CN102507474B - 一种船舶溢油目标的识别方法及系统 - Google Patents

一种船舶溢油目标的识别方法及系统 Download PDF

Info

Publication number
CN102507474B
CN102507474B CN 201110335822 CN201110335822A CN102507474B CN 102507474 B CN102507474 B CN 102507474B CN 201110335822 CN201110335822 CN 201110335822 CN 201110335822 A CN201110335822 A CN 201110335822A CN 102507474 B CN102507474 B CN 102507474B
Authority
CN
China
Prior art keywords
spectrum
data
oil
planted
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110335822
Other languages
English (en)
Other versions
CN102507474A (zh
Inventor
李颖
兰国新
李宝玉
刘瑀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN 201110335822 priority Critical patent/CN102507474B/zh
Publication of CN102507474A publication Critical patent/CN102507474A/zh
Application granted granted Critical
Publication of CN102507474B publication Critical patent/CN102507474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种船舶溢油目标的识别方法及系统,所述的方法包括以下步骤:利用ASD地面光谱仪对常见油种的实测光谱数据建立船舶常见油种实测光谱数据库;利用ASD地面光谱仪和机载高光谱传感器同步获取不同油种的实测光谱数据和成像光谱图像数据,利用经验线性法获得重建光谱数据,利用相似系数法对重建光谱数据进行精度评价并优化重建方案;根据实测光谱数据和重建光谱数据,优化油膜光谱特征,据此选择光谱区间进行光谱角填图识别。本发明解决了多波段影像和星载高光谱影像因空间尺度变化导致吸收特征衰减,进而同地面连续光谱数据不能匹配的问题,可将溢油识别精度提高到85%以上,实现基于高光谱影像的溢油目标快速识别。

Description

一种船舶溢油目标的识别方法及系统
技术领域
本发明涉及海洋环境监测技术领域,尤其涉及一种基于高光谱遥感的船舶溢油目标的识别方法及系统。
背景技术
目前,在海洋环境监测技术领域,利用合成孔径雷达SAR和多光谱传感器监测技术进行溢油监测研究的较多,并取得了一定的成果,但由于其溢油监测精度低,尚不能有效实现溢油目标的识别。
高光谱遥感技术在陆地目标探测与识别方面,开展了大量的高光谱探测与目标识别工作,并取得进展。而高光谱溢油监测还处于较低的层次上,缺乏油膜光谱响应机理的认识。我们知道,不同石油产品中所含有机物的成分、分子大小以及分子结构不同,因而使得不同油种具有不同的颜色,进而影响可见光的吸收和反射,这些指标的定量化对于提高溢油监测精度具有重要的意义。虽然目前已经开展了一些机载和星载高光谱遥感溢油监测的研究,但溢油信息提取依然以图像增强和信息解译为主,或者对整幅图像进行分类,而溢油目标只是分类结果中的一个类别而已,还没有进入到光谱分析和光谱识别的量化分析阶段,因此,高光谱监测溢油还不能满足海上溢油监测的应急需要。文献Salem,F.,&Kafatos,P.M.Hyperspectral image analysis for oil spill mitigation[C].Proc.ACRS2001,Vol.1:748-753.及Javier Plaza,Rosa Perez,Antonio Plaza,etc,.MappingOil Spills on Sea Water using Spectral Mixture Analysis of Hyperspectral Image Data[C].Proceeding of SPIE,2005.Vol.5995,599509对高光谱监测溢油技术进行了介绍。然而上述文献提出的基于高光谱技术溢油目标识别方法,仅以地面实测光谱数据为判别标准进行目标识别,未考虑空间尺度变化对溢油光谱吸收特征的影响,因而难以同地面连续光谱数据进行对应,不适于溢油目标识别。
发明内容
为解决现有技术存在的上述问题,本发明要设计一种可以使多波段影像和星载高光谱影像同地面连续光谱数据对应并提高溢油识别精度的船舶溢油目标的识别方法及系统。
为了实现上述目的,本发明的技术方案如下:一种船舶溢油目标的识别方法,包括以下步骤:
A、在实验室环境下,利用ASD地面光谱仪对常见油种的实测光谱数据建立船舶常见油种实测光谱数据库;
B、模拟海上溢油,利用ASD地面光谱仪和机载高光谱传感器同步获取不同油种的实测光谱数据和成像光谱图像数据,利用经验线性法获得重建光谱数据,利用相似系数法对重建光谱数据进行精度评价并优化重建方案;
所述的利用经验线性法获得重建光谱数据的方法,包括以下步骤:
B1、同步获取遥感影像和地面对应地物的实测光谱数据,建立大气校正线性方程;根据经验设定某一波段图像地物的DNλ值与其反射率ρλ呈线性关系,即
ρλ=aλDNλ+bλ         (1)
其中aλ为增益系数,包含传感器对输入信号的效应、大气透过率及地面目标的入射通量影响,bλ为偏移系数,包含除上述影响外,传感器的零输入响应;
利用式(1),根据同步获取实测光谱数据建立图像地物的DNλ值与其反射率ρλ的线性回归关系,获得光谱重建数据;
B2、选择、建立地面稳定辐射控制点,建立适用于历史数据的大气校正线性方程。
所述的利用相似系数法对重建光谱数据进行精度评价的方法,包括以下步骤:
设常见油种实测光谱数据Xi=(xi1,...,xim),i=1,...,n,于是光谱库数据矩阵L可表示为
L = x 11 x 12 . . . x 1 m x 21 x 22 . . . x 2 m . . . . . . . . . . . . x n 1 x n 2 . . . x nm - - - ( 2 )
设遥感图像中待评价像元的重建光谱矢量为a=(a1,a2,...,am),选择相似系数ri评价函数,相似系数ri值大者判断为优;相似系数ri见式(3)
r i = Σ k = 1 m ( x ik - x i ‾ ) ( a k - a ‾ ) Σ k = 1 m ( x ik - x i ‾ ) 2 Σ k = 1 m ( a k - a ‾ ) 2 - - - ( 3 )
其中, x i ‾ = 1 m Σ k = 1 m x ik , α ‾ = 1 m Σ k = 1 m α k
C、根据步骤B1中的实测光谱数据和重建光谱数据,优化油膜光谱特征,据此选择光谱区间进行光谱角度填图识别,以减少数据运算量;
利用光谱角度填图技术进行溢油目标识别,选择实测光谱库和重建光谱数据中端元光谱作判别标准,按下式计算光谱角θ,
θ = cos - 1 ( t · r | | t | | · | | r | | ) = cos - 1 ( Σ i = 1 N t i r i ( Σ i = 1 N t i 2 ) 1 / 2 ( Σ i = 1 N r i 2 ) 1 / 2 ) - - - ( 4 )
其中,t代表了未知地物的光谱,r代表了判别标准光谱;θ越小说明匹配度越高;
本发明步骤A和步骤B1所述的实测光谱数据包括常见油种的吸收谱实测数据和视反射率实测数据。
本发明步骤A所述的的实测光谱数据包括实验室常见油种的实测数据,步骤B1所述的实测光谱数据包括海上模拟常见油种的实测数据。
本发明所述的常见油种实测光谱数据库中数据经过下述分析处理:利用气相色谱-质谱联机GC-MS分析原油及成品油所含有机物的组成和分子结构,结合测量的油种光谱特征,确立化学成分及分子结构与光谱特征的耦合关系,获取不同油种吸收谱数据。
本发明所述常见油种包括原油、轻柴油和重柴油。
一种船舶溢油目标的识别系统,包括高光谱传感器、地面光谱仪、气相色谱-质谱联机和数据处理装置,所述的数据处理装置分别与高光谱传感器、地面光谱仪和气相色谱-质谱联机连接,所述的数据处理装置包括数据预处理单元、光谱重建单元、评价和优化单元和溢油目标识别单元,所述的数据预处理单元依次与光谱重建单元、评价和优化单元和溢油目标识别单元顺序连接。
与现有技术相比,本发明具有以下有益效果:
本发明基于高光谱遥感的船舶溢油目标光谱重建和识别技术及系统,从油种的微观结构与光谱特征的耦合关系研究出发,建立精确的光谱特征与油种的对应关系,并利用同步实测数据进行光谱重建和优化,建立了地面尺度下实测光谱数据库、机载尺度下重建光谱数据库,解决了多波段影像和星载高光谱影像因空间尺度变化导致吸收特征衰减,进而同地面连续光谱数据不能匹配的问题,可将溢油识别精度提高到85%以上,实现基于高光谱影像的溢油目标快速识别。
附图说明
本发明共有附图3张,其中:
图1为本发明船舶溢油目标光谱重建和识别技术实施例流程图;
图2为本发明光谱库样例数据;
图3为本发明船舶溢油目标光谱重建和识别系统实施例结构图。
图中:41、高光谱传感器,42、地面光谱仪,43、气相色谱-质谱联机,44、数据处理装置,441、数据预处理单元,442、光谱重建单元,443、评价和优化单元,444、溢油目标识别单元。
具体实施方式
下面结合附图对本发明进行进一步地描述。如图3所示,一种船舶溢油目标的识别系统,包括高光谱传感器41、地面光谱仪42、气相色谱-质谱联机43和数据处理装置44,所述的数据处理装置44分别与高光谱传感器41、地面光谱仪42和气相色谱-质谱联机43连接,所述的数据处理装置44包括数据预处理单元441、光谱重建单元442、评价和优化单元443和溢油目标识别单元444,所述的数据预处理单元441依次与光谱重建单元442、评价和优化单元443和溢油目标识别单元444连接。
如图1所示为本发明船舶溢油目标光谱重建和识别技术实施例流程,本实施例的船舶溢油目标光谱重建和识别技术,包括以下步骤:
S101、在实验室内,测量纯油种的可见光近红外吸收光谱以及海水环境模拟条件下的油种视光谱反射率;
S102、考察合适海域,模拟海上溢油,同步获取不同油种的实测光谱和成像光谱图像数据;
S103、进行油膜光谱的分析工作。分析影响可见光近红外吸收谱的因素,确定各油种吸收特征;研究纯原油和成品油的化学成分及分子结构对可见光近红外电磁波的吸收和反射情况,建立化学成分及分子结构与光谱特征的耦合关系;分析海水环境下的油膜视光谱反射率同纯油种的近红外吸收谱之间的关系,掌握海水影响油膜光谱的机理;
S104、收集、测量国内外各类油种的光谱数据,记录其相关信息(如产地、油品类型、颜色等)及其物理化学特性(如比重、粘度、凝点、闪点等)。通过实测数据建立海上船舶装载的常见油种(原油、轻柴油、重柴油)的光谱库(包括吸收谱和视反射率)。图2即为所建立的光谱库中常见油种光谱数据,图中横轴为波长,纵轴为反射率,连续曲线分别为轻柴油和海水的反射率曲线;
S105、图像预处理主要完成成像光谱数据的几何、辐射校正,并对处理后的数据进行定量化评估;
S106、利用S106建立的光谱重建方案,对获取的高光谱数据进行光谱重建,以真实反映油膜光谱特征;
S107、利用S104光谱库中的光谱数据进行重建光谱评价,利用相似系数法进行精度评价。并以光谱重建评价为基础,进一步对重建方案进行优化;
S108、根据建立的海上船舶装载的常见油种(原油、轻柴油、重柴油)的实测光谱数据和重建光谱数据,优化光谱特征选择,利用光谱角度填图(SAM)技术进行溢油识别。
以上所述,仅为本发明的最佳实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种船舶溢油目标的识别方法,其特征在于:包括以下步骤: 
A、在实验室环境下,利用ASD地面光谱仪(42)对常见油种的实测光谱数据建立船舶常见油种实测光谱数据库; 
B、模拟海上溢油,利用ASD地面光谱仪(42)和机载高光谱传感器(41)同步获取不同油种的实测光谱数据和成像光谱图像数据,利用经验线性法获得重建光谱数据,利用相似系数法对重建光谱数据进行精度评价并优化重建方案; 
所述的利用经验线性法获得重建光谱数据的方法,包括以下步骤: 
B1、同步获取遥感影像和地面对应地物的实测光谱数据,建立大气校正线性方程;根据经验设定某一波段图像地物的DNλ值与其反射率ρλ呈线性关系,即 
ρλ=aλDNλ+bλ   (1) 
其中aλ为增益系数,包含传感器对输入信号的效应、大气透过率及地面目标的入射通量影响,bλ为偏移系数,包含除上述影响外,传感器的零输入响应; 
利用式(1),根据同步获取实测光谱数据建立图像地物的DNλ值与其反射率ρλ的线性回归关系,获得光谱重建数据; 
B2、选择、建立地面稳定辐射控制点,建立适用于历史数据的大气校正线性方程; 
所述的利用相似系数法对重建光谱数据进行精度评价的方法,包括以下步骤: 
设常见油种实测光谱数据Xi=(xi1,…,xim),i=1,…,n,于是光谱库数据矩阵L可表示为 
Figure FDA00003125391900011
设遥感图像中待评价像元的重建光谱矢量a为a=(a1,a2,…,am),选择相似系数ri评价函数,相似系数ri值大者判断为优;相似系数ri见式(3) 
Figure FDA00003125391900021
其中,
Figure FDA00003125391900022
Figure FDA00003125391900023
C、根据步骤B1中的实测光谱数据和重建光谱数据,优化油膜光谱特征,据此选择光谱区间进行光谱角度填图识别,以减少数据运算量; 
利用光谱角度填图技术进行溢油目标识别,选择实测光谱库和重建光谱数据中端元光谱作判别标准,按下式计算光谱角θ 
Figure FDA00003125391900024
其中,t代表了未知地物的光谱,r代表了判别标准光谱;θ越小说明匹配度越高。 
2.根据权利要求1所述的一种船舶溢油目标的识别方法,其特征在于:步骤A和步骤B1所述的实测光谱数据包括常见油种的吸收谱实测数据和视反射率实测数据。 
3.根据权利要求1所述的一种船舶溢油目标的识别方法,其特征在于:步骤A所述的的实测光谱数据包括实验室常见油种的实测数据,步骤B1所述的实测光谱数据包括海上模拟常见油种的实测数据。 
4.根据权利要求1所述的一种船舶溢油目标的识别方法,其特征在于:所述的常见油种实测光谱数据库中数据经过下述分析处理:利用气相色谱-质谱联机(43)分析原油及成品油所含有机物的组成和分子结构,结合测量的油种光谱特征,确立化学成分及分子结构与光谱特征的耦合关系,获取不同油种吸收谱数据。 
5.根据权利要求1所述的一种船舶溢油目标的识别方法,其特征在于:所述常见油种包括原油、轻柴油和重柴油。 
6.一种船舶溢油目标的识别系统,其特征在于:包括高光谱传感器(41)、地面光谱仪(42)、气相色谱-质谱联机(43)和数据处理装置(44),所述的数据处理装置(44)分别与高光谱传感器(41)、地面光谱仪(42)和气相色谱-质谱联机(43)连接,所述的数据处理装置(44)包括数据预处理单元(441)、光谱重建单元(442)、评价和优化单元(443)和溢油目标识别单元(444),所述的数据预处理单元(441)与光谱重建单元(442)、评价和优化单元(443)和溢油目标识别单元(444)依次顺序连接。 
CN 201110335822 2011-10-28 2011-10-28 一种船舶溢油目标的识别方法及系统 Active CN102507474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110335822 CN102507474B (zh) 2011-10-28 2011-10-28 一种船舶溢油目标的识别方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110335822 CN102507474B (zh) 2011-10-28 2011-10-28 一种船舶溢油目标的识别方法及系统

Publications (2)

Publication Number Publication Date
CN102507474A CN102507474A (zh) 2012-06-20
CN102507474B true CN102507474B (zh) 2013-07-24

Family

ID=46219581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110335822 Active CN102507474B (zh) 2011-10-28 2011-10-28 一种船舶溢油目标的识别方法及系统

Country Status (1)

Country Link
CN (1) CN102507474B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103559495A (zh) * 2013-10-31 2014-02-05 大连海事大学 一种高光谱溢油信息提取方法
CN104634451B (zh) * 2015-02-11 2016-09-28 武汉大学 基于多通道成像系统的光谱重建方法及系统
CN104807900A (zh) * 2015-04-28 2015-07-29 浙江海洋学院 海面溢油监测系统
CN105181638B (zh) * 2015-09-16 2017-12-08 湖北久之洋红外系统股份有限公司 一种红外溢油监测装置及其监测方法
CN105526874B (zh) * 2015-12-03 2019-09-20 重庆三峡学院 一种基于光谱特征参数的油膜厚度识别方法
CN106198443B (zh) * 2016-06-24 2019-07-12 湖北久之洋红外系统股份有限公司 机载高光谱红外溢油监测方法及系统
KR101732111B1 (ko) * 2016-06-30 2017-05-02 서울시립대학교 산학협력단 위성영상을 이용한 기름유출 탐지장치 및 방법
CN106323937B (zh) * 2016-08-08 2018-11-09 大连海事大学 一种高辨识力的原油指纹谱构建及鉴别方法
CN107356535B (zh) * 2017-06-12 2020-06-05 湖北久之洋红外系统股份有限公司 一种基于光谱成像技术的海上溢油检测方法
CN108956538B (zh) * 2018-06-28 2021-03-09 中国石油天然气股份有限公司 河流溢油量遥感检测方法及装置
CN111366573B (zh) * 2020-03-27 2022-12-20 合肥金星智控科技股份有限公司 基于libs光谱成分分析结果的评价方法
CN112949411B (zh) * 2021-02-04 2024-02-09 南京大学 一种光谱图像校正方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59910670D1 (de) * 1999-07-16 2004-11-04 Deutsch Zentr Luft & Raumfahrt Verfahren zur Korrektur atmosphärischer Einflüsse in multispektralen optischen Fernerkundungsdaten
US7260242B2 (en) * 2003-08-15 2007-08-21 United States Of America As Represented By The Secretary Of The Air Force Spatial surface prior information reflectance estimation (SPIRE) algorithms
CN1315094C (zh) * 2005-04-14 2007-05-09 中国国土资源航空物探遥感中心 成像光谱数据处理系统及成像光谱数据处理方法
RU2298169C1 (ru) * 2005-10-28 2007-04-27 Научно-Исследовательский Институт Радиоэлектроники и лазерной техники (НИИ РЛ) Московского Государственного Технического Университета им. Н.Э. Баумана Двухспектральный дистанционный способ обнаружения нефтяных загрязнений на поверхности воды
CN100365435C (zh) * 2005-12-05 2008-01-30 牛铮 一种遥感影像光谱细分方法
CN100547438C (zh) * 2007-07-10 2009-10-07 廊坊开发区中油油田科技工贸有限责任公司 一种油气勘探方法及系统
CN101320087B (zh) * 2008-07-23 2011-05-11 北京大学 一种基于tm影像的高光谱重构方法及系统
CN101540049B (zh) * 2009-04-29 2012-02-08 中国人民解放军海军装备研究院信息工程技术研究所 一种高光谱图像的端元提取方法
CN101881829A (zh) * 2009-05-08 2010-11-10 中国科学院地理科学与资源研究所 Modis光学遥感数据海洋溢油检测算法
CN101936973B (zh) * 2009-06-30 2012-11-14 中国石油化工股份有限公司 气相色谱-质谱联用对烃类油品进行快速分类的方法
CN101625413B (zh) * 2009-08-07 2011-07-27 北京大学 一种油气勘查方法
CN101923649B (zh) * 2010-06-22 2013-01-09 中国海洋大学 一种基于荧光光谱的溢油种类识别方法

Also Published As

Publication number Publication date
CN102507474A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
CN102507474B (zh) 一种船舶溢油目标的识别方法及系统
van der Meero et al. Cross correlogram spectral matching: application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada
CN103383348B (zh) 植被覆盖区高光谱遥感蚀变矿物提取方法
Heiden et al. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data
Vicente et al. Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data
Peng et al. Assessment of plant species diversity based on hyperspectral indices at a fine scale
Wang et al. Mapping soil organic matter based on land degradation spectral response units using Hyperion images
Nocita et al. Predictions of soil surface and topsoil organic carbon content through the use of laboratory and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa
CN100547438C (zh) 一种油气勘探方法及系统
CN108801934A (zh) 一种土壤有机碳含量高光谱预测模型的建模方法
Duan et al. Comparison of different semi-empirical algorithms to estimate chlorophyll-a concentration in inland lake water
Ren et al. Estimating senesced biomass of desert steppe in Inner Mongolia using field spectrometric data
CN102997856A (zh) 一种基于参数查找表的海洋溢油油膜厚度高光谱遥感估算方法
CN101458213A (zh) 海洋溢油的浓度辅助参量荧光光谱油种鉴别方法
Lavigne et al. Towards a merged satellite and in situ fluorescence ocean chlorophyll product
Maliki et al. Estimation of total dissolved solids in water bodies by spectral indices Case Study: Shatt al-Arab River
Mateen et al. The role of hyperspectral imaging: A literature review
Wang et al. Calibration and validation of salt-resistant hyperspectral indices for estimating soil moisture in arid land
Wang et al. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China
CN103017668A (zh) 基于高光谱遥感反射率的海冰厚度计算方法
Chen et al. Hydrocarbon micro-seepage detection by altered minerals mapping from airborne hyper-spectral data in Xifeng Oilfield, China
Al Maliki et al. Capabilities of remote sensing hyperspectral images for the detection of lead contamination: a review
CN113109281A (zh) 一种基于高光谱遥感的水质参数定量反演模型及其构建方法
Zarco-Tejada et al. Optical indices as bioindicators of forest condition from hyperspectral CASI data
Wang et al. Identifying and mapping alteration minerals using HySpex airborne hyperspectral data and random forest algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant