物(简写为Polymer/DOX NPs)的粒径分析图。
图7为Polymer/DOX NPs的透射电镜图。
图8a和图8b为Polymer/DOX NPs对宫颈癌HeLa细胞的生长抑制图。
图9a和图9b为Polymer/DOX NPs对肺癌A549细胞的生长抑制图。
图10a和图10b为Polymer/DOX NPs对肝癌HepG2细胞的生长抑制图。
图11为Polymer/DOX NPs和DOX的体外释放曲线图。
具体实施方式
本发明提供一种药物组合物,所述药物组合物包括载体和负载在载体上的药物,其特征在于,该药物为水溶性药物,该载体为具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物,
式(1),
其中,n、x、y和z为平均聚合度,本发明中,n、x、y和z都是通过投料比和重均分子量计算获得,为了得到具备更好的负载药物能力的聚合物,优选地,n为15-30,进一步优选为22-23;x为10-120,进一步优选为10-105;y为10-120,进一步优选为10-105;z为10-120,进一步优选为10-105;A为具有式(2)所示结构的基团,
Figure BDA0000038640040000052
式(2),
其中,R和R’各自独立地为碳原子数为15-21的烃基。所述R和R’可以各自独立地为碳原子数为15-17的烷基或碳原子数为17且含有一个不饱和双键的烃基,优选地,所述R和R’同时为碳原子数为15-17的烷基或C17H33,进一步优选地,所述R和R’同时为C15H31、C17H35或CH3(CH2)7CH=CH(CH2)7-,最优选地,所述R和R’同时为C15H31
根据本发明,为了得到更好的杀伤癌症细胞的活性,所述药物组合物优选为颗粒状,且颗粒直径优选为110-280纳米,所述药物组合物的载药量为0.4-40重量%。
根据本发明,所述水溶性药物可以为任何具有水溶性的小分子药物,可以列举的有阿霉素、环磷酰胺、长春新碱、氟尿嘧啶等;在满足上述药物组合物颗粒直径的条件下,所述聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物的重均分子量优选为4000-27000,进一步优选为4200-25100,所述聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物在水溶液中可以呈颗粒状,且颗粒直径优选为50-200纳米,进一步优选为90-160纳米。
本发明提供一种药物组合物的制备方法,该方法包括将药物负载在载体上,其特征在于,所述载体为具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物,所述药物为水溶性药物,
Figure BDA0000038640040000061
式(1),
Figure BDA0000038640040000062
式(2),
其中,n、x、y和z的取值范围、R和R’的范围与上述相同,在此不再赘述。
根据本发明,在将药物和载体进行负载之前,首先要合成出载体,即聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物,所述载体的合成方法包括以下步骤,
(1)在惰性气体保护下,在搅拌条件下,使天冬氨酸与丙交酯接触,得到含有具有式(3)所示结构的聚(天冬氨酸-co-乳酸)接枝聚合物的第一产物,所述惰性气体可以为本领域常规各种惰性气体,例如氮气和元素周期表第零族元素的气体,本发明中,所述惰性气体优选为氮气,
Figure BDA0000038640040000071
式(3);
(2)在含氮杂原子的六元杂环化合物的存在下,在第一有机溶剂中,将第一产物与4-硝基苯氯甲酸酯接触,或者从第一产物分离出未反应的反应物,将分离出未反应的反应物的第一产物与4-硝基苯氯甲酸酯接触,得到含有具有式(4)所示结构的聚(天冬氨酸-co-乳酸)-4-硝基苯甲酸酯接枝聚合物的第二产物;所述第一有机溶剂为能够溶解含氮杂原子的六元杂环化合物、具有式(3)所示结构的聚(天冬氨酸-co-乳酸)接枝聚合物和4-硝基苯氯甲酸酯且不与含氮杂原子的六元杂环化合物、具有式(3)所示结构的聚(天冬氨酸-co-乳酸)接枝聚合物或4-硝基苯氯甲酸酯进行反应的有机溶剂,
式(4);
(3)在烷基胺的存在下,在第二有机溶剂中,使第二产物与具有式(5)所示结构的磷脂酰乙醇胺接触,或者去除第二产物中的第一有机溶剂,使去除第一有机溶剂后的第二产物与具有式(5)所示结构的磷脂酰乙醇胺接触,得到含有具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物的第三产物,将第三产物与三羟甲基氨基甲烷盐酸盐缓冲溶液接触,或者去除第三产物中的第二有机溶剂,将去除第二有机溶剂后的第三产物与三羟甲基氨基甲烷盐酸盐缓冲溶液接触,所述第二有机溶剂为能够溶解烷基胺、具有式(4)所示结构的聚(天冬氨酸-co-乳酸)-4-硝基苯甲酸酯接枝聚合物、具有式(5)所示结构的磷脂酰乙醇胺且不与烷基胺、具有式(4)所示结构的聚(天冬氨酸-co-乳酸)-4-硝基苯甲酸酯接枝聚合物或具有式(5)所示结构的磷脂酰乙醇胺进行反应的有机溶剂,
Figure BDA0000038640040000081
式(5),
Figure BDA0000038640040000082
式(1),
A为具有式(2)所示结构的基团,
Figure BDA0000038640040000083
式(2),
其中,在式(1)、式(3)和式(4)中,与上述描述相同的,n为15-30,进一步优选为22-23;x为10-120,进一步优选为10-105;y为10-120,进一步优选为10-105;z为10-120,进一步优选为10-105;在式(2)和式(5)中,R和R’各自独立地为碳原子数为15-21的烃基;所述R和R’可以各自独立地为碳原子数为15-17的烷基或碳原子数为17且含有一个不饱和双键的烃基,优选地,所述R和R’同时为碳原子数为15-17的烷基或C17H33,进一步优选地,所述R和R’同时为C15H31、C17H35或CH3(CH2)7CH=CH(CH2)7-,最优选地,所述R和R’同时为C15H31
根据本发明,可以将第一产物直接用于下步反应,也可以将第一产物进行初步的纯化再用于下步反应,如,可以从第一产物中分离掉未反应的反应物,第一产物为浅棕色液体,从第一产物分离出未反应的反应物的方法可以为,将第一产物溶于第三有机溶剂中,过滤去除未反应的反应物,然后将第三有机溶剂去除,得到第一固体产物,再将所得第一固体产物进行水洗,干燥后固体可以在20-30℃下真空干燥24-48小时。
根据本发明,由于天冬氨酸在高温下可以自身聚合形成聚天冬氨酸,丙交酯可以直接和聚天冬氨酸上的羟基反应,因此,通常地,反应物中丙交酯过量,优选地,步骤(1)中,天冬氨酸与丙交酯的摩尔比为1∶1-10,进一步优选为1∶2-5,因此,所述过滤去除未反应的反应物主要指未反应的丙交酯,所述去除第三有机溶剂的方法可以为本领域各种去除有机溶剂的方法,如旋转蒸发法。
以得到的每克第一产物为基准,所述第三有机溶剂的用量优选为0.5-2毫升,所述第三有机溶剂可以为本领域各种有机溶剂,只要满足为具有式(3)所示结构的聚(天冬氨酸-co-乳酸)接枝聚合物的良溶剂,同时为未反应的反应物的不良溶剂的条件即可,本发明中,所述第三有机溶剂优选为N,N-二甲基甲酰胺。
根据本发明,所述天冬氨酸优选为L-天冬氨酸,所述丙交酯优选为L-丙交酯,所述L-天冬氨酸和L-丙交酯均可通过商购获得,如L-天冬氨酸和L-丙交酯均可购自Alfar Aesar公司。
根据本发明,所述天冬氨酸和丙交酯接触的条件包括,温度可以为140-200℃,优选为160-180℃,时间可以为16-26小时,优选为18-24小时。为了得到具备更好性能的产品,优选先在较高的温度180℃下反应2-5小时,然后在相对较低的温度160℃下反应13-23小时。
根据本发明,步骤(2)中,所述第一产物或分离出未反应的反应物的第一产物中含有的具有式(3)所示结构的聚(天冬氨酸-co-乳酸)接枝聚合物与4-硝基苯氯甲酸酯的重量比优选为2-5∶1;以第一产物或分离出未反应的反应物的第一产物中含有的每克具有式(3)所示结构的聚(天冬氨酸-co-乳酸)接枝聚合物为基准,所述含氮杂原子的六元杂环化合物的用量优选为0.02-2克,所述含氮杂原子的六元杂环化合物为4-二甲氨基吡啶和/或吡啶;当所述含氮杂原子的六元杂环化合物为4-二甲氨基吡啶时,优选4-二甲氨基吡啶与第一产物的重量比优选为1∶20-50,当所述含氮杂原子的六元杂环化合物为吡啶时,以第一产物或分离出未反应的反应物的第一产物中含有的每克具有式(3)所示结构的聚(天冬氨酸-co-乳酸)接枝聚合物为基准,所述吡啶的用量优选为0.5-2毫升。
根据本发明,以第一产物或分离出未反应的反应物的第一产物中含有的每克具有式(3)所示结构的聚(天冬氨酸-co-乳酸)接枝聚合物为基准,所述第一有机溶剂的用量优选为5-20毫升,在满足上述要求的前提下,所述第一有机溶剂优选为氯仿和/或二氯甲烷,进一步优选为氯仿;所述第一产物或分离出未反应的反应物的第一产物与4-硝基苯氯甲酸酯接触的条件包括,温度优选为-10℃至0℃,时间优选为6-10小时。
根据本发明,所述接触优选均在避光条件下进行,所述第二产物或去除第一有机溶剂后的第二产物中含有的具有式(4)所示结构的聚(天冬氨酸-co-乳酸)-4-硝基苯甲酸酯接枝聚合物与具有式(5)所示结构的磷脂酰乙醇胺的重量比优选为5-50∶1,所述具有式(5)所示结构的磷脂酰乙醇胺可以选自二棕榈酰磷脂酰乙醇胺、二油脂酰磷脂酰乙醇胺和二硬脂酰磷脂酰乙醇胺中的一种或多种,进一步优选为二棕榈酰磷脂酰乙醇胺和/或二油脂酰磷脂酰乙醇胺,最优选为二棕榈酰磷脂酰乙醇胺;以所述第二产物或去除第一有机溶剂后的第二产物中含有的每克具有式(4)所示结构的聚(天冬氨酸-co-乳酸)-4-硝基苯甲酸酯接枝聚合物为基准,所述有机胺的用量优选为0.1-0.5毫升,所述有机胺优选为三乙胺;以所述第二产物或去除第一有机溶剂后的第二产物中含有的每克具有式(4)所示结构的聚(天冬氨酸-co-乳酸)-4-硝基苯甲酸酯接枝聚合物为基准,所述第二有机溶剂的用量优选为5-20毫升,所述第二有机溶剂优选为氯仿和/或二氯甲烷,进一步优选为氯仿;所述第二产物或去除第一有机溶剂后的第二产物与磷脂酰乙醇胺接触的条件包括,温度优选为20-30℃,时间优选为15-20小时。
根据本发明,步骤(3)中,以所述第三产物或去除第二有机溶剂的第三产物中含有的每克具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物为基准,所述三羟甲基氨基甲烷盐酸盐缓冲溶液的用量优选为5-50mL,所述三羟甲基氨基甲烷盐酸盐缓冲溶液中三羟甲基氨基甲烷盐酸盐的pH值为8-9,在满足上述pH条件下,本发明对所述三羟甲基氨基甲烷盐酸盐缓冲溶液中三羟甲基氨基甲烷盐酸盐的浓度没有特别的限定;所述第三产物或去除第二有机溶剂的第三产物与三羟甲基氨基甲烷盐酸盐缓冲溶液接触的条件包括,温度优选为15-25℃,时间优选为15-20小时。
根据本发明,各个步骤中得到的产物可以直接用于下步反应,也可以经过初步提纯再进行下步反应,如,步骤(2)中,可以直接用第二产物进行反应,也可以用去除第一有机溶剂的第二产物进行反应,所述去除第二产物中的第一有机溶剂的方法可以为本领域各种能够从产物中去除有机溶剂的方法,如旋转蒸发法,将蒸发掉至少部分有机溶剂的第二产物在乙醚/石油醚混合溶剂中沉淀,得到第二固体产物;同样地,步骤(3)中,所述去除第三产物中的第二有机溶剂的方法也可以为旋转蒸发法,然后将去除至少部分第二有机溶剂的第三产物在乙醚/石油醚混合溶剂中沉淀,得到第三固体产物,得到的第二固体产物和第三固体产物还可以进一步进行水洗和干燥,所述干燥的条件可以为,在20-30℃下真空干燥24-48小时。其中,所述乙醚/石油醚的比例可以为常规的用于沉淀剂的比例,例如可以为1-3∶1。
根据本发明,所述第三固体产物,即聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物可以冻干保存,所述冻干的方法可以为本领域常规的使用冻干机进行冻干的方法。
根据本发明,步骤(3)中还可以包括将所述第二产物或去除第三有机溶剂的第二产物与三羟甲基氨基甲烷盐酸盐缓冲溶液接触所得的产物在10-25℃的蒸馏水中避光透析24-48小时。
根据本发明,得到的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物能够制备成纳米颗粒,制备的方法可以有多种,例如,可以将聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物溶于有机溶剂中,如丙酮,在搅拌条件下,将溶有聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物的有机溶剂滴加到水中,形成乳液,依次去除乳液中的有机溶剂和水,得到聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物的纳米颗粒,也可以将得到的乳液装入透析袋中透析,用水做为透析液,透析36-48小时后也可以得到聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物的纳米颗粒。
根据本发明,任何能够使药物和载体负载在一起的方法都适用于本发明,优选地,所述将药物负载在载体上的方法可以包括以下两种方法中的任意一种,
方法(一),
(1)将药物的水溶液、载体与第一有机溶剂混合,制成初乳液;
(2)将初乳液与含有表面活性剂的水溶液A混合,制成复乳液;
(3)在搅拌条件下,将复乳液与含有表面活性剂的水溶液B混合,得到第一混合液;
(4)去除第一混合液中的第一有机溶剂和水;
方法(二),
(1)在搅拌条件下,将载体和第二有机溶剂的混合溶液逐滴加入到药物的水溶液中,得到乳液;(2)去除乳液中的第二有机溶剂和水。
根据本发明,方法(一)中,所述药物的水溶液中的药物、载体与第一有机溶剂的重量比优选为1∶2.5-100∶1000-10000;所述药物的水溶液中药物的浓度优选为0.5-2毫克/毫升;所述第一有机溶剂可以为二氯甲烷、三氯甲烷和丙酮中的一种或多种,优选为二氯甲烷;所述初乳液与含有表面活性剂的水溶液A的重量比优选为1∶1-3;所述复乳液与含有表面活性剂的水溶液B的重量比优选为1∶1-4。
根据本发明,所述含有表面活性剂的水溶液A中表面活性剂的浓度优选为0.5-3重量%;所述含有表面活性剂的水溶液B中表面活性剂的浓度为0.1-0.6重量%;优选地,所述含有表面活性的水溶液A和含有表面活性剂的水溶液B中的表面活性剂各自独立的为聚乙烯醇、丙二醇嵌段聚醚F68、丙二醇嵌段聚醚108、吐温、司盘中的一种或多种,进一步优选为聚乙烯醇。
根据本发明,方法(二)中,所述混合溶液与药物的水溶液的重量比优选为1∶1-20;所述混合溶液中载体和第二有机溶剂的重量比优选为1∶10-500;所述药物的水溶液中药物的浓度优选为0.01-1重量%;所述第二有机溶剂优选为二氯甲烷、三氯甲烷和丙酮中的一种或多种,进一步优选为二氯甲烷和/或丙酮。
根据本发明,方法(一)中,制成初乳液和制成复乳液都是使作为水相的药物的水溶液和作为油相的载体均质化,制备乳液的方法有很多种,如干胶法、湿胶法、新生皂法、两项交替法、机械法等,本发明中优选使用机械法,进一步优选为超声法;所述混合的条件包括,温度为10-30℃,时间为5-30分钟。
方法(二)中,所述将载体和第二有机溶剂的混合溶液逐滴加入药物的水溶液中的条件包括,温度优选为10-30℃,加入的速度优选为0.1-0.5mL/分钟,加入后搅拌的时间优选为10-60分钟。
方法(一)和方法(二)中,去除第一有机溶剂和去除第二有机溶剂的方法可以为本领域各种去除有机溶剂的方法,本发明中优选使用旋转蒸发法,旋转蒸发的条件包括温度可以为20-30℃,优选为室温25℃;去除水的方法优选为离心法,离心的速度可以为12000-14000rpm,优选为13000rpm。
根据本发明,优选情况下,所述将药物负载在载体上的条件使制得的药物组合物为颗粒状,且颗粒直径为110-280纳米。优选情况下,所述将药物负载在载体上的条件使制得的药物组合物对药物的包封率为32-95%,载药量为0.4-40重量%。其中,包封率和载药量为本领域公知的概念,包封率为被载体负载的药物的重量与加入到体系中的药物总量的比例,而载药量指药物的重量与药物和载体总重量的百分比。
根据本发明的原理,任何具有水溶性的性质,能够通过上述方法与载体负载在一起的药物都适于本发明,可以列举的有阿霉素、环磷酰胺、长春新碱、氟尿嘧啶等,根据本发明的实质,本领域技术人员可以明确的是,本发明中的水溶性药物不仅限于上述几种。
本发明还提供了由上述方法制备得到的药物组合物。以及上述药物组合物在制备癌细胞抑制剂中的应用。
下面通过实施例对本发明进行更详细的介绍。
下列实施例中未注明具体条件的实验方法,通常按照常规条件,如:纳米材料技术手册,或按照制造厂商所建议的条件。
本发明实施例中药物组合物粒径通过粒径分析仪(Zetasizer NanoZS)进行测定。制备过程中离心后,紫外可见分光光度计(Perkin Elmer Lambda850)测定上清液中480nm处的吸收,确定上清中阿霉素药物的含量,计算包封率和载药量。红外光谱检测在美国珀金-埃尔默公司,型号为Spectrum one的红外光谱仪上完成。
核磁共振氢谱和核磁共振碳谱通过瑞士布鲁克公司,型号为AV400的核磁共振谱仪获得,天冬氨酸的核磁共振氢谱和核磁共振碳谱的检测条件包括:重水为内标,所用溶剂为重水;聚(天冬氨酸-co-乳酸)接枝聚合物、聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的核磁共振氢谱和核磁共振碳谱的检测条件包括:氯仿为内标,溶剂为氘代氯仿。二棕榈酰磷脂酰乙醇胺、聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的核磁共振磷谱的检测条件包括:氯仿为内标,溶剂为氘代氯仿。
其他的测试仪器为:动态光散射(Zetasizer NanoZS)、透射电镜(美国FEI,TECNAI G2 20 S-TWIN,200kV)。
制备实施例1
合成聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物。
(1)将L-天冬氨酸(3.33g,0.025mol)(Alfar Aesar公司,98重量%,分析纯),L-丙交酯(7.2g,0.05mol)(Alfar Aesar公司,97重量%,分析纯)加入到50mL的单口圆底烧瓶中,抽真空1小时去除氧气,通入氮气,并在氮气保护下在180℃油浴下搅拌反应,溶液变成黄色透明状液体。反应2.5小时后,温度降到160℃反应21小时,反应液为粘稠状的浅棕色液体。从油浴中取出并冷却,产生黄褐色固体,溶于15mL N,N-二甲基甲酰胺(北京化工厂,分析纯)中,过滤去除未反应的丙交酯。滤液在250mL的去离子水中沉淀,用100mL去离子水水洗三次。在25℃真空干燥箱中干燥36小时,得到棕色固体产物聚(天冬氨酸-co-乳酸)接枝聚合物8.4g,经计算得n=22,x=20,y=20,z=20。
(2)将2.0g聚(天冬氨酸-co-乳酸)接枝聚合物加入到5mL氯仿中,制备聚(天冬氨酸-co-乳酸)接枝聚合物的氯仿溶液;将1.0g的4-硝基苯氯甲酸酯(Alfar Aesar公司,97重量%)和0.1g的4-二甲氨基吡啶(Alfar Aesar公司,99重量%)用5mL氯仿溶解,制备4-硝基苯氯甲酸酯和4-二甲氨基吡啶氯仿溶液;将5mL的4-硝基苯氯甲酸酯、4-二甲氨基吡啶与氯仿的混合溶液滴加到聚(天冬氨酸-co-乳酸)接枝聚合物的氯仿溶液中,然后再加入1mL的吡啶(北京化工厂,分析纯),在0℃下反应6小时,得到棕黄色透明的聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯接枝聚合物粗产物溶液。将该粗产物溶液在25℃下旋转蒸发除去部分氯仿,然后在200mL乙醚/石油醚(体积比为2∶1)混合溶液中沉淀、并用乙醚/石油醚(体积比为2∶1)混合溶液洗涤(50mL×3次)。将得到的纯化产物在25℃真空干燥箱中干燥36小时,得到棕黄色固体聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯接枝聚合物2.55g。
(3)将2.0g聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯接枝聚合物加入到6mL的氯仿中,制备聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯接枝聚合物的氯仿溶液;在6mL氯仿中加入0.02g的二棕榈酰磷脂酰乙醇胺(Avanti公司,97重量%),0.2mL的三乙胺和6mL的聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯接枝聚合物的氯仿溶液,在25℃下,氮气存在下避光反应20小时,将粗产物溶液在25℃下旋转蒸发除去部分氯仿,然后在200mL乙醚/石油醚(体积比为1∶1)混合溶液中沉淀、并用乙醚/石油醚(体积比为1∶1)混合溶液洗涤(50mL×3次)。将得到的纯化产物在25℃真空干燥箱中干燥36小时,得到聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯-二棕榈酰磷脂酰乙醇胺接枝聚合物粗产物1.88g。将1.0g所述聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯-二棕榈酰磷脂酰乙醇胺接枝聚合物粗产物添加到50mL、pH=8.5的Tris-HCl缓冲溶液中,在25℃下,在氮气存在下避光反应15小时,然后在透析袋中,用1L的25℃蒸馏水中避光透析48小时,得到纯化后的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物0.89g。最后产物冷冻干燥保存。
(4)将0.01g纯化后的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物溶于2mL丙酮中,得到聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物溶液,在25℃下,将聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物溶液滴加到磁力搅拌的10mL水中,搅拌30min,形成乳液;用旋转蒸发仪除去乳液中的丙酮;以12,000rpm转速,在25℃下,离心5min,除去上清液,得到聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物纳米粒子。
经检测,聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物纳米粒子具有规整的圆球性结构;颗粒直径为109±9.8nm,重均分子量为6600Da。
图1a、图1b、图1c、图1d分别为实施例1中的天冬氨酸、聚(天冬氨酸-co-乳酸)接枝聚合物、聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯接枝聚合物、聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的红外光谱图。
与图1a比较,图1b中在~1751cm-1附近出现一个新的吸收峰,这是聚乳酸分支中的酯羰基(C=O)的伸缩振动峰;在~3631cm-1附近是N-H和-OH的伸缩振动峰;在~2996cm-1和~2941cm-1附近是-CH2的伸缩振动峰;在~1660cm-1附近是酰胺基I谱带的峰;在~1452cm-1为-CH3的变形振动峰;在~1184cm-1和~1264cm-1双峰是聚合物上C-O-C的伸缩振动峰;由此可知,丙交酯与天冬氨酸反应生成聚(天冬氨酸-co-乳酸)接枝聚合物。与图1b相比较,图1c中~3411cm-1为-NH的伸缩振动峰;~1722cm-1为4-硝基苯氯甲酸酯上C=O的伸缩振动峰。由此可知,4-硝基苯氯甲酸酯与聚(天冬氨酸-co-乳酸)接枝聚合物反应生成聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯接枝聚合物。与图1c相比较,图1d中~2673cm-1为P-OH伸缩振动峰。由此可知,二棕榈酰磷脂酰乙醇胺与聚(天冬氨酸-co-乳酸)-4-硝基苯氯甲酸酯反应生成聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物。
图2a为实施例1中的天冬氨酸的核磁共振氢谱;图2b为实施例1中的聚(天冬氨酸-co-乳酸)接枝聚合物的核磁共振氢谱;图2c为实施例1中的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的核磁共振氢谱。
与图2a相比较,图2b中~4.2ppm和~5.1ppm代表聚天冬氨酸中的次甲基(-CH)和PLA及其重复单元中的次甲基上的氢原子;~1.2ppm和~1.4ppm代表PLA及其重复单元中的甲基(-CH3)上的氢原子;~8.0ppm代表聚天冬氨酸上连接聚乳酸的N-H上的氢原子。由此可知,丙交酯与天冬氨酸反应生成聚(天冬氨酸-co-乳酸)接枝聚合物。与图2b相比较,图2c中~0.9ppm代表DPPE末端甲基(-CH3)上的氢原子;1.2~1.6ppm代表DPPE上的亚甲基(-CH2)上的氢原子;8.3~8.7ppm代表DPPE上-NH中的氢原子;~9.1ppm代表DPPE上羟基(-OH)上的氢原子。由此可知,DPPE成功接枝到聚合物上生成聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物。
图3a为实施例1中的天冬氨酸的核磁共振碳谱;图3b为实施例1中的聚(天冬氨酸-co-乳酸)接枝聚合物的核磁共振碳谱;图3c为实施例1中聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的核磁共振碳谱。
与图3a相比较,图3b中~165ppm和~170ppm为聚天冬氨酸及PLA链中C=O上的碳原子;~68ppm和~70ppm为PLA及其重复单元中的-CH上的碳原子;~17ppm和~20ppm为PLA及其重复单元中的-CH3上的碳原子。由此可知,丙交酯与天冬氨酸反应生成聚(天冬氨酸-co-乳酸)接枝聚合物。与图3b相比较,图3c中在~9.0ppm为DPPE末端甲基(-CH3)上的碳原子;~40ppm为DPPE上的亚甲基(-CH2)上的碳原子;170~175ppm为DPPE上羰基(C=O)上的碳原子。由此可知,DPPE成功接枝到聚合物上生成聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物。
图4a、图4b分别为实施例1中的二棕榈酰磷脂酰乙醇胺、聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的核磁共振磷谱图。
图4a中DPPE的磷谱出峰位置约在-1.22ppm处,图4b中聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物的磷谱出峰位置约在-0.08ppm处,说明发生了化学位移。由此可知,DPPE成功接枝到聚合物上生成聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物。
由红外、核磁谱图分析可知,采用本发明的方法制备可以得到聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝聚合物。
实施例1
双乳化法制备药物组合物。
(1)将5mg聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物溶于1.5mL二氯甲烷中,将2mg阿霉素(北京华奉联博科技有限公司)溶于0.5ml水中,将二者混合,采用超声破碎仪(宁波新芝生物科技股份有限公司)超声破碎3min,制成初乳液;(2)将初乳液与3mL的浓度为3重量%的聚乙烯醇PVA水溶液混匀,并用超声细胞破碎仪超声破碎3min,形成复乳液;(3)将复乳液再与10mL的浓度为0.6重量%PVA水溶液混合,并涡旋震荡5min;(4)室温下用旋转蒸发仪除去上步混合液中的二氯甲烷;(5)以13,000rpm的转速,室温下,将去除了二氯甲烷的混合液离心10min;(6)离心得到的沉淀用蒸馏水洗三次。
用动态光散射粒度分析仪和透射电子显微镜(TEM)等测试仪器对得到的纳米粒子进行表征。得到颗粒直径为195.2±10.5nm的球形纳米粒子,计算载药量为19.4%,包封率为68%。
实施例2
双乳化法制备药物组合物。
(1)将12.5mg聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物溶于1.5mL二氯甲烷中,将0.125mg阿霉素溶于0.125mL水中,将二者混合,采用超声破碎仪超声破碎3min,制成初乳液;(2)将初乳液与3mL的浓度为0.5重量%的聚乙烯醇PVA水溶液混匀,并用超声细胞破碎仪超声破碎3min,形成复乳液;(3)将复乳液与10mL的浓度为0.1重量%的PVA水溶液混合,并涡旋震荡5min;(4)室温下用旋转蒸发仪除去上步混合液中的二氯甲烷;(5)以13,000rpm的转速,室温下,将去除了二氯甲烷的混合液离心10min;(6)离心得到的沉淀用蒸馏水洗三次。
用动态光散射粒度分析仪和透射电子显微镜(TEM)等测试仪器对得到的纳米粒子进行表征,得到颗粒直径为280.1±13.3nm的球形纳米粒子,计算载药量为0.91%,包封率为92%。
实施例3
双乳化法制备药物组合物。
(1)将2.5mg聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物溶于1.5mL二氯甲烷中,将0.125mg阿霉素溶于0.125mL水中,将二者混合,采用超声破碎仪超声破碎3min,制成初乳液;(2)将初乳液与3mL的浓度为2重量%的聚乙烯醇PVA水溶液混匀,并用超声细胞破碎仪超声破碎3min,形成复乳液;(3)将复乳液与10mL的浓度为0.3重量%PVA水溶液混合,并涡旋震荡5min;(4)室温下用旋转蒸发仪除去上步混合液中的二氯甲烷;(5)以13,000rpm的转速,室温下,将去除了二氯甲烷的混合液离心10min;(6)离心得到的沉淀用蒸馏水洗三次。
用动态光散射粒度分析仪和透射电子显微镜(TEM)等测试仪器对得到的纳米粒子进行表征。结果见图6和图7。图1表明,制成的Polymer/DOXNPs的粒径分布较窄,分散性好,无团聚现象,粒径范围为212±12.6nm。图2表明,得到的Polymer/DOX NPs为球形粒子,粒子分散均匀,且无团聚现象。计算载药量为4.1%,包封率为86%。
实施例4
纳米沉淀法制备药物组合物。
(1)将10mg聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物溶于1.5mL丙酮中,为油相,将4mg阿霉素溶于10mL水中,为水相;(2)在室温25℃下,将1.5mL油相以0.15mL/分钟的速度逐滴缓慢加入到磁力搅拌的水相中,搅拌30min,得到乳液;(3)室温25℃下,用旋转蒸发仪除去乳液中的有机溶剂;(4)以13,000rpm的转速,在室温25℃下,将去除了有机溶剂的乳液离心10min。
用动态光散射粒度分析仪和透射电子显微镜(TEM)等测试仪器对得到的纳米粒子进行表征。得到颗粒直径为110±10.3nm的球形纳米粒子,计算载药量为9.1%,包封率为32%。
实施例5
纳米沉淀法制备药物组合物。
(1)将20mg聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物溶于3mL丙酮中,为油相;将0.2mg阿霉素溶于10mL水中,为水相;(2)在25℃下,将3mL油相以0.5mL/分钟的速度,逐滴缓慢加入到磁力搅拌的水相中,搅拌30min,得到乳液;(3)室温25℃下,用旋转蒸发仪除去乳液中的有机溶剂;(4)以13,000rpm的转速,在室温25℃下,将去除有机溶剂的乳液离心10min。
用动态光散射粒度分析仪和透射电子显微镜(TEM)等测试仪器对制备的纳米粒子进行表征。得到颗粒直径为122±12.2nm的球形纳米粒子,计算载药量为0.6%,包封率为65%。
实施例6
药液1的制备:将实施例3制得的药物组合物用PBS进行稀释,得到以阿霉素计,浓度分别为10μM、1μM、0.1μM、0.01μM、0.001μM的不同浓度的药液1。
药液2的制备:除了不加入阿霉素以外,其它按照实施例3的方法制备聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物纳米颗粒,并按照药液1的制备方法,将所得到的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物纳米颗粒用PBS进行稀释,使所得的不同浓度药液2中的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物浓度与相应浓度药液1中的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物浓度相同。
药液3的制备:将阿霉素用PBS进行稀释,得到浓度分别为10μM、1μM、0.1μM、0.01μM、0.001μM的不同浓度的药液3。
分别培养肺癌细胞A549细胞、宫颈癌细胞HeLa细胞及肝癌细胞HepG2细胞,温度为37℃;将处于对数生长期的A549细胞、HeLa细胞及HepG2细胞分别按1000个/孔的密度接种于96孔培养板,12小时后,分别加入不同浓度的药液1、药液2、药液3,每种浓度平行6孔。采用含有10重量%胎牛血清的DMEM培养基,每孔加100μL,分别培养24h和48h后,使用CCK-8试剂盒(日本同仁化学研究所)对细胞活性进行测定。具体操作完全按照试剂盒的说明进行。
对于三种肿瘤细胞的活力影响的实验结果如图8-图10所示。图8a和图8b表示药物组合物对HeLa细胞活性的影响,其中,黑色表示Dox,即游离的阿霉素;红色表示Polymer/Dox NPs,即负载了阿霉素的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物;蓝色表示Polymer NPs,即未负载的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物,图8a为24小时后进行检测的结果,图8b为48小时后检测的结果。
图9a和图9b表示药物组合物对A549细胞活性的影响;图10a和图10b表示药物组合物对HepG2细胞活性的影响,其中,图9a和图10a为24小时后进行检测的结果,图9b和图10b为48小时后检测的结果。
从实验结果可以看出,聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物对三种肿瘤细胞基本没有杀伤作用,载药纳米粒子的杀伤细胞能力与浓度成正比,并且与单纯药物对细胞的杀伤程度相当。说明载药纳米粒子仍然具有广谱抗癌活性。从时间效应上来看,在药物相同浓度条件下,48h作用后纳米粒子抑制细胞活性的程度比24h效果增强,表现出持续释放的效果。
实施例7
采用透析法,研究了药物组合物的在不同pH值缓冲液的体外释放曲线。取含有0.2毫克阿霉素的药物组合物或0.2毫克阿霉素重悬在5毫升去离子水中,加入到透析袋(12000Da)中。将透析袋放置于35毫升不同pH值的磷酸盐缓冲液中,置于37℃水浴中,100rpm转速下振荡。每隔固定的时间,取出3毫升释放液,并同时补加等量的释放介质。采用紫外分光光度计测定480nm的吸收值确定释放液中的阿霉素的含量。
在pH5.2和pH7.4磷酸盐缓冲液中的体外释放结果如图11所示。其中,红色和黑色分别表示Dox,即游离的阿霉素,在pH5.2和pH7.4缓冲液的释放曲线;蓝色和绿色分别表示Polymer/Dox NPs,即负载了阿霉素的聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺共聚物,在pH5.2和pH7.4缓冲液的释放曲线。从实验结果可以看出,在长达450小时的时间内,药物仍有较为稳定的释放;药物组合物的药物释放具有pH敏感性,在pH5.2的释放量高于pH7.4的释放速度,这有利于药物组合物在血液循环中的稳定存在,从而降低阿霉素带来的系统毒性。此外,由于肿瘤细胞内的pH值低于正常细胞的pH值,这种药物释放的酸敏感性有利于其在肿瘤细胞的释放。

Claims (9)

1.一种药物组合物,所述药物组合物包括载体和负载在载体上的药物,其特征在于,该药物为水溶性药物,该载体为具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物,
Figure FDA00002907908500011
式(1),
其中,n为15-30,x为10-120,y为10-120,z为10-120,A为具有式(2)所示结构的基团,
式(2),
其中,R和R’各自独立地为碳原子数为15-21的烃基。
2.根据权利要求1所述的药物组合物,其中,所述药物组合物为颗粒状,且颗粒直径为110-280纳米,所述药物组合物的载药量为0.4-40重量%。
3.根据权利要求1或2所述的药物组合物,其中,所述水溶性药物选自阿霉素、环磷酰胺、长春新碱、氟尿嘧啶中的一种或多种;所述聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物的重均分子量为4000-27000,所述聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物呈颗粒状,且颗粒直径为90-160纳米。
4.根据权利要求3所述的药物组合物,其中,所述R和R’各自独立地为碳原子数为15-17的烷基或碳原子数为17且含有一个不饱和双键的烃基。
5.一种药物组合物的制备方法,该方法包括将药物负载在载体上,其特征在于,将药物负载在载体上的方法包括以下两种方法中的任意一种,
方法(一),
(1)将药物的水溶液、载体与第一有机溶剂混合,制成初乳液;
(2)将初乳液与含有表面活性剂的水溶液A混合,制成复乳液;
(3)在搅拌条件下,将复乳液与含有表面活性剂的水溶液B混合,得到第一混合液;
(4)去除第一混合液中的第一有机溶剂和水;
方法(二),
(1)在搅拌条件下,将载体和第二有机溶剂的混合溶液逐滴加入到药物的水溶液中,得到乳液;
(2)去除乳液中的第二有机溶剂和水;
所述载体为具有式(1)所示结构的聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物,所述药物为水溶性药物,
Figure FDA00002907908500021
式(1),
其中,n为15-30,x为10-120,y为10-120,z为10-120,A为具有式(2)所示结构的基团,
Figure FDA00002907908500022
式(2),
其中,R和R’各自独立地为碳原子数为15-21的烃基。
6.根据权利要求5所述的方法,其中,将药物负载在载体上,使制得的药物组合物为颗粒状,且颗粒直径为110-280纳米,使制得的药物组合物对药物的包封率为32-95%,载药量为0.4-40重量%。
7.根据权利要求5所述的方法,其中,所述水溶性药物选自阿霉素、环磷酰胺、长春新碱、氟尿嘧啶中的一种或多种。
8.一种药物组合物,其特征在于,所述药物组合物由权利要求5-7中任意一项所述的方法制备得到。
9.权利要求3或4所述的药物组合物或权利要求8中由权利要求7所述的方法制备得到的药物组合物在制备癌细胞抑制剂中的应用。
CN 201010591760 2010-12-16 2010-12-16 一种药物组合物及其制备方法和应用 Active CN102526744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010591760 CN102526744B (zh) 2010-12-16 2010-12-16 一种药物组合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010591760 CN102526744B (zh) 2010-12-16 2010-12-16 一种药物组合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN102526744A CN102526744A (zh) 2012-07-04
CN102526744B true CN102526744B (zh) 2013-05-15

Family

ID=46335554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010591760 Active CN102526744B (zh) 2010-12-16 2010-12-16 一种药物组合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN102526744B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440995A (zh) * 2003-03-28 2003-09-10 中国科学院长春应用化学研究所 聚乙二醇-脂肪族聚酯-聚氨基酸三元嵌段共聚物及制法
EP1367078B1 (en) * 2002-04-26 2006-04-19 Canon Kabushiki Kaisha Method of producing polyhydroxyalkanoate from alkane having residue containing aromatic ring in its molecule
CN101565498A (zh) * 2008-04-23 2009-10-28 中国科学院理化技术研究所 含有氨基侧链的聚天冬氨酸二醇酯及其合成方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367078B1 (en) * 2002-04-26 2006-04-19 Canon Kabushiki Kaisha Method of producing polyhydroxyalkanoate from alkane having residue containing aromatic ring in its molecule
CN1440995A (zh) * 2003-03-28 2003-09-10 中国科学院长春应用化学研究所 聚乙二醇-脂肪族聚酯-聚氨基酸三元嵌段共聚物及制法
CN101565498A (zh) * 2008-04-23 2009-10-28 中国科学院理化技术研究所 含有氨基侧链的聚天冬氨酸二醇酯及其合成方法和用途

Also Published As

Publication number Publication date
CN102526744A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
Lu et al. PEG-derivatized embelin as a nanomicellar carrier for delivery of paclitaxel to breast and prostate cancers
Hu et al. pH-responsive and charge shielded cationic micelle of poly (L-histidine)-block-short branched PEI for acidic cancer treatment
Attia et al. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles
Song et al. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy
Kuang et al. Cholesterol-based anionic long-circulating cisplatin liposomes with reduced renal toxicity
Mu et al. Acid-sensitive PEGylated paclitaxel prodrug nanoparticles for cancer therapy: Effect of PEG length on antitumor efficacy
Alibolandi et al. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs
Kumar et al. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy
CN106083769A (zh) 一种还原响应的紫杉醇前药及制备纳米胶束载体方法
EP1835888B1 (en) Cholanic acid-chitosan complex forming self-aggregates and preparation method thereof
Cheng et al. pH-sensitive pluronic micelles combined with oxidative stress amplification for enhancing multidrug resistance breast cancer therapy
Zhu et al. Enhanced tumor targeting and antitumor efficacy via hydroxycamptothecin-encapsulated folate-modified N-succinyl-N′-octyl chitosan micelles
Ho et al. PEGylated PAMAM dendrimers loading oxaliplatin with prolonged release and high payload without burst effect
Knop et al. Monomeric pheophorbide (a)-containing poly (ethyleneglycol-b-ε-caprolactone) micelles for photodynamic therapy
CN113952463B (zh) 一种纳米诊疗剂及其制备方法与应用
Lee et al. Brushed block copolymer micelles with pH-sensitive pendant groups for controlled drug delivery
Gong et al. Enzymatic synthesis of PEG–poly (amine-co-thioether esters) as highly efficient pH and ROS dual-responsive nanocarriers for anticancer drug delivery
CN111632153A (zh) 一种化学基因药物共载的靶向纳米递药系统及其制备方法
Feng et al. Phenylboronic acid‐functionalized F127‐oligochitosan conjugate micelles for doxorubicin encapsulation
Saeedi et al. Redox and pH dual sensitive folate-modified star-like amphiphilic copolymer based on castor oil for controlled doxorubicin delivery
Yuan et al. Self-assembled low molecular weight chitosan-based cationic micelle for improved water solubility, stability and sustained release of α-tocopherol
CN113730595A (zh) 一种兼有抗耐药性和低氧/谷胱甘肽双重响应性的多功能纳米载体及其制备方法和应用
CN102311512B (zh) 环糊精-脂肪族聚酯-磷脂酰乙醇胺接枝聚合物及其制备方法
CN102532533B (zh) 一种聚(天冬氨酸-co-乳酸)-磷脂酰乙醇胺接枝聚合物及其制备方法和应用
Yang et al. Preparation, pharmacokinetics and tissue distribution of micelles made of reverse thermo-responsive polymers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant