CN102503159A - 一种无机纳米透明隔热玻璃薄膜及其制备方法 - Google Patents

一种无机纳米透明隔热玻璃薄膜及其制备方法 Download PDF

Info

Publication number
CN102503159A
CN102503159A CN201110294819XA CN201110294819A CN102503159A CN 102503159 A CN102503159 A CN 102503159A CN 201110294819X A CN201110294819X A CN 201110294819XA CN 201110294819 A CN201110294819 A CN 201110294819A CN 102503159 A CN102503159 A CN 102503159A
Authority
CN
China
Prior art keywords
nano
transparent heat
glass
inorganic nano
insulating glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110294819XA
Other languages
English (en)
Inventor
陆春华
许仲梓
倪亚茹
徐丹
赵石林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201110294819XA priority Critical patent/CN102503159A/zh
Publication of CN102503159A publication Critical patent/CN102503159A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

本发明提供了一种无机纳米透明隔热玻璃薄膜及其制备方法。通过加热熔融,由玻璃化合物和纳米半导体组成的混合物可在透明玻璃基片上形成性能优异的纳米透明隔热薄膜。本发明提供的无机纳米透明隔热玻璃薄膜制备方法适应性强,可根据加热方式的不同,进行纳米透明隔热玻璃薄膜材料的选择、设计和材料制备,可与浮法玻璃制造工艺相结合进行在线规模化制造和高温钢化工艺处理,大大降低生产成本和能耗。

Description

一种无机纳米透明隔热玻璃薄膜及其制备方法
技术领域:
本发明涉及一种无机纳米透明隔热玻璃薄膜及其制备方法,尤其涉及一种在透明玻璃基片上通过加热熔融玻璃化合物/纳米半导体混合物形成的无机纳米透明隔热薄膜及其制备方法。
背景技术:
为解决建筑物、汽车玻璃等场所的透明隔热问题,国内外进行了广泛的研究和尝试,目前市场上常见的主要有金属镀膜热反射玻璃和各种热反射贴膜等产品,以达到玻璃隔热降温的目的。但是这些产品存在价格高、施工不便等问题,影响了它们的应用推广。寻找一种材料兼有良好的透明和隔热效果且成本低从而解决玻璃的隔热问题在节能环保方面具有广阔的应用价值和市场前景。纳米透明隔热涂料正是在这种前提下诞生的。该发明具有卓越的透明性和对近红外光的屏蔽作用,实用面广、施工方便、价格相对低廉,是功能性涂料发展的一个重大突破,对国家节能减排具有十分重要的意义。
现有的纳米透明隔热涂料的基体材料均为高分子树脂基,如专利CN101186781B、CN101230234报道的透明隔热涂料均采用水性聚氨酯作为成膜物质,ZL200710075879.6采用聚丙烯酸树脂作为纳米隔热功能粒子的粘结剂。树脂基纳米透明隔热涂料只能在玻璃冷态状态下进行薄膜的涂敷,无法结合现有浮法玻璃大规模在线连续制造工艺,实现纳米透明隔热薄膜的在线连续制备,同时也无法与玻璃高温钢化工艺相结合,充分利用玻璃浮法制造和钢化过程中的热能,降低生产成本和能耗。
目前,以玻璃化合物和纳米半导体组成的混合物为功能物质,运用激光、微波或火焰加热方式进行无机纳米透明隔热薄膜制造还未见报道。
发明内容:
本发明的目的是为了提供一种可与浮法玻璃制造工艺相结合、易于进行大规模在线连续制造的无机纳米透明隔热薄膜,本发明的另外一个目的是提供这种无机纳米透明隔热薄膜的制备方法。
本发明的技术方案为:以玻璃化合物和纳米半导体组成的混合物为纳米透明隔热薄膜组成材料,该材料经过加热熔融可在透明玻璃基片表面形成无机纳米透明隔热薄膜,本发明可与浮法玻璃制造工艺相结合在线规模化制造和高温钢化处理纳米透明隔热涂膜玻璃,大大降低生产成本和能耗。
本发明的具体技术方案:一种无机纳米透明隔热玻璃薄膜,其特征在于无机纳米透明隔热玻璃薄膜由玻璃化合物和均匀分布在玻璃化合物中的纳米半导体共同组成;其中,纳米半导体在无机纳米透明隔热玻璃薄膜中的重量百分数为1~15%;无机纳米透明隔热玻璃薄膜的厚度为0.5~100μm。
根据隔热性能要求,通过控制玻璃化合物和纳米半导体混合物的用量可调节无机纳米透明隔热薄膜厚度,薄膜厚度优选1~50μm,更优选8~30μm。
优选所述的玻璃化合物为硅酸盐玻璃、硼硅酸盐玻璃、磷酸盐玻璃、铋酸盐玻璃或铅酸盐玻璃中的任意一种;玻璃化合物平均颗粒尺寸分布为0.1~20μm,优选0.5~15μm,更优选1~10μm。优选所述的纳米半导体至少为纳米氧化铟锡(ITO)或纳米氧化锡锑(ATO)中的一种;纳米半导体平均粒径为5~100nm,优选10~80nm,更优选15~40nm。
本发明还提供了上述无机纳米透明隔热玻璃薄膜的方法,采用激光、微波、火焰或电加热方式中的一种或几种组合,使均匀分散在透明玻璃基片上的玻璃化合物和纳米半导体混合物快速熔融,形成透明的无机纳米透明隔热薄膜。
优选所述的激光由半导体激光器、Nd:YAG激光器或二氧化碳激光器中任意一种输出的激光;其中,半导体激光器输出的激光波长为0.8μm、0.98μm中的任意一种,优选0.98μm;Nd:YAG激光器输出的激光波长为1.06μm;二氧化碳激光器输出的激光波长为10.6μm;激光光束功率密度为104~108W/cm2。优选所述的微波为工业微波,微波工作频率为2.45GHz,功率介于10~700KW。优选所述的火焰为乙炔火焰或氢氧火焰;火焰温度介于1800~3000℃。所述的电加热为硅碳棒或硅钼棒加热,加热温度为1400~1800℃。采用激光、微波、火焰或电加热的时间一般为1-300秒;优选5-100秒。
有益效果:
1.发明的无机纳米透明隔热薄膜具有比树脂基纳米透明隔热材料更好的耐高温性能,无机纳米透明隔热薄膜与透明玻璃基片的粘接强度高。
2.无机纳米透明隔热薄膜的制备可与浮法玻璃制造工艺相结合,易于实现纳米透明隔热薄膜大规模在线连续制造,能有效降低生产成本和能耗。
具体实施方式:
实施例1:以二氧化碳激光(波长为10.6μm,功率密度2×105W/cm2)为辐射光源,纳米半导体为ATO(平均颗粒粒径为35纳米,市售)和硅酸盐玻璃化合物(重量百分组成为:72.6SiO2-1Al2O3-0.2Fe2O3-8.2CaO-4MgO-14(K2O,Na2O),平均颗粒粒径为10微米,市售)为纳米透明隔热薄膜组成材料。无机纳米透明隔热薄膜制备过程如下:(1)将由5g纳米ATO和100g硅酸盐玻璃化合物组成的混合粉体均匀分散到新鲜玻璃表面(玻璃厚度为5mm,市售),控制混合粉体堆积厚度为25μm;(2)利用二氧化碳激光均匀地辐照纳米ATO/硅酸盐玻璃化合物混合粉体,保持10秒左右,使纳米ATO/硅酸玻璃混合物充分吸收激光能量快速熔融;(3)关闭激光后,熔融的纳米ATO/硅酸盐玻璃混合粉体快速凝固并形成厚度约18μm的纳米透明隔热玻璃薄膜;纳米透明隔热玻璃薄膜在700℃下能够稳定不氧化,可见光的透射比和红外光的屏蔽率均达到76%。实施例2:以氢-氧焰为加热源(火焰温度高达1800℃),半导体ITO粒子(平均粒径为28纳米,市售)和磷酸盐玻璃化合物(重量百分组成为:75P2O5-15Al2O3-10Li2O,平均粒径为6.5微米,市售)为纳米透明隔热薄膜组成材料。无机纳米透明隔热薄膜制备过程如下:(1)将由12g纳米ITO和100g酸盐玻璃化合物组成的混合粉体均匀地分散到新鲜玻璃表面(玻璃厚度为5mm,市售),控制混合粉体堆积厚度为15μm;(2)将氢-氧焰均匀地喷射到纳米ATO/磷酸盐玻璃混合粉体的表面,保持约20秒左右,使纳米ITO/磷酸盐玻璃混合粉体充分吸收热能快速熔融;(3)移去氢氧火焰后,熔融的纳米ATO/磷酸盐玻璃混合粉体快速凝固,在玻璃表面形成厚度约11μm纳米透明隔热玻璃薄膜。纳米透明隔热玻璃薄膜在500℃下能够稳定不氧化,可见光的透射比为81%和红外光的屏蔽率达到83%。
实施例3:以大功率工业微波为加热源(频率2.45GHz,功率30KW),选用纳米ATO(平均粒径37纳米,市售)和铅玻璃化合物(组成为:45PbO-40SiO2-2Al2O3-13(K2O,Na2O),平均粒径约为3微米,自制)为纳米透明隔热薄膜组成材料。无机纳米透明隔热薄膜制备过程如下:(1)将由12g纳米ITO和100g铅玻璃化合物组成的混合粉体均匀地分散到新鲜玻璃表面(5mm厚,市售),控制混合粉体堆积厚度为13μm;(2)将表面均匀分散有纳米ATO/铅玻璃混合物的玻璃(5mm厚,市售)置于微波辐射炉中,保持30秒左右,使纳米ATO/铅玻璃混合物充分吸收微波能量快速熔融;(3)关闭微波,熔融的纳米ATO/铅玻璃混合粉体快速凝固,形成了厚度约为10μm的纳米透明隔热玻璃薄膜。纳米透明隔热玻璃薄膜在500℃下能够稳定不氧化,可见光的透射比为85%和红外光的屏蔽率达到82%。
实施例4:以Nd:YAG激光器激光(波长为1.06μm,功率密度4×106W/cm2)为辐射光源,纳米半导体为ATO(平均颗粒粒径为35纳米,市售)和硅酸盐玻璃化合物(重量百分组成为:72.6SiO2-1Al2O3-0.2Fe2O3-8.2CaO-4MgO-14(K2O,Na2O),平均颗粒粒径为10微米,市售)为纳米透明隔热薄膜组成材料。无机纳米透明隔热薄膜制备过程如下:(1)将由2g纳米ATO和100g硅酸盐玻璃化合物组成的混合粉体均匀分散到新鲜玻璃表面(玻璃厚度为8mm,市售),控制混合粉体堆积厚度为30μm;(2)利用Nd:YAG激光均匀地辐照纳米ATO/硅酸盐玻璃化合物混合粉体,保持50秒左右,使纳米ATO/硅酸玻璃混合物充分吸收激光能量快速熔融;(3)关闭激光后,熔融的纳米ATO/硅酸盐玻璃混合粉体快速凝固并形成厚度约24μm的纳米透明隔热玻璃薄膜;纳米透明隔热玻璃薄膜在700℃下能够稳定不氧化,可见光的透射比为75%和红外光的屏蔽率达到68%。
实施例5:以氢-氧焰为加热源(火焰温度高达2500℃),半导体ITO粒子(平均粒径为28纳米,市售)和磷酸盐玻璃化合物(重量百分组成为:75P2O5-15Al2O3-10Li2O,平均粒径为6.5微米,市售)为纳米透明隔热薄膜组成材料。无机纳米透明隔热薄膜制备过程如下:(1)将由15g纳米ITO和100g酸盐玻璃化合物组成的混合粉体均匀地分散到新鲜玻璃表面(玻璃厚度为5mm,市售),控制混合粉体堆积厚度为18μm;(2)将氢-氧焰均匀地喷射到纳米ATO/磷酸盐玻璃混合粉体的表面,保持约20秒左右,使纳米ITO/磷酸盐玻璃混合粉体充分吸收热能快速熔融;(3)移去氢氧火焰后,熔融的纳米ATO/磷酸盐玻璃混合粉体快速凝固,在玻璃表面形成厚度约13μm纳米透明隔热玻璃薄膜。纳米透明隔热玻璃薄膜在600℃下能够稳定不氧化,可见光的透射比为83%和红外光的屏蔽率达到86%。
实施例6:以大功率工业微波为加热源(频率2.45GHz,功率600KW),选用纳米ATO(平均粒径37纳米,市售)和铅玻璃化合物(组成为:45PbO-40SiO2-2Al2O3-13(K2O,Na2O),平均粒径约为3微米,自制)为纳米透明隔热薄膜组成材料。无机纳米透明隔热薄膜制备过程如下:(1)将由12g纳米ITO和100g铅玻璃化合物组成的混合粉体均匀地分散到新鲜玻璃表面(8mm厚,市售),控制混合粉体堆积厚度为22μm;(2)将表面均匀分散有纳米ATO/铅玻璃混合物的玻璃(8mm厚,市售)置于微波辐射炉中,保持20秒左右,使纳米ATO/铅玻璃混合物充分吸收微波能量快速熔融;(3)关闭微波,熔融的纳米ATO/铅玻璃混合粉体快速凝固,形成了厚度约为15μm的纳米透明隔热玻璃薄膜。纳米透明隔热玻璃薄膜在500℃下能够稳定不氧化,可见光的透射比为85%和红外光的屏蔽率达到82%。
实施例7:以硅碳棒为加热源(1450℃),选用纳米ATO(平均粒径37纳米,市售)和铅玻璃化合物(组成为:45PbO-40SiO2-2Al2O3-13(K2O,Na2O),平均粒径约为3微米,自制)为纳米透明隔热薄膜组成材料。无机纳米透明隔热薄膜制备过程如下:(1)将由12g纳米ITO和100g铅玻璃化合物组成的混合粉体均匀地分散到新鲜玻璃表面(8mm厚,市售),控制混合粉体堆积厚度为22μm;(2)将表面均匀分散有纳米ATO/铅玻璃混合物的玻璃(8mm厚,市售)置于电加热腔体(硅碳棒)中,保持300秒左右,使纳米ATO/铅玻璃混合物充分吸收微波能量快速熔融;(3)关闭电源,熔融的纳米ATO/铅玻璃混合粉体快速凝固,形成了厚度约为15μm的纳米透明隔热玻璃薄膜。纳米透明隔热玻璃薄膜在500℃下能够稳定不氧化,可见光的透射比为84%和红外光的屏蔽率达到80%。实施例8:以电加热硅钼棒为热源(1700℃),选用纳米ATO(平均粒径37纳米,市售)和铅玻璃化合物(组成为:45PbO-40SiO2-2Al2O3-13(K2O,Na2O),平均粒径约为3微米,自制)为纳米透明隔热薄膜组成材料。无机纳米透明隔热薄膜制备过程如下:(1)将由15g纳米ITO和100g铅玻璃化合物组成的混合粉体均匀地分散到新鲜玻璃表面(5mm厚,市售),控制混合粉体堆积厚度为20μm;(2)将表面均匀分散有纳米ATO/铅玻璃混合物的玻璃(5mm厚,市售)置于电加热腔体(硅碳棒)中,保持240秒左右,使纳米ATO/铅玻璃混合物充分吸收微波能量快速熔融;(3)关闭电源,熔融的纳米ATO/铅玻璃混合粉体快速凝固,形成了厚度约为14μm的纳米透明隔热玻璃薄膜。纳米透明隔热玻璃薄膜在500℃下能够稳定不氧化,可见光的透射比为85%和红外光的屏蔽率达到82%。

Claims (9)

1.一种无机纳米透明隔热玻璃薄膜,其特征在于无机纳米透明隔热玻璃薄膜由玻璃化合物和均匀分布在玻璃化合物中的纳米半导体共同组成;其中,纳米半导体在无机纳米透明隔热玻璃薄膜中的重量百分数为1~15%;无机纳米透明隔热玻璃薄膜的厚度为0.5~100μm。
2.根据权利要求1所述的无机纳米透明隔热玻璃薄膜,其特征在于所述的机纳米透明隔热玻璃薄膜的厚度为8~30μmμm。
3.根据权利要求1所述的无机纳米透明隔热玻璃薄膜,其特征在于所述的玻璃化合物为硅酸盐玻璃、硼硅酸盐玻璃、磷酸盐玻璃、铋酸盐玻璃或铅酸盐玻璃中的任意一种;玻璃化合物平均颗粒尺寸为0.1~20μm。
4.根据权利要求3所述的无机纳米透明隔热玻璃薄膜,其特征在于所述的玻璃化合物平均颗粒尺寸为1~10μm。
5.根据权利要求1所述的无机纳米透明隔热玻璃薄膜,其特征在于所述的纳米半导体至少为纳米氧化铟锡或纳米氧化锡锑中的一种;纳米半导体平均粒径为5~100nm。
6.根据权利要求5所述的无机纳米透明隔热玻璃薄膜,其特征在于所述纳米半导体平均粒径为15~40nm。
7.一种制备如权力要求1所述的无机纳米透明隔热玻璃薄膜的方法,其特征在于采用激光、微波、火焰或电加热方式中的一种或几种组合,使均匀分散在透明玻璃基片上的玻璃化合物和纳米半导体混合物快速熔融,形成透明的无机纳米透明隔热薄膜。
8.根据权利要求7所述的方法,其特征在于所述的激光由半导体激光器、Nd:YAG激光器或二氧化碳激光器中任意一种输出的激光;其中,半导体激光器输出的激光波长为0.8μm、0.98μm中的任意一种;Nd:YAG激光器输出的激光波长为1.06μm;二氧化碳激光器输出的激光波长为10.6μm;激光光束功率密度为104~108W/cm2
9.根据权利要求7所述的方法,其特征在于所述的微波为工业微波,微波工作频率为2.45GHz,功率介于10~700KW;所述的火焰为乙炔火焰或氢氧火焰;火焰温度介于1800~3000℃;所述的电加热为硅碳棒或硅钼棒加热,加热温度为1400~1800℃。
CN201110294819XA 2011-09-29 2011-09-29 一种无机纳米透明隔热玻璃薄膜及其制备方法 Pending CN102503159A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110294819XA CN102503159A (zh) 2011-09-29 2011-09-29 一种无机纳米透明隔热玻璃薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110294819XA CN102503159A (zh) 2011-09-29 2011-09-29 一种无机纳米透明隔热玻璃薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN102503159A true CN102503159A (zh) 2012-06-20

Family

ID=46215310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110294819XA Pending CN102503159A (zh) 2011-09-29 2011-09-29 一种无机纳米透明隔热玻璃薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN102503159A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370619A (zh) * 2018-11-14 2019-02-22 五冶集团上海有限公司 3d立体照相机在干熄焦炉内衬检测中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321579A (ja) * 1993-05-14 1994-11-22 Asahi Glass Co Ltd 紫外線シャープカットフィルター
JP2000063151A (ja) * 1998-08-17 2000-02-29 Toray Ind Inc 画像装置用絶縁膜の製造方法
JP2001322835A (ja) * 2000-05-11 2001-11-20 Asahi Glass Co Ltd 着色ガラスおよびその製造方法
WO2004046057A1 (ja) * 2002-11-21 2004-06-03 Nippon Sheet Glass Company, Limited 熱遮蔽板とその製造方法、およびそれに用いる液組成物
CN100398915C (zh) * 2002-05-16 2008-07-02 日本电气硝子株式会社 烹调器用顶板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321579A (ja) * 1993-05-14 1994-11-22 Asahi Glass Co Ltd 紫外線シャープカットフィルター
JP2000063151A (ja) * 1998-08-17 2000-02-29 Toray Ind Inc 画像装置用絶縁膜の製造方法
JP2001322835A (ja) * 2000-05-11 2001-11-20 Asahi Glass Co Ltd 着色ガラスおよびその製造方法
CN100398915C (zh) * 2002-05-16 2008-07-02 日本电气硝子株式会社 烹调器用顶板
WO2004046057A1 (ja) * 2002-11-21 2004-06-03 Nippon Sheet Glass Company, Limited 熱遮蔽板とその製造方法、およびそれに用いる液組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370619A (zh) * 2018-11-14 2019-02-22 五冶集团上海有限公司 3d立体照相机在干熄焦炉内衬检测中的应用

Similar Documents

Publication Publication Date Title
CN102459110B (zh) 沉积薄层的方法和获得的产品
US9499428B2 (en) Formation of glass-based seals using focused infrared radiation
CN101626990A (zh) 沉积薄层的方法和获得的产品
CN106229385B (zh) 太阳电池辐照退火炉
CN102503158B (zh) 一种无机纳米透明隔热涂膜玻璃在线制造装置及其生产工艺
CN105818494A (zh) 一种钢化玻璃及其制造工艺
CN103274585A (zh) 快速钢化low-e玻璃的加工方法
CN103533681A (zh) 一种电热膜及其制备方法
CN101982444A (zh) 一种纳米微晶搪瓷的制备技术
Wang et al. Cooling performance of a bioinspired micro-crystal-bars coated composite fabric with solar reflectance
CN102503159A (zh) 一种无机纳米透明隔热玻璃薄膜及其制备方法
CN111268904A (zh) 节能玻璃的制备方法
CN202643562U (zh) 低辐射隔热玻璃
CN103880287B (zh) 一种低温封接微晶玻璃材料及制备方法
CN201623869U (zh) 加热管
CN103992097B (zh) 一种稀土全光谱热能转换陶瓷悬浮液及其制备方法和应用方法
CN108937608B (zh) 玻璃导磁发热盘的加工工艺
CN208905560U (zh) 一面带有凹槽的玻璃导磁发热盘
CN101772228A (zh) 加热管
CN205188132U (zh) 一种用于光伏镀膜玻璃的钢化及固化加热装置
CN112830676B (zh) 一种节能玻璃的制备方法
Hosseini et al. FLAME SYNTHESIS OF MoO3 FILMS AND THEIR FLAME REDUCTION TO MoO 3− x FILMS FOR NIR-SHIELDING APPLICATIONS
CN102775076A (zh) 一种透明隔热玻璃薄膜
CN110099539A (zh) 散热片结构及其制造方法
TWI413621B (zh) A method of microwave assisted glass annealing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120620