CN102497077A - Rotor slotless switched reluctance motor - Google Patents

Rotor slotless switched reluctance motor Download PDF

Info

Publication number
CN102497077A
CN102497077A CN2011104013986A CN201110401398A CN102497077A CN 102497077 A CN102497077 A CN 102497077A CN 2011104013986 A CN2011104013986 A CN 2011104013986A CN 201110401398 A CN201110401398 A CN 201110401398A CN 102497077 A CN102497077 A CN 102497077A
Authority
CN
China
Prior art keywords
magnetic
rotor
poles
pole
switched reluctance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104013986A
Other languages
Chinese (zh)
Other versions
CN102497077B (en
Inventor
孙建忠
白凤仙
孙斐然
何月飞
罗亚琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN 201110401398 priority Critical patent/CN102497077B/en
Publication of CN102497077A publication Critical patent/CN102497077A/en
Application granted granted Critical
Publication of CN102497077B publication Critical patent/CN102497077B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronous Machinery (AREA)

Abstract

本发明一种转子无齿槽开关磁阻电机属于机电类的开关磁阻电机领域,特别涉及一种转子无齿槽结构的开关磁阻电机。转子无齿槽开关磁阻电机的定子采用主磁极和辅助磁极组合的磁极结构,转子采用各向异性轴向叠片结构,转子叠成4极结构,定子主磁极为6极,轴向叠片结构包括转轴、非导磁支架、轴向叠片、非导磁填充材料和非导磁紧固环组成。轴向叠片磁极是由高导磁材料硅钢片和非导磁绝缘材料叠片沿轴向交替叠压而成的,本发明采用组合定子磁极和轴向叠片转子使磁路长度大大缩短,可减小开关磁阻电机的铁损耗,并有效地减小开关磁阻电机的转矩脉动;仅主磁极上绕有绕组,嵌放绕组方便,不需考虑相间绝缘问题,槽利用率高。

Figure 201110401398

The invention discloses a rotor cogging-free switched reluctance motor, which belongs to the field of electromechanical switched reluctance motors, and in particular relates to a rotor cogging-free switched reluctance motor. The stator of the rotorless cogging switched reluctance motor adopts a magnetic pole structure with a combination of main magnetic poles and auxiliary magnetic poles. The rotor adopts an anisotropic axial lamination structure. The rotor is stacked into a 4-pole structure. The structure consists of a rotating shaft, a non-magnetically permeable bracket, an axial lamination, a non-magnetically permeable filling material and a non-magnetically permeable fastening ring. The axial laminated magnetic poles are made of silicon steel sheets of high magnetic permeability and non-magnetic insulating material laminations alternately laminated along the axial direction. The invention adopts the combination of stator magnetic poles and axial laminated rotors to greatly shorten the length of the magnetic circuit. It can reduce the iron loss of the switched reluctance motor, and effectively reduce the torque ripple of the switched reluctance motor; only the main magnetic pole is wound with windings, which is convenient for embedding the windings, no need to consider the phase-to-phase insulation problem, and the slot utilization rate is high.

Figure 201110401398

Description

一种转子无齿槽开关磁阻电机A rotor coggingless switched reluctance motor

技术领域 technical field

本发明属于机电类的开关磁阻电机领域,特别涉及一种由组合式磁极定子与轴向叠片转子组成的转子无齿槽开关磁阻电机。The invention belongs to the field of electromechanical switched reluctance motors, and in particular relates to a rotor-free switched reluctance motor composed of a combined magnetic pole stator and an axially laminated rotor.

背景技术 Background technique

开关磁阻电动机传动系统是一种机电一体化交流调速系统,具有结构简单、工作可靠、系统控制灵活、调速性能好、运行效率高等诸多优点,它特别适合在恶劣环境和要求超高速的场合下运行,因此广泛应用于煤矿、航空、汽车等领域,功率范围从几瓦到几兆瓦,转速范围从几转到几万转。传统的开关磁阻电动机为双凸极结构,转子上既无绕组也无永磁体,定子上绕有集中绕组,径向相对的磁极上的绕组串联成为一相。开关磁阻电动机可以设计成单相、两相、三相及多相等不同结构,且有每极单齿和每极多齿结构,传统开关磁阻电机的双凸极结构和开关供电导致了它具有一定的缺点:一是定子齿和转子齿交叠前产生的边缘磁通引起电流非线性;二是开关磁阻电机转子上的转矩是由一系列脉冲转矩叠加而成的,合成转矩不是恒定值。这些将导致开关磁阻电机存在固有的转矩脉动,尤其电机低速运行时转矩脉动较大。所以从电机本体上最大限度地减小转矩脉动成为开关磁阻电机领域的重要研究内容。The switched reluctance motor transmission system is a mechatronic AC speed control system, which has many advantages such as simple structure, reliable operation, flexible system control, good speed control performance, and high operating efficiency. It is especially suitable for harsh environments and ultra-high speed applications. Therefore, it is widely used in coal mines, aviation, automobiles and other fields. The power range is from several watts to several megawatts, and the speed range is from several to tens of thousands of revolutions. The traditional switched reluctance motor has a double-salient pole structure. There is neither winding nor permanent magnet on the rotor. Concentrated windings are wound on the stator. The windings on the radially opposite magnetic poles are connected in series to form a phase. Switched reluctance motors can be designed into single-phase, two-phase, three-phase and multi-phase different structures, and have single-tooth per pole and multi-tooth per pole structures. The double salient pole structure and switching power supply of traditional switched reluctance motors lead to its It has certain disadvantages: first, the marginal flux generated before the stator teeth and rotor teeth overlap causes current nonlinearity; second, the torque on the rotor of the switched reluctance motor is superimposed by a series of pulse torques. Moment is not a constant value. These will lead to the inherent torque ripple of the switched reluctance motor, especially when the motor is running at low speed, the torque ripple is large. Therefore, minimizing the torque ripple from the motor itself has become an important research content in the field of switched reluctance motors.

发明内容 Contents of the invention

本发明要解决的技术难题是发明一种转子无齿槽的开关磁阻电机,从结构上突破传统开关磁阻电机的双凸极范畴,从特性上改变传统开关磁阻电机转矩脉动的缺陷,从使开关磁阻电机成为一种高性能的伺服驱动系统。The technical problem to be solved in the present invention is to invent a switched reluctance motor with no cogging in the rotor, which breaks through the double salient pole category of the traditional switched reluctance motor structurally, and changes the defect of the torque ripple of the traditional switched reluctance motor from the characteristic , from making the switched reluctance motor a high-performance servo drive system.

本发明采用的技术方案是一种转子无齿槽开关磁阻电机,转子无齿槽开关磁阻电机的定子采用主磁极和辅助磁极组合的磁极结构,转子采用各向异性轴向叠片结构,转子无齿槽开关磁阻电机的转子叠成4极结构,定子主磁极为6极,定子辅助磁极也为6极,定、转子极数为12/4极,电机为3相;定子铁心1的6个主磁极1-U1、1-U2、1-V1、1-V2、1-W1、1-W2上分别绕有6个绕组2-U1、2-U2、2-V1、2-V2、2-W1、2-W2,为了改善磁路结构特性,有6个辅助磁极1-a1、1-a2、1-a3、1-a4、1-a5、1-a6;U相绕组由在空间径向相对的2个主磁极1-U1、1-U2上的2个绕组2-U1、2-U2串联而成,V相绕组由在空间径向相对的2个主磁极1-V1、1-V2上的2个绕组2-V1、2-V2串联而成,W相绕组由在空间径向相对的2个主磁极1-W1、1-W2上的2个绕组2-W1、2-W2串联而成,从而构成定子U、V、W三相绕组;电机的转子采用各向异性轴向叠片结构,轴向叠片结构包括转轴3、非导磁支架4、轴向叠片5、非导磁填充材料6和非导磁紧固环7组成;轴向叠片5是由高导磁材料硅钢片和非导磁绝缘材料叠片沿轴向交替叠压而成,控制导磁叠层与非导磁叠层的厚度比为10∶1。The technical solution adopted in the present invention is a rotor-less cogging switched reluctance motor. The stator of the rotor non-cogging switched reluctance motor adopts a magnetic pole structure with a combination of main magnetic poles and auxiliary magnetic poles, and the rotor adopts an anisotropic axial lamination structure. The rotor of the rotor cogging-free switched reluctance motor is stacked into a 4-pole structure, the main pole of the stator is 6 poles, the auxiliary pole of the stator is also 6 poles, the number of poles of the stator and the rotor is 12/4 poles, and the motor is 3 phases; the stator core is 1 6 main magnetic poles 1-U1, 1-U2, 1-V1, 1-V2, 1-W1, 1-W2 are respectively wound with 6 windings 2-U1, 2-U2, 2-V1, 2-V2 , 2-W1, 2-W2, in order to improve the structural characteristics of the magnetic circuit, there are 6 auxiliary magnetic poles 1-a1, 1-a2, 1-a3, 1-a4, 1-a5, 1-a6; the U phase winding is composed of The two windings 2-U1 and 2-U2 on the two main magnetic poles 1-U1 and 1-U2 that are radially opposite in space are connected in series, and the V-phase winding is composed of the two main magnetic poles 1-V1 and 1-V1 that are radially opposite in space. The two windings 2-V1 and 2-V2 on 1-V2 are connected in series, and the W-phase winding consists of two windings 2-W1 and 2 on the two main magnetic poles 1-W1 and 1-W2 that are radially opposite in space. -W2 is connected in series to form the stator U, V, W three-phase winding; the rotor of the motor adopts an anisotropic axial lamination structure, which includes a rotating shaft 3, a non-magnetic support 4, and an axial lamination 5. The non-magnetic filling material 6 and the non-magnetic fastening ring 7 are composed; the axial lamination 5 is made of high magnetic permeability material silicon steel sheets and non-magnetic insulation material laminations laminated alternately in the axial direction, and the conduction is controlled. The thickness ratio of the magnetic lamination to the non-magnetic lamination is 10:1.

设辅助磁极的极弧角为βs2,主磁极极弧角为βs1、单位为度;辅助磁极和主磁极的极弧角关系满足下式条件:Let the polar arc angle of the auxiliary magnetic pole be βs2, and the pole arc angle of the main magnetic pole be βs1, in degrees; the relationship between the auxiliary magnetic pole and the main magnetic pole satisfies the following conditions:

βs2=(0.5~0.8)βs1    (1)β s2 = (0.5~0.8) β s1 (1)

设定子磁极的总极弧角为βs,则,βs=βs1s2    (2)Set the total pole arc angle of the sub-poles as β s , then, β s = β s1 + β s2 (2)

转子和定子磁极的总极弧角的关系为βr>βs    (3)The relationship between the total pole arc angle of the rotor and stator poles is β r > β s (3)

轴向叠片的最大凹槽深h应满足h≥20δ    (4)The maximum groove depth h of axial laminations should satisfy h≥20δ (4)

式中δ为气隙长度,单位为mm。where δ is the length of the air gap in mm.

本发明具有以下显著效果:The present invention has following remarkable effect:

1)采用组合式定子磁极和各向异性轴向叠片转子可有效地减小开关磁阻电机的体积与转矩脉动,并使磁路长度大大缩短,可减小开关磁阻电机的铁损耗。1) The combined stator poles and anisotropic axial laminated rotor can effectively reduce the volume and torque ripple of the switched reluctance motor, and greatly shorten the length of the magnetic circuit, which can reduce the iron loss of the switched reluctance motor .

2)由于定子磁极分为主磁极和辅助磁极,仅主磁极上绕有绕组,故嵌放绕组比较方便,不用考虑相间绝缘问题,槽利用率高。2) Since the stator poles are divided into main poles and auxiliary poles, and only the main poles are wound with windings, it is more convenient to embed the windings, without considering the phase-to-phase insulation problem, and the slot utilization rate is high.

3)由于转子采用各向异性轴向叠片转子结构,转子的凸极比高,可有效减小电机的体积。3) Since the rotor adopts an anisotropic axial laminated rotor structure, the salient pole ratio of the rotor is high, which can effectively reduce the volume of the motor.

附图说明 Description of drawings

图1为转子无齿槽开关磁阻电机的定子结构图,其中,1为定子铁心,1-U1、1-U2、1-V1、1-V2、1-W1、1-W2为6个主磁极,1-a1、1-a2、1-a3、1-a4、1-a5、1-a6为6个辅助磁极,βs1、βs2分别为主磁极和辅助磁极弧所对的圆心角,称为极弧角,单位为度;2-U1、2-U2、2-V1、2-V2、2-W1、2-W2为6个定子绕组。Figure 1 is the stator structure diagram of the rotor cogging switched reluctance motor, in which, 1 is the stator core, 1-U1, 1-U2, 1-V1, 1-V2, 1-W1, 1-W2 are 6 main Magnetic poles, 1-a1, 1-a2, 1-a3, 1-a4, 1-a5, 1-a6 are 6 auxiliary magnetic poles, βs1, βs2 are respectively the central angles of the main magnetic pole and auxiliary magnetic pole arc, called Pole arc angle, unit is degree; 2-U1, 2-U2, 2-V1, 2-V2, 2-W1, 2-W2 are 6 stator windings.

图2为转子无齿槽开关磁阻电机的转子子结构图,其中,3为转轴,4为非导磁支架、5为轴向叠片磁极,5a为轴向叠片磁极顶部,6为非导磁填充材料,7为非导磁紧固环;βr为转子磁极的极弧角,单位为度,h为转子磁极的凹槽深,单位为m。Fig. 2 is the substructure diagram of the rotor of the rotor cogging switched reluctance motor, in which, 3 is the rotating shaft, 4 is the non-magnetic bracket, 5 is the axial lamination magnetic pole, 5a is the top of the axial lamination magnetic pole, and 6 is the non-magnetic pole. Magnetic filling material, 7 is a non-magnetic fastening ring; βr is the pole arc angle of the rotor magnetic pole, the unit is degree, h is the groove depth of the rotor magnetic pole, the unit is m.

图3为U相绕组通电时,无齿槽开关磁阻电机中的主磁极和轴向叠片磁极5的轴向叠片磁极顶部5a在不对齐位置下的磁场分布。Fig. 3 shows the magnetic field distribution of the main magnetic pole and the axial laminated pole top 5a of the axial laminated pole 5 in the non-aligned position when the U-phase winding is energized.

图4为U相绕组通电时,无齿槽开关磁阻电机中的主磁极和轴向叠片磁极5的轴向叠片磁极顶部5a在对齐位置下的磁场分布。Fig. 4 shows the magnetic field distribution of the main magnetic pole and the axial laminated pole top 5a of the axial laminated pole 5 in the aligned position when the U-phase winding is energized.

图5为一台200W 3相12/4极转子无齿槽开关磁阻电机的矩角特性曲线,其中,横坐标为转子位置角θ,单位为度,定义定子主磁极1-U1、1-U2与转子轴向叠片磁极5的轴向叠片磁极顶部5a不对齐位置为θ=0°;纵坐标为电机的电磁转矩T,单位为N·m。Fig. 5 is a moment-angle characteristic curve of a 200W 3-phase 12/4-pole rotor without cogging switched reluctance motor, where the abscissa is the rotor position angle θ, the unit is degree, and the stator main poles 1-U1, 1- The misalignment position between U2 and the axial laminated magnetic pole top 5a of the rotor axial laminated magnetic pole 5 is θ=0°; the ordinate is the electromagnetic torque T of the motor, and the unit is N·m.

具体实施方式 Detailed ways

下面结合附图和技术方案详细说明本发明的具体实施。转子无齿槽开关磁阻电机的定子采用组合磁极结构,转子采用各向异性轴向叠片结构,转子考虑轴向叠片的工艺性,转子叠成4极结构。根据开关磁阻电机的定、转子磁极数的约束关系,定子主磁极选为6极,定子辅助磁极数随之确定,也为6极,因此定、转子极数为12/4极。根据极数与相数的关系,电机为3相。所发明的3相12/4极转子无齿槽开关磁阻电机由定子和转子组成,其定子包括定子铁心1和定子绕组2两部分。定子铁心1具有6个主磁极1-U1、1-U2、1-V1、1-V2、1-W1、1-W2和6个辅助磁极1-a1、1-a2、1-a3、1-a4、1-a5、1-a6;6个主磁极1-U1、1-U2、1-V1、1-V2、1-W1、1-W2上分别绕有6个绕组2-U1、2-U2、2-V1、2-V2、2-W1、2-W2;U相绕组由在空间径向相对的2个主磁极1-U1、1-U2上的2个绕组2-U1、2-U2串联而成,V相绕组由在空间径向相对的2个主磁极1-V1、1-V2上的2个绕组2-V1、2-V2串联而成,W相绕组由在空间径向相对的2个主磁极1-W1、1-W2上的2个绕组2-W1、2-W2串联而成,从而构成U、V、W三相绕组。6个辅助磁极1-a1、1-a2、1-a3、1-a4、1-a5、1-a6上没有绕组,见附图1。如图2所示,转子为各向异性轴向叠片结构,由转轴3、非导磁支架4、轴向叠片5、非导磁填充材料6和非导磁紧固环7组成,其中,βr为转子磁极的极弧角,单位为度;h为转子磁极的凹槽深,单位为m。轴向叠片5是由高导磁材料硅钢片和非导磁绝缘材料叠片沿轴向交替叠压而成的,控制导磁叠层与非导磁叠层的厚度比为10∶1,使所发明的转子无齿槽开关磁阻电机的凸极比与传统双凸极开关磁阻电机的凸极比相近。The specific implementation of the present invention will be described in detail below in conjunction with the accompanying drawings and technical solutions. The stator of the rotorless cogging switched reluctance motor adopts a combined magnetic pole structure, and the rotor adopts an anisotropic axial lamination structure. Considering the manufacturability of the axial lamination, the rotor is stacked into a 4-pole structure. According to the constraint relationship of the stator and rotor poles of the switched reluctance motor, the main poles of the stator are selected as 6 poles, and the number of auxiliary poles of the stator is determined accordingly, which is also 6 poles, so the poles of the stator and rotor are 12/4 poles. According to the relationship between the number of poles and the number of phases, the motor has 3 phases. The invented 3-phase 12/4-pole rotor slotless switched reluctance motor consists of a stator and a rotor, and the stator includes two parts: a stator core 1 and a stator winding 2 . The stator core 1 has 6 main magnetic poles 1-U1, 1-U2, 1-V1, 1-V2, 1-W1, 1-W2 and 6 auxiliary magnetic poles 1-a1, 1-a2, 1-a3, 1- a4, 1-a5, 1-a6; 6 windings 2-U1, 2- U2, 2-V1, 2-V2, 2-W1, 2-W2; the U-phase winding consists of two windings 2-U1, 2- U2 is connected in series, the V-phase winding is composed of two windings 2-V1 and 2-V2 on the two main magnetic poles 1-V1 and 1-V2 that are radially opposite in space, and the W-phase winding is composed of The two windings 2-W1 and 2-W2 on the two opposite main magnetic poles 1-W1 and 1-W2 are connected in series to form a U, V and W three-phase winding. There are no windings on the six auxiliary magnetic poles 1-a1, 1-a2, 1-a3, 1-a4, 1-a5, 1-a6, see accompanying drawing 1. As shown in Figure 2, the rotor is an anisotropic axial lamination structure, which consists of a rotating shaft 3, a non-magnetic support 4, an axial lamination 5, a non-magnetic filling material 6 and a non-magnetic fastening ring 7, wherein , βr is the pole arc angle of the rotor pole, the unit is degree; h is the groove depth of the rotor pole, the unit is m. The axial lamination 5 is made of silicon steel sheet of high magnetic permeability material and lamination of non-magnetic insulating material laminated alternately in the axial direction, and the thickness ratio of the magnetic permeable lamination and the non-magnetic lamination is controlled to be 10:1. The salient pole ratio of the invented rotor coggingless switched reluctance motor is close to that of the traditional double salient pole switched reluctance motor.

如图3所示,无齿槽开关磁阻电机中的主磁极和轴向叠片磁极5的轴向叠片磁极顶部5a在不对齐位置下,使U相绕组通电,U相绕组2-U1产生的磁力线经U相磁极1-U1以及与其相临的辅助磁极1-a1、1-a6和主磁极1-V1、1-W2通过气隙,进入轴向叠片转子,形成闭合回路。U相绕组2-U2产生的磁力线经U相磁极1-U2以及与其相临的辅助磁极1-a3、1-a4和主磁极1-V2、1-W1通过气隙,进入轴向叠片转子,形成闭合回路。磁力线经气隙从定子进入转子时发生扭曲,扭曲磁力线产生的切向力带动转子转动。辅助磁极1-a1、1-a6、1-a3、1-a4使U相通电时的磁力线闭合路径变短;同时,轴向叠片转子磁极经过辅助磁极时,由于轴向叠片转子磁极的各向异性导磁特性,使磁力线发生扭曲,从而使电机产生转矩的区间加大;当电机逆时针旋转时,辅助磁极1-a1和1-a4起作用;当电机顺时针旋转时,辅助磁极1-a3和1-a6起作用;持续使U相绕组通电,电机将旋转到对齐位置,即无齿槽开关磁阻电机中的主磁极和轴向叠片磁极5的轴向叠片磁极顶部5a在对齐位置下,如图4所示。此时,切断U相绕组的电流,给其他相绕组通电,电机继续产生切向电磁力旋转;如此轮流改变各相绕组的通电状态,就使电机连续旋转;如通电顺序为U-V-W-U时,电机逆时针旋转;如通电顺序为U-W-V-U时,电机顺时针旋转。As shown in Figure 3, the main magnetic pole in the non-cogging switched reluctance motor and the axial laminated pole top 5a of the axial laminated pole 5 are in the misaligned position, so that the U-phase winding is energized, and the U-phase winding 2-U1 The generated magnetic field lines pass through the U-phase magnetic pole 1-U1 and its adjacent auxiliary magnetic poles 1-a1, 1-a6 and main magnetic poles 1-V1, 1-W2 through the air gap and enter the axial laminated rotor to form a closed loop. The magnetic field lines generated by the U-phase winding 2-U2 pass through the U-phase magnetic pole 1-U2 and its adjacent auxiliary magnetic poles 1-a3, 1-a4 and main magnetic poles 1-V2, 1-W1 through the air gap and enter the axial laminated rotor , forming a closed loop. When the magnetic force lines enter the rotor from the stator through the air gap, they are twisted, and the tangential force generated by the twisted magnetic force lines drives the rotor to rotate. The auxiliary magnetic poles 1-a1, 1-a6, 1-a3, 1-a4 shorten the closed path of the magnetic force line when the U phase is energized; at the same time, when the axially laminated rotor poles pass through the auxiliary magnetic poles, due to the axially laminated rotor magnetic poles The anisotropic magnetic conduction characteristic distorts the magnetic lines of force, thereby increasing the torque range of the motor; when the motor rotates counterclockwise, the auxiliary magnetic poles 1-a1 and 1-a4 work; when the motor rotates clockwise, the auxiliary poles Pole 1-a3 and 1-a6 are active; keep energizing the U-phase winding and the motor will rotate to the aligned position, i.e. the main pole in a non-cogging switched reluctance motor and the axial lamination pole of axial lamination pole 5 The top 5a is in the aligned position, as shown in FIG. 4 . At this time, cut off the current of the U-phase winding and energize the other phase windings, and the motor will continue to generate tangential electromagnetic force to rotate; in this way, the energization state of each phase winding will be changed in turn, so that the motor will continue to rotate; if the power-on sequence is U-V-W-U, the motor will reverse Clockwise rotation; if the power-on sequence is U-W-V-U, the motor rotates clockwise.

定子磁极的总极弧角为βs=βs1s2,对于定子为12极的电机,定子极弧角βs取值为The total pole arc angle of the stator pole is β s = β s1 + β s2 , for a motor with 12 poles, the value of the stator pole arc angle βs is

Figure BDA0000116825050000061
Figure BDA0000116825050000061

定、转子极弧角的关系为βr>βs,取The relationship between stator and rotor pole arc angles is β r > β s , take

βr≥32°    (6)β r ≥ 32° (6)

为了使电机的磁密合理分布,定子辅助磁极的宽度应等于主磁极的宽度,但从加大产生转矩区域的角度和控制槽满率的角度看,辅助磁极的宽度不能太宽,综合考虑这两方面的因素,应使辅助磁极和主磁极的极弧角满足βs2=(0.5~0.8)βs1,故In order to distribute the magnetic flux density of the motor reasonably, the width of the auxiliary magnetic poles of the stator should be equal to the width of the main magnetic poles. However, from the perspective of increasing the torque generation area and controlling the full rate of the slot, the width of the auxiliary magnetic poles should not be too wide. Comprehensive consideration These two factors should make the pole arc angle of the auxiliary magnetic pole and the main magnetic pole satisfy β s2 = (0.5~0.8) β s1 , so

βs1=16°~20°    (7)β s1 = 16°~20° (7)

βs2=10°~16°    (8)β s2 = 10°~16° (8)

对于轴向叠片转子,为了保证磁力线合理分布,轴向叠片的最大凹槽深h应满足如下关系For axial laminated rotors, in order to ensure a reasonable distribution of magnetic force lines, the maximum groove depth h of axial laminates should satisfy the following relationship

h≥20δ    (9)h≥20δ (9)

式中δ为气隙长度,单位为mm。where δ is the length of the air gap in mm.

所发明的转子无齿槽开关磁阻电机的主要尺寸选取与传统的开关磁阻电机相近,对于额定功率为200W,额定转速为1500r/min的转子无齿槽开关磁阻电机,取定子外径Ds=120mm,转子外径Dr=60mm,气隙长度δ=0.3mm,取定子极弧角分别为βs1=20°,βs2=10°,βs=30°,转子极弧角为βr=32°。与采用相同的尺寸的传统6/4极开关磁阻电机相比,其输出转矩相近,见表1。图5为一台200W3相12/4极转子无齿槽开关磁阻电机的矩角特性曲线,从图中的曲线可见,其输出转矩平顶部分加宽,且随位置角变化较小,因此,可以大大减小转矩的脉动。The main dimensions of the invented rotorless switched reluctance motor are similar to those of traditional switched reluctance motors. For a rotorless switched reluctance motor with a rated power of 200W and a rated speed of 1500r/min, the outer diameter of the stator is taken as D s =120mm, rotor outer diameter D r =60mm, air gap length δ=0.3mm, taking stator arc angles as β s1 =20°, β s2 =10°, β s =30°, rotor arc angle is β r =32°. Compared with the traditional 6/4-pole switched reluctance motor with the same size, its output torque is similar, see Table 1. Figure 5 is a torque-angle characteristic curve of a 200W 3-phase 12/4-pole rotor without cogging switched reluctance motor. From the curve in the figure, it can be seen that the flat top part of the output torque is widened, and the change is small with the position angle. Therefore, the ripple of torque can be greatly reduced.

表1 200W样机对比Table 1 Comparison of 200W prototypes

Figure BDA0000116825050000071
Figure BDA0000116825050000071

采用本发明的轴向叠片转子开关磁阻电机使转矩脉动得到了改善,并极大地提高电机的效率。利用本发明的结构可制成两相、三相、四相或五相等不同相数的转子无齿槽开关磁阻电机。The torque ripple is improved by adopting the axial laminated rotor switched reluctance motor of the present invention, and the efficiency of the motor is greatly improved. The structure of the invention can be used to manufacture two-phase, three-phase, four-phase or five-phase rotor-less switched reluctance motors with different phase numbers.

Claims (1)

1.一种转子无齿槽开关磁阻电机,其特征是,转子无齿槽开关磁阻电机的定子采用主磁极和辅助磁极组合的磁极结构,转子采用各向异性轴向叠片结构,转子无齿槽开关磁阻电机的转子叠成4极结构,定子主磁极为6极,定子辅助磁极也为6极,定、转子极数为12/4极,电机为3相;定子铁心(1)的6个主磁极(1-U1、1-U2、1-V1、1-V2、1-W1、1-W2)上分别绕有6个绕组(2-U1、2-U2、2-V1、2-V2、2-W1、2-W2),为了改善磁路结构特性有6个辅助磁极(1-a1、1-a2、1-a3、1-a4、1-a5、1-a6);U相绕组由在空间径向相对的2个主磁极(1-U1、1-U2)上的2个绕组(2-U1、2-U2)串联而成,V相绕组由在空间径向相对的2个主磁极(1-V1、1-V2)上的2个绕组(2-V1、2-V2)串联而成,W相绕组由在空间径向相对的2个主磁极(1-W1、1-W2)上的2个绕组(2-W1、2-W2)串联而成,构成定子U、V、W三相绕组;电机的转子采用各向异性轴向叠片结构,轴向叠片结构包括转轴(3)、非导磁支架(4)、轴向叠片(5)、非导磁填充材料(6)和非导磁紧固环(7)组成;轴向叠片(5)是由高导磁材料硅钢片和非导磁绝缘材料叠片沿轴向交替叠压而成的,控制导磁叠层与非导磁叠层的厚度比为10∶1;1. A rotor-less cogging switched reluctance motor, characterized in that the stator of the rotor non-cogging switched reluctance motor adopts a magnetic pole structure in which main magnetic poles and auxiliary magnetic poles are combined, the rotor adopts an anisotropic axial lamination structure, and the rotor The rotor of the non-cogging switched reluctance motor is stacked into a 4-pole structure, the main pole of the stator is 6 poles, the auxiliary pole of the stator is also 6 poles, the poles of the stator and the rotor are 12/4 poles, and the motor is 3 phases; the stator core (1 ) are wound with 6 windings (2-U1, 2-U2, 2-V1 , 2-V2, 2-W1, 2-W2), in order to improve the structural characteristics of the magnetic circuit, there are 6 auxiliary magnetic poles (1-a1, 1-a2, 1-a3, 1-a4, 1-a5, 1-a6) ; The U-phase winding is composed of two windings (2-U1, 2-U2) connected in series on the two main magnetic poles (1-U1, 1-U2) that are radially opposite in space, and the V-phase winding is composed of two windings (2-U1, 2-U2) in the space radial direction The two windings (2-V1, 2-V2) on the two opposite main magnetic poles (1-V1, 1-V2) are connected in series, and the W-phase winding is composed of two main magnetic poles (1- Two windings (2-W1, 2-W2) on W1, 1-W2) are connected in series to form three-phase windings of stator U, V, and W; the rotor of the motor adopts an anisotropic axial lamination structure, and the axial The lamination structure consists of a rotating shaft (3), a non-magnetic bracket (4), an axial lamination (5), a non-magnetic filling material (6) and a non-magnetic fastening ring (7); the axial lamination ( 5) It is made of silicon steel sheets of high magnetic permeability material and laminations of non-magnetic insulating material laminated alternately in the axial direction, and the thickness ratio of the magnetic permeable lamination and the non-magnetic lamination is controlled to be 10:1; 设辅助磁极的极弧角为βs2,主磁极极弧角为βs1、单位为度;辅助磁极和主磁极极弧角的关系满足下式条件:Let the pole arc angle of the auxiliary magnetic pole be βs2, and the pole arc angle of the main magnetic pole be βs1 in degrees; the relationship between the auxiliary magnetic pole and the main magnetic pole arc angle satisfies the following conditions: βs2=(0.5~0.8)βs1    (1)β s2 = (0.5~0.8) β s1 (1) 设定子磁极的总极弧角为βs,则,βs=βs1s2    (2)Set the total pole arc angle of the sub-poles as βs, then, β s = β s1 + β s2 (2) 转子和定子磁极的总极弧角的关系为:βr>βs    (3)The relationship between the total pole arc angle of the rotor and stator poles is: β r > β s (3) 轴向叠片的最大凹槽深h应满足:h≥20δ    (4)The maximum groove depth h of axial laminations should satisfy: h≥20δ (4) 式中,δ为气隙长度,单位为mm。In the formula, δ is the air gap length in mm.
CN 201110401398 2011-12-07 2011-12-07 Rotor slotless switched reluctance motor Expired - Fee Related CN102497077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110401398 CN102497077B (en) 2011-12-07 2011-12-07 Rotor slotless switched reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110401398 CN102497077B (en) 2011-12-07 2011-12-07 Rotor slotless switched reluctance motor

Publications (2)

Publication Number Publication Date
CN102497077A true CN102497077A (en) 2012-06-13
CN102497077B CN102497077B (en) 2013-06-05

Family

ID=46188875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110401398 Expired - Fee Related CN102497077B (en) 2011-12-07 2011-12-07 Rotor slotless switched reluctance motor

Country Status (1)

Country Link
CN (1) CN102497077B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117608A (en) * 2013-02-20 2013-05-22 上海中科深江电动车辆有限公司 Method for manufacturing synchronous reluctance motor rotor structure and related components
CN103825380A (en) * 2014-02-21 2014-05-28 东南大学 Low-cogging-torque flux switching permanent magnet motor
CN103825420A (en) * 2014-02-21 2014-05-28 东南大学 Laminated set rotor flux-switching permanent magnet motor
CN104377854A (en) * 2013-08-16 2015-02-25 西门子公司 Rotor of a dynamo-electric rotational machine
CN105141098A (en) * 2015-09-21 2015-12-09 华晨汽车集团控股有限公司 Switched reluctance motor with segmental rotor
CN107046336A (en) * 2016-02-05 2017-08-15 通用汽车环球科技运作有限责任公司 Synchronous magnetic resistance motor
CN110521088A (en) * 2017-03-31 2019-11-29 皇家飞利浦有限公司 Permanent magnet three-phase machine for the high-speed applications with low vibration and low resistance loss
CN112332571A (en) * 2019-11-12 2021-02-05 沈阳工业大学 Axial lamination anisotropic synchronous reluctance motor rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239217A (en) * 1992-05-18 1993-08-24 Emerson Electric Co. Redundant switched reluctance motor
JP2002300755A (en) * 2001-03-30 2002-10-11 Mitsuba Corp Switched reluctance motor
CN2909683Y (en) * 2006-04-05 2007-06-06 应方顺 Magnetic polar structure of switching reluctance motor
CN101667757A (en) * 2009-09-29 2010-03-10 河北工业大学 Rotor structure of switched reluctance motor for reducing vibration and noise
CN101982931A (en) * 2010-10-29 2011-03-02 哈尔滨工业大学 Multiphase magnetic resistance motor with pulse torque compensation structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239217A (en) * 1992-05-18 1993-08-24 Emerson Electric Co. Redundant switched reluctance motor
JP2002300755A (en) * 2001-03-30 2002-10-11 Mitsuba Corp Switched reluctance motor
CN2909683Y (en) * 2006-04-05 2007-06-06 应方顺 Magnetic polar structure of switching reluctance motor
CN101667757A (en) * 2009-09-29 2010-03-10 河北工业大学 Rotor structure of switched reluctance motor for reducing vibration and noise
CN101982931A (en) * 2010-10-29 2011-03-02 哈尔滨工业大学 Multiphase magnetic resistance motor with pulse torque compensation structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何至源等: "一种新型定子齿极结构的开关磁阻电机电磁分析", 《微电机》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117608A (en) * 2013-02-20 2013-05-22 上海中科深江电动车辆有限公司 Method for manufacturing synchronous reluctance motor rotor structure and related components
CN104377854B (en) * 2013-08-16 2018-10-30 西门子公司 The rotor of the machine of electronic rotation
CN104377854A (en) * 2013-08-16 2015-02-25 西门子公司 Rotor of a dynamo-electric rotational machine
US10199888B2 (en) 2013-08-16 2019-02-05 Siemens Aktiengesellschaft Rotor of a dynamoelectric rotary machine
CN103825420A (en) * 2014-02-21 2014-05-28 东南大学 Laminated set rotor flux-switching permanent magnet motor
CN103825380A (en) * 2014-02-21 2014-05-28 东南大学 Low-cogging-torque flux switching permanent magnet motor
CN105141098A (en) * 2015-09-21 2015-12-09 华晨汽车集团控股有限公司 Switched reluctance motor with segmental rotor
CN107046336A (en) * 2016-02-05 2017-08-15 通用汽车环球科技运作有限责任公司 Synchronous magnetic resistance motor
US10116174B2 (en) 2016-02-05 2018-10-30 GM Global Technology Operations LLC Synchronous reluctance electric machine
CN107046336B (en) * 2016-02-05 2019-12-13 通用汽车环球科技运作有限责任公司 Synchronous reluctance motor
CN110521088A (en) * 2017-03-31 2019-11-29 皇家飞利浦有限公司 Permanent magnet three-phase machine for the high-speed applications with low vibration and low resistance loss
CN112332571A (en) * 2019-11-12 2021-02-05 沈阳工业大学 Axial lamination anisotropic synchronous reluctance motor rotor
CN112332571B (en) * 2019-11-12 2024-06-25 沈阳工业大学 Axial lamination anisotropic synchronous reluctance motor rotor

Also Published As

Publication number Publication date
CN102497077B (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN102497077B (en) Rotor slotless switched reluctance motor
CN105305751B (en) Dual Stator Bearingless Five-Phase Brushless DC Motor
CN103795159B (en) The two permanent-magnet type vernier motor of rotor
CN102035270B (en) Axial excitation double salient pole motors
CN103066719B (en) A kind of magneticfocusing stator permanent magnetic type vernier motor
CN104578661A (en) Axially-distributed double-salient-pole brushless DC motor
CN1937356A (en) Stator permanent-magnet double salient pole fault-tolerant motor
CN105245073A (en) Stator permanent-magnetic doubly salient disc-type motor
CN101651371B (en) Stator surface mounted doubly salient permanent magnet motor with auxiliary salient pole
CN205265494U (en) Two stators do not have five looks brushless DC motor on bearing
CN102570754A (en) Permanent-magnet cursor motor for realizing low speed and high torque
CN204559343U (en) Novel salient pole type rotor is brushless coil excitation direct current machine
CN106992644A (en) A kind of five degree of freedom composite excitation magnetic suspension switched reluctance motor
CN102412700A (en) Low-speed high-thrust-density linear motor
CN102570648A (en) Electro-excitation flux reversing motor
CN102545412A (en) High-efficiency and large-torque disk type switching magnetoresistive motor
CN101505083A (en) On-off reluctance motor with sectional rotor
CN102832767B (en) Parallel hybrid excitation brushless direct-current fault-tolerant motor
CN102223035A (en) Low-torque pulse axial magnetic field stator permanent magnet motor
CN107733106B (en) Permanent-magnet fault-tolerant rim propulsion motor for integrated motor propeller
WO2014019987A1 (en) Hybrid electric reluctance machine
CN202721589U (en) Mixed Excitation Axial Field Disc Switched Reluctance Motor
CN201478970U (en) A permanent magnet motor suitable for high-speed operation
CN106451965A (en) Parallel double-stator permanent magnet motor
CN210608875U (en) Radial magnetic field composite magnetic flux switching motor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130605

Termination date: 20191207