CN102505041A - 生物芯片制备方法 - Google Patents

生物芯片制备方法 Download PDF

Info

Publication number
CN102505041A
CN102505041A CN2011103111229A CN201110311122A CN102505041A CN 102505041 A CN102505041 A CN 102505041A CN 2011103111229 A CN2011103111229 A CN 2011103111229A CN 201110311122 A CN201110311122 A CN 201110311122A CN 102505041 A CN102505041 A CN 102505041A
Authority
CN
China
Prior art keywords
biomolecules
diacetylmuramidase
phosphonium salt
molecule
salt hydrochlorate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103111229A
Other languages
English (en)
Inventor
杨鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2011103111229A priority Critical patent/CN102505041A/zh
Publication of CN102505041A publication Critical patent/CN102505041A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明一种生物芯片制备方法涉及利用生物分子在溶液中的相转变来在各种基材表面固定生物分子的方法。对各种无机,有机,金属基材,采用含有膦盐酸盐和哌嗪环两种物质的复配溶液,诱导基础生物分子发生相转变而稳定的附着于基材表面上。基础生物分子所携带的功能性单元则进一步暴露在表面上来结合和识别目标生物分子以实现生物芯片,生物分子微阵列制造。

Description

生物芯片制备方法
所属技术领域
本发明涉及一种制备生物芯片的方法,特别是利用复配缓冲溶液诱导的蛋白质相转变来将基础生物分子及其上的目标生物分子固定在基材表面。 
背景技术
目前,发展低成本的具有实际大规模使用价值的生物芯片,特别是下一代的蛋白质和糖质芯片已经成为生物科技,药物开发,免疫分析等领域的核心和基础内容之一。这其中,如何将生物分子诸如基因,蛋白质或者糖质简单有效的固定在基材表面,同时不使其失去生物活性是技术成功的关键所在。在这个过程中,一个重要的需要解决的问题就是生物分子对于基体的吸附性污染。为了有效的抑制生物分子对各种基材的非特异性污染,特殊的分子涂层必须施加到基材表面用以抵抗生物分子的非特异性吸附。这些分子涂层属于反应惰性的材料,包括自组装单分子层,两亲性聚合物刷以及聚酯类高分子刷。随之而来的一个重要问题就是为了固定生物分子,这些分子涂层必须进行化学活化以提供可供生物分子反应的表面基团。在生物分子固定之后,这些剩余的未反应的基团必须再一次进行反应而转化为惰性结构,这个过程称之为钝化。这些活化和钝化反应极大的增加了制造成本和时间,更重要的是,由于表面化学反应的热力学和动力学限制,活化和钝化反应均不可能100%进行,从而造成生物分子固定后的表面的性质的恶化,造成不可避免的在进一步的使用过程中的生物分子污染,即生物芯片中普遍存在的高背景,低信噪比问题。 
发明内容
为了克服上述不足以制备零背景,超高信噪比的下一代生物芯片,本发明提供了一种新的表面生物分子固定方法,该方法可以在不需要活化和钝化基材的前提下实现有效的生物分子固定,从而可以有效地保护基材表面不受化学处理的影响,为实现大规模的制造低成本的生物芯片以及应用提供了实际的技术基础。 
本发明解决其技术问题所采用的技术方案是利用生物分子在溶液中的相转变来在各种基材表面固定生物分子,对各种无机,有机,金属基材,采用含有膦盐酸盐和哌嗪环两种物质的复配溶液,诱导基础生物分子发生相转变而稳定的附着于基材表面上,基础生物分子所携带的功能性单元则暴露在表面上可进一步用来结合和识别目标生物分子以实现生物芯片,生物分子微阵列制造。 
本发明所采用的基础生物分子包括天然溶菌酶,人工诱导的突变体,含有溶菌酶部分序列结构的多肽,蛋白质,基因或者他们之间的结合体,溶菌酶的来源物种为人,鸡,牛,鼠或者骆驼,基础生物分子浓度为10-8到102mg/ml,溶菌酶的英文名称为lysozyme。 
本发明所采用的与基础生物分子相联接的功能性单元为可以起到识别和结合大分子或者大分子组装体的生物小分子,短肽或者颗粒,生物素或含有生物素结构的分子或含有脲基结构的分子或者基团或者多肽,生物素的英文名称为biotin,脲基的英文名称为Ureido。 
本发明所采用的目标生物分子包括亲和素,链霉抗生物素蛋白,脱糖亲和素或者上述任何的基因突变体或者上述分子与其他分子,结构或者颗粒的结合体,包覆体等或者含有部分亲和素序列结构的多肽;携带有生物素基团的基因,蛋白质,多肽,细胞,病毒,细菌,真菌等,亲和素的英文名称为avidin,链霉抗生物素蛋白的英文名称为streptavidin,脱糖亲和素的英文名称为NeutrAvidin。 
本发明所采用的膦盐酸盐分子包括含膦盐酸盐结构的分子或者混合物,膦盐酸盐浓度为1mM到1M,其优选三(2-羧乙基)膦盐酸盐。 
本发明所采用的哌嗪环包括任何含有哌嗪结构的分子或混合物,哌嗪分子浓度为1mM到1M,哌嗪的英文名称为piperazine,其优选4-羟乙基哌嗪乙磺酸。 
本发明所采用的复配溶液为同时含有膦盐酸盐和哌嗪环两种物质的缓冲溶液,非缓冲溶液,细胞裂解液,血清,血浆,唾液,尿液,组织液,人体分泌物等各种体液。溶液pH为1-14,膦盐酸盐与哌嗪环两种物质的摩尔比为0.001~1000。 
本发明所采用的基材包括各种无机有机材料以及其上的无机/有机涂层或者溶液相,包括天然和人工合成的高分子基板和高分子涂层,无机基板和无机涂层,金属基板和金属涂层,生物材料基板和生物材料涂层。 
本发明提供一种用含有功能性单元的基础生物分子作为固定载体,采用含有一定量膦盐酸盐结构及哌嗪环两种物质的复配溶液作为溶液相,当含有功能性单元的基础生物分子溶解在含有一定量膦盐酸盐及哌嗪环两种物质的复配溶液中时,基础生物分子可以快速的发生相转变而稳定的吸收在各种基材表面,这种吸附非常稳定,可以经受住超声波的清洗剥离过程。吸附后,功能性单元暴露在表面上,用来进一步特异性的吸附目标生物分子,整个过程不需要任何的化学合成反应的参与,从而从根本上解决了化学反应对于基材完整性,均一性的损坏,可以在真正意义上建立一个零背景,高信噪比的生物芯片平台。 
本发明的有益效果是可以在极低成本,极短时间内构建真正意义上的零背景干扰,高信噪比的生物芯片平台,达到国际先进水平,填补了国内空白,并与国外同类产品技术在本质上有所不同,具有独创性,并使产品成本较国外同类产品大幅度降低。 
附图说明
下面结合附图和实施例对本发明进一步说明。 
图1是本发明第一个实施例的光学显微镜,扫描电子显微镜以及原子力扫描照片图。 
图2是本发明第二个实施例的光学显微镜照片图。 
图3是本发明第三个实施例的表面等离子体共振图。 
图4是本发明第四个实施例的表面等离子体共振图。 
图5是本发明第五个实施例的光学显微镜照片图。 
图6是本发明第六个实施例的表面等离子体共振图。 
图7是本发明第七个实施例的光学显微镜照片图。 
具体实施方式
实施例1 
用于固定生物分子的表面为普通玻璃基材,基础生物分子为物种为鸡的溶菌酶,膦盐酸盐与哌嗪环两种物质的复配溶液为含有100mM三(2-羧乙基)膦盐酸盐即tris(2-carboxyethyl)phosphine的10mM 4-羟乙基哌嗪乙磺酸即4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid的缓冲溶液,溶液pH为7.4。本实施例用显微镜跟踪观察了物种来源为鸡的溶菌酶在含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸的缓冲溶液中的相转变过程。首先将溶菌酶按照2mg/ml的浓度溶解在不含有三 (2-羧乙基)膦盐酸盐的纯的10mM 4-羟乙基哌嗪乙磺酸缓冲溶液(pH 7.4)当中,然后将该溶液与含有三(2-羧乙基)膦盐酸盐和4-羟乙基哌嗪乙磺酸两种物质的复配溶液等体积混合而得到溶菌酶浓度为1mg/ml,三(2-羧乙基)膦盐酸盐浓度为50mM,4-羟乙基哌嗪乙磺酸浓度为10mM,pH 7.4的混合溶液。在不同的时间点下取出适量该混合溶液,滴加到玻璃基材上,静置10分钟,然后用滤纸吸去多余的溶液,并继而用纯的10mM 4-羟乙基哌嗪乙磺酸缓冲溶液(pH 7.4)洗涤表面3遍,最后用滤纸吸去多余的溶液,将玻璃片放在光学显微镜下观察。当溶菌酶分子和含有三(2-羧乙基)膦盐酸盐与4-羟乙基哌嗪乙磺酸两种物质的复配溶液混合后,在1分钟内引发相转变,溶菌酶分子聚集形成球状颗粒(图1G,原子力照片),继而进一步组装形成纤维状聚集体(图1A-E光学显微镜照片和图1F扫描电子显微镜照片),这些聚集体不可逆的稳定的吸附到未经过任何化学和物理活化过程的玻璃基材表面上。 
实施例2 
所用材料与操作方法除基础生物分子为物种来源为人的溶菌酶外其他条件同实施例1。本实施例用显微镜跟踪观察了物种来源为人的溶菌酶在含有50mM三(2-羧乙基)膦盐酸盐的10mM 4-羟乙基哌嗪乙磺酸的缓冲溶液中的相转变过程。当溶菌酶分子与含有三(2-羧乙基)膦盐酸盐和4-羟乙基哌嗪乙磺酸两种物质的复配溶液混合后,在1分钟内引发相转变,溶菌酶分子聚集组装形成纤维状聚集体(图1A-C光学显微镜照片),这些聚集体不可逆的稳定的吸附到未经过任何化学和物理活化过程的玻璃基材表面上。 
实施例3 
用于固定生物分子的表面为三乙氧基封端的自组装单分子层即trienthylene glycol self-assembling monolayer,基体为涂有50nm金层的玻璃表面,三乙氧基封端的自组装单分子层在金表面自组装形成规整结构并将三乙氧基暴露在表面上,这种分子层为一类经 典的阻抗蛋白质非特异性吸附的功能性涂层。包括纤维蛋白原,溶菌酶在内的各种蛋白质都可以无吸附的通过该表面,从而导致零吸附,零污染的背景;基础生物分子为物种为鸡的溶菌酶,对照的基础生物分子为纤维蛋白原即fibronogen,三(2-羧乙基)膦盐酸盐与4-羟乙基哌嗪乙磺酸两种物质的复配溶液为含有50mM三(2-羧乙基)膦盐酸盐的10mM4-羟乙基哌嗪乙磺酸缓冲溶液,溶液pH为7.4。本实施例采用表面等离子体共振谱(Surface Plasmon Resonance,SPR)验证了溶菌酶在含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸复配缓冲溶液中的特异性相转变和表面吸附。用注射枪将不同的溶液分别注入表面等离子体共振谱仪中,发现如果只是将溶菌酶或者纤维蛋白原溶于普通的纯的4-羟乙基哌嗪乙磺酸缓冲溶液,没有任何相转变发生,基材表现出经典的阻止蛋白质吸附的性能。然而如果将溶菌酶溶于含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸复配缓冲溶液中,溶菌酶在三乙氧基封端的自组装单分子层上表现出强的吸附信号。与之相对的是,纤维蛋白原在同样的含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸复配缓冲溶液中依然保持着对三乙氧基封端的自组装单分子层的近乎零的吸附。该结果清楚的表明含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸复配缓冲溶液可以有效的,高度选择性的和稳定地将溶菌酶捕获到表面上来。 
实施例4 
所用材料与操作方法除三(2-羧乙基)膦盐酸盐浓度降为1mM和对照样品选用含有1mM二硫苏糖醇(Dithiothreitol,简称DTT),10mM 4-羟乙基哌嗪乙磺酸的溶菌酶缓冲溶液外其他条件同实施例3。本实施例采用表面等离子体共振谱验证了溶菌酶在含有低浓度三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸复配缓冲溶液中的特异性相转变和表面吸附。如果只是将溶菌酶溶于与三(2-羧乙基)膦盐酸盐具有类似二硫键还原功能的1mM二硫苏糖醇和10mM 4-羟乙基哌嗪乙磺酸两种物质的复配缓冲溶液,没有任何相转变发生,基材表现出经典的阻止蛋白质吸附的性能。然而如果将溶菌酶溶于含有1mM三(2- 羧乙基)膦盐酸盐的10mM 4-羟乙基哌嗪乙磺酸复配缓冲溶液中,溶菌酶在三乙氧基封端的自组装单分子层上表现出明显的吸附信号。该结果表明尽管实施例1和2中所用到的相对高的三(2-羧乙基)膦盐酸盐浓度(50mM)对诱导溶菌酶相转变是有效的,本实施例进一步证明除了高浓度,含有低浓度三(2-羧乙基)膦盐酸盐(1mM)的4-羟乙基哌嗪乙磺酸复配缓冲溶液仍然可以有效的,高度选择性的和稳定地将溶菌酶捕获到表面上来。 
实施例5 
所用材料与操作方法除在复配溶液中额外添加1-200mM葡萄糖即glucose外其他条件同实施例1。本实施例用显微镜跟踪观察了物种来源为鸡的溶菌酶在含有50mM三(2-羧乙基)膦盐酸盐和1-200mM葡萄糖的10mM 4-羟乙基哌嗪乙磺酸的缓冲溶液中的相转变过程,室温,正常大气压以及葡萄糖的加入使溶液条件接近于生理溶液条件。当溶菌酶分子与膦盐酸盐,葡萄糖和哌嗪的复配溶液混合后,在1分钟内引发相转变,溶菌酶分子聚集组装形成纤维状聚集体(图1A-C光学显微镜照片),这些聚集体不可逆的稳定的吸附到未经过任何化学和物理活化过程的玻璃基材表面上。本实施例证明相转变可以稳定的在含有三(2-羧乙基)膦盐酸盐和4-羟乙基哌嗪乙磺酸的生理溶液中进行。 
实施例6 
所用材料与操作方法除基础生物分子为携带有生物素的物种为鸡的溶菌酶外其他条件同实施例3。本实施例证明不仅纯的溶菌酶可以在含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸复配缓冲溶液中吸附到表面上,含有功能性单元生物素的溶菌酶同样具有类似的功能。本实施例中端基与生物素结合的溶菌酶(生物素-溶菌酶,下同)被发现在含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸复配缓冲溶液中具有同样的刺激响应性,可以产生稳定的在三乙氧基封端的自组装单分子层表面的稳定的吸附应答。作为对照实验,如果只用纯的4-羟乙基哌嗪乙磺酸缓冲溶液而不添加三(2-羧乙基)膦盐酸盐,刺激应 答的吸附并不发生。 
实施例7 
用于固定生物分子的表面为三乙氧基封端的自组装单分子层,基体为涂有50nm金层的玻璃表面,三乙氧基封端的自组装单分子层在金表面自组装形成规整结构并将三乙氧基暴露在表面上,这种分子层为一类经典的阻抗蛋白质非特异性吸附的功能性涂层;基础生物分子为携带有生物素的物种为鸡的溶菌酶,目标生物分子为携带有荧光素的链霉抗生物素蛋白,膦盐酸盐与哌嗪环两种物质的复配溶液为含有50mM三(2-羧乙基)膦盐酸盐的10mM 4-羟乙基哌嗪乙磺酸缓冲溶液,溶液pH为7.4。本实施例证明了利用含有生物素端基的溶菌酶的刺激吸附应答性可以很方便的制备蛋白质微阵列。具体操作方法为:首先将溶菌酶溶液与含有三(2-羧乙基)膦盐酸盐的10mM 4-羟乙基哌嗪乙磺酸溶液相混合,然后用蛋白质点样机将溶液点样到基材表面,形成阵列,然后将形成的阵列用10mM 4-羟乙基哌嗪乙磺酸缓冲溶液洗涤,并进一步浸泡在含有荧光标记的链霉抗生物素蛋白缓冲溶液中,在37度下浸泡2小时取出并用10mM 4-羟乙基哌嗪乙磺酸缓冲溶液洗涤,之后放置在荧光显微镜下观察在阵列上的荧光信号。该实施例中第一组实验证明只有将生物素-溶菌酶溶解在含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液中,当该溶液与三乙氧基封端的自组装单分子层表面接触后,其相应的配体链霉抗生物素蛋白可以迅速的组装到表面上,其携带的荧光标记可以被荧光显微镜所检测。与之相对的是,如果只用不含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液重复上述试验,其相应的配体链霉抗生物素蛋白不会组装到表面上,在荧光显微镜下没有任何荧光信号被检出。同样的,如果只用纯的溶菌酶而不与生物素结合,无论是在含有三(2-羧乙基)膦盐酸盐或者不含有三(2-羧乙基)膦盐酸盐的4-羟乙基哌嗪乙磺酸缓冲溶液当中都无法检测到荧光信号,这说明携带荧光标记的配体链霉抗生物素蛋白在表面的吸附属于与生物素的特异性吸附,而不是一般性的非特异性吸附。由于没有任何化学反应的干扰,三乙氧 基封端的自组装单分子层基材可以保持完美的规整结构,从而可以保持优异的蛋白质吸附阻抗性能。第二组实验就证明了这一点。在第二组实验中,三乙氧基封端的自组装单分子层表面可以直接从含有生物素-溶菌酶的细胞裂解液(cell lysate)中将生物素-溶菌酶捕获下来,捕获下来的生物素-溶菌酶可以识别链霉抗生物素蛋白,从而产生荧光信号。对照实验表明,如果细胞裂解液中不含有生物素-溶菌酶,则该表面无法识别亲和素而产生荧光信号,再次表明链霉抗生物素蛋白在表面的吸附属于与生物素的特异性吸附。在第三组实验中,一系列的含有不同梯度的生物素-溶菌酶浓度的细胞裂解液同时点样在三乙氧基封端的自组装单分子层基材上以检测从细胞裂解液中捕获链霉抗生物素蛋白的灵敏度。结果表明,只需要非常低的生物素-溶菌酶浓度就可以用来捕捉链霉抗生物素蛋白,其所需要的最低的生物素-溶菌酶浓度可低至10pg/ml,相当于在每平方微米上的0.001个分子。这个值甚至比单分子研究中所用的0.05个分子每平方微米还要低50倍。这表明,该方法具有超高的灵敏度,极端低的生物素表面密度仍然可以导致有效的链霉抗生物素蛋白识别。这个结果对于制备高灵敏度的酶标板和生物芯片具有重要的基础指导意义。如此高的灵敏度是来源于在无任何化学处理的干扰下,对三乙氧基封端的自组装单分子层基材表面结构的完美保持。 

Claims (9)

1.一种生物芯片制备方法,对各种无机,有机和金属基材,采用含有膦盐酸盐和哌嗪环两种物质的复配溶液,诱导基础生物分子发生相转变而稳定的附着于基材表面上,基础生物分子所携带的功能性单元则进一步暴露在表面上来结合和识别目标生物分子以实现生物芯片,生物分子微阵列制造。
2.根据权利要求1所述的生物芯片制备方法,其特征在于:基础生物分子包括天然溶菌酶,人工诱导的突变体,含有溶菌酶部分序列结构的多肽,蛋白质,基因或者他们之间的结合体,溶菌酶序列结构的来源物种是人,鸡,牛,鼠,或者骆驼。
3.根据权利要求2所述的生物芯片制备方法,基础生物分子可以单独使用,或者与别的任何分子或颗粒化学或者物理结合后再使用,与基础生物分子的结合位点可以是羧基端,胺基端,或者是其他任何氨基酸序列处。
4.根据权利要求1所述的生物芯片制备方法,其特征在于:目标生物分子为任何基因,蛋白质,多肽,细胞,病毒,细菌,真菌以及与目标生物分子化学或者物理结合的颗粒,包括亲和素,链霉抗生物素蛋白,脱糖亲和素,上述任何的基因突变体或者上述分子与其他分子、结构或者颗粒的结合体,包覆体或者含有部分亲和素序列结构的多肽。
5.根据权利要求1所述的生物芯片制备方法,功能性单元为可以起到识别和结合大分子或者大分子组装体的生物小分子,短肽或者颗粒,包括生物素或含有生物素结构的分子或含有脲基结构的分子或者基团或者多肽。
6.根据权利要求1所述的生物芯片制备方法,膦盐酸盐为任何含有膦盐酸盐结构单元的分子或者混合物,包括三(2-羧乙基)膦盐酸盐。
7.根据权利要求1所述的生物芯片制备方法,哌嗪环为任何含有哌嗪结构的分子或混合物,包括4-羟乙基哌嗪乙磺酸。
8.根据权利要求1所述的生物芯片制备方法,复配溶液包括缓冲溶液,非缓冲溶液,细胞裂解液,血清,血浆,唾液,尿液,组织液,人体分泌物及各种体液。
9.根据权利要求1所述的生物芯片制备方法,基材为各种无机,有机,金属,生物材料以及其上的无机,有机,金属,生物涂层或者溶液相,包括天然和人工合成的高分子基板和高分子涂层,无机基板和无机涂层,金属基板和金属涂层,生物材料基板和生物材料涂层。
CN2011103111229A 2011-10-08 2011-10-08 生物芯片制备方法 Pending CN102505041A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103111229A CN102505041A (zh) 2011-10-08 2011-10-08 生物芯片制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103111229A CN102505041A (zh) 2011-10-08 2011-10-08 生物芯片制备方法

Publications (1)

Publication Number Publication Date
CN102505041A true CN102505041A (zh) 2012-06-20

Family

ID=46217171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103111229A Pending CN102505041A (zh) 2011-10-08 2011-10-08 生物芯片制备方法

Country Status (1)

Country Link
CN (1) CN102505041A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954771A (zh) * 2014-04-28 2014-07-30 陕西师范大学 一种低成本捕获/释放及检测生物分子的方法
CN109845761A (zh) * 2015-11-24 2019-06-07 陕西师范大学 溶菌酶二维纳米薄膜作为抗菌材料的应用
WO2020073734A1 (zh) * 2018-10-12 2020-04-16 深圳市真迈生物科技有限公司 一种生物芯片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325405A (zh) * 1998-08-31 2001-12-05 格莱风科学公司 膜多肽的脂基质协助的化学结合和合成
EP1637613A1 (en) * 2004-09-20 2006-03-22 Eidgenössische Technische Hochschule Zürich Electrochemical patterning on multi-channel microelectrode array for biosensing applications
WO2011002642A1 (en) * 2009-07-02 2011-01-06 General Electric Company Sensor films, methods for making and methods for monitoring water-soluble polymer concentrations
CN101970676A (zh) * 2007-12-20 2011-02-09 雅培医护站股份有限公司 形成用于传感的固定化生物层的组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325405A (zh) * 1998-08-31 2001-12-05 格莱风科学公司 膜多肽的脂基质协助的化学结合和合成
EP1637613A1 (en) * 2004-09-20 2006-03-22 Eidgenössische Technische Hochschule Zürich Electrochemical patterning on multi-channel microelectrode array for biosensing applications
CN101970676A (zh) * 2007-12-20 2011-02-09 雅培医护站股份有限公司 形成用于传感的固定化生物层的组合物
WO2011002642A1 (en) * 2009-07-02 2011-01-06 General Electric Company Sensor films, methods for making and methods for monitoring water-soluble polymer concentrations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SE´ BASTIEN GRANIER等: "Structure and Conformational Changes in the C-terminal Domain of the β-Adrenoceptor", 《THE JOURNAL OF BIOLOGICAL CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954771A (zh) * 2014-04-28 2014-07-30 陕西师范大学 一种低成本捕获/释放及检测生物分子的方法
CN109845761A (zh) * 2015-11-24 2019-06-07 陕西师范大学 溶菌酶二维纳米薄膜作为抗菌材料的应用
CN109845761B (zh) * 2015-11-24 2021-04-06 陕西师范大学 溶菌酶二维纳米薄膜作为抗菌材料的应用
WO2020073734A1 (zh) * 2018-10-12 2020-04-16 深圳市真迈生物科技有限公司 一种生物芯片及其制备方法

Similar Documents

Publication Publication Date Title
Chan et al. Adsorption and surface diffusion of DNA oligonucleotides at liquid/solid interfaces
CN100410664C (zh) 包含纳米结构的分析或分离用装置、制备方法及其应用
EP1461619B1 (de) Verbesserte strukturiert-funktionale bindematrices für biomoleküle
Hu et al. Imaging of Single Extended DNA Molecules on Flat (Aminopropyl) triethoxysilane− Mica by Atomic Force Microscopy
Liu et al. A multianalyte electrochemical immunosensor based on patterned carbon nanotubes modified substrates for detection of pesticides
CN1152055C (zh) 磁性微球的表面包覆和基团功能化修饰方法及所得微球及其应用
Ye et al. Orientation difference of chemically immobilized and physically adsorbed biological molecules on polymers detected at the solid/liquid interfaces in situ
TWI277653B (en) Process for producing a biomolecular monolayer on a surface, biosensor having a surface, and biochip
CN101329296B (zh) 一种基于磁性碳纳米管的葡萄糖氧化酶电极及其制备方法
CN101166693B (zh) 结构、多孔体、传感器、制造结构的方法以及样品的检测方法
CN101832965B (zh) 基于磁性碳纳米管和壳聚糖/二氧化硅凝胶的漆酶生物传感器及其制备方法和应用
CN101535473A (zh) 反应性表面、基质及生产和利用它们的方法
JP2011500022A (ja) 細胞培養物品およびその方法
CN101363870A (zh) 生物传感芯片及其制备方法
Kim et al. Enhanced protein immobilization efficiency on a TiO2 surface modified with a hydroxyl functional group
Liu et al. Assembly‐controlled biocompatible interface on a microchip: Strategy to highly efficient proteolysis
CN102505041A (zh) 生物芯片制备方法
CN103412020B (zh) 一种乙酰胆碱酯酶电化学生物传感器的制备方法及其应用
CN100469854C (zh) 一种磁性荧光纳米微球及其制法和应用
Torbensen et al. Immuno-based molecular scaffolding of glucose dehydrogenase and ferrocene mediator on fd viral particles yields enhanced bioelectrocatalysis
Zhao et al. Denatured proteins show new vitality: Green synthesis of germanium oxide hollow microspheres with versatile functions by denaturing proteins around bubbles
Borghol et al. Monitoring of E. coli immobilization on modified gold electrode: A new bacteria-based glucose sensor
Wang et al. Facile synthesis and application of teicoplanin‐modified magnetic microparticles for enantioseparation
KR100900955B1 (ko) 자기조립된 분자의 커버리지 분석용 기판 및 이를 이용하여자기조립된 분자의 커버리지를 분석하는 방법
CN107988199A (zh) 一种乙酰胆碱酯酶固定化载体及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120620