CN102488516A - 一种非线性脑电信号分析方法以及装置 - Google Patents

一种非线性脑电信号分析方法以及装置 Download PDF

Info

Publication number
CN102488516A
CN102488516A CN2011104143886A CN201110414388A CN102488516A CN 102488516 A CN102488516 A CN 102488516A CN 2011104143886 A CN2011104143886 A CN 2011104143886A CN 201110414388 A CN201110414388 A CN 201110414388A CN 102488516 A CN102488516 A CN 102488516A
Authority
CN
China
Prior art keywords
eeg signals
signal
entropy
remove
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104143886A
Other languages
English (en)
Inventor
李小俚
李段
欧阳高翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUZHOU KANGPU MEDICAL EQUIPMENT TECHNOLOGY Co Ltd
Original Assignee
HUZHOU KANGPU MEDICAL EQUIPMENT TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUZHOU KANGPU MEDICAL EQUIPMENT TECHNOLOGY Co Ltd filed Critical HUZHOU KANGPU MEDICAL EQUIPMENT TECHNOLOGY Co Ltd
Priority to CN2011104143886A priority Critical patent/CN102488516A/zh
Publication of CN102488516A publication Critical patent/CN102488516A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开一种脑电信号分析方法和装置来识别脑状态,对采集的脑电信号进行分段,分析各段脑电信号状态并做预处理去除干扰;最后计算各段脑电信号的排序熵,根据排序熵值的大小确定脑的活动状态。本发明可用于大脑不同认知功能活动、生理状态情况下的脑电信号分析,尤其可以应用于研究睡眠脑活动的变化等。本发明采用的排序熵从相空间的角度出发,对脑电信号的结构变化的模式进行统计分析,揭示脑电信号的不确定性、稳定程度和信息量。

Description

一种非线性脑电信号分析方法以及装置
技术领域
本发明涉及一种脑电信号分析方法和装置来识别脑状态,特别涉及一种对脑电序列的预处理和排序熵的分析方法和装置。
背景技术
脑电信号表达大脑神经细胞的电活动,直接反映脑组织的电生理活动和大脑的功能状态。研究表明,通过对脑电信号的深入分析,可以识别不同的大脑状态。当前,脑电信号分析的主要方法有:时域分析、频域分析、时频分析、信息熵和非线性动力学等。概述如下:
(1)时域分析法直接从时域提取特征,是最早发展起来的方法,它直观性强,物理意义比较明确,因此目前仍有不少使用,主要用来直接提取波形特征,进行峰值检测、直方图分析、方差分析等。实验证明这些参数与脑状态存在着一定的相关性。然而,由于脑电信号测量的个体差异性的影响,EEG的幅值不能直接反映脑电活动,使这些传统的脑电时域参数在实际中很少应用。
(2)采用快速傅立叶变换及在此基础上发展起来的频域分析,主要包括δ率、中心频率(Medium power frequency,MPF)、边缘频率(Spectral edge frequency,SEF)等参数。δ率是指EEG功率谱中δ波段(0.5-3.75Hz)功率与α波段(8.0-13.5Hz)和β波段(13.75-30.0Hz)功率之和的比值,即慢波功率与快波功率之比,MPF和SEF分别是EEG功率谱中达到总功率的50%和95%时对应的频率。大量研究证实MF和SEF与脑状态有密切关系;然而,这些参数同样在不同个体间存在差异性。
(3)脑电信号是时变、非平稳信号,单纯的时域或频域表示都不能准确的表达信号,只有把时间和频率结合起来进行处理,才能更好的从脑电信号中提取有用信息。时频方法在时域和频域同时具有良好的局部化分析以及其它一些重要性质,所以在脑电信号分析中受到重视。常用的时频方法有短时傅里叶变换、小波变换等,它们可以更好的揭示脑电信号的时频分布特性,进而研究大脑神经振荡的相关动力学特性,但如何从中提取有用的脑电特征以描述脑状态的变换,尚需进一步的研究。
(4)熵是系统无序性(即混乱度)的一种度量。Shannon熵根据已知幅值的概率分布预测将来值,计算直接方便,但它未对EEG总功率取归一化,这样也存在个体间差异性问题。傅里叶谱熵通过对信号计算功率谱得到,芬兰Datex-Ohmeda公司基于时频均衡谱熵算法开发了商业化M-entropy模块。然而,谱熵计算基于傅立叶变换,它更适合于分析线性平稳信号,而并不能准确的估计脑电信号的瞬时特征。小波熵将小波分析和信息熵结合,其基本思想是把小波变换系数矩阵处理成一个概率分布序列,用该序列的熵值来反映这个矩阵的稀疏程度,即被分析信号概率分布的有序程度。虽然小波熵算法可以得到信号复杂度在时域上的动态变化信息,但熵的概念是建立在概率的基础上,如果分析的信号较短,则没有统计意义。因此,小波熵在反映信号时变特性方面是比较粗糙的,只能做定性的研究。
(5)近年来,随着非线性动力学的发展,越来越多的证据表明大脑是一个非线性系统,而脑电信号即是这个系统的输出。因此,人们把一些非线性动力学的方法应用于脑电信号分析,如关联维数、Lempel-Ziv复杂度、近似熵等。其中近似熵是一种常用的度量序列的复杂性方法,其特点是具有较好的抗干扰和抗噪的能力,对随机信号或是确定性信号都可使用,因此适合用来分析生物信号。但是近似熵的计算则需要相对长的、稳态的、无噪的数据,因此不适合用于实际的脑电状态监控系统的需求。
通过分析脑电信号,研究大脑的状态变化仍然是起步阶段。时域和频域方法的应用尽管能看到显著的结果,但准确率不高,另外这些方法应用的前提是假设EEG为线性平稳信号,而实际EEG信号是来自大脑这一非线性动力学系统的非线性、非平稳信号,因此信息熵和非线性动力学方法得到了迅速发展,取得了较好的效果,然而这些分析方法还需要大量的研究来验证其有效性。
发明内容
本发明的目的是提供一种非线性脑电信号分析方法和装置,能够更为准确的对清醒和睡眠状态下的脑电信号分析。
本发明的技术方案如下:一种非线性脑电信号分析方法,包括以下步骤:
步骤101,实时采集原始脑电信号;
步骤102,对采集的脑电信号进行分段;
步骤103,分析各段脑电信号状态并做预处理去除干扰;
步骤104,计算各段脑电信号的排序熵,根据排序熵值的大小确定脑的活动状态。
步骤102种采用移动窗口技术对脑电信号分段。
所述脑电信号分段的分段长度选取10s,相邻数据段重叠75%。
步骤103中分析各段脑电信号状态,如果脑电信号为清醒脑电信号,则对清醒脑电信号的预处理采取以下措施:
去除奇异信号;根据信号的统计特性确定阈值去除异常信号点或段;
去除眼动干扰;利用眼动干扰信号的时域、频域特征检测其是否存在,存在的话应用平稳小波变换(SWT)设定阈值去除;
去除白噪声、基线漂移以及呼吸伪差;利用小波变换方法分解脑电信号,将最低频带系数置零以去除由于电极阻抗改变引起的基线漂移及呼吸伪差的影响,在其它频带上采用基于经验贝叶斯估计的阈值化方法去除信号中含有的高斯白噪声;
去除肌电等干扰;用卡尔曼滤波器训练自适应AR模型去除肌电信号以及其它瞬态高幅信号干扰;
如果脑电信号为睡眠脑电信号,则对睡眠脑电信号的预处理采取以下措施:
去除奇异信号;根据信号的统计特性确定阈值去除异常信号点或段;
去除白噪声、基线漂移以及呼吸伪差;利用小波变换方法分解脑电信号,将最低频带系数置零以去除由于电极阻抗改变引起的基线漂移及呼吸伪差的影响,在其它频带上采用基于经验贝叶斯估计的阈值化方法去除信号中含有的高斯白噪声。
步骤104中脑电信号的排序熵计算采用以下方法:
①将脑电信号{x(i),i=1,2,…}嵌入到一个m维空间中:Xi=[x(i),x(i+L),…,x(i+(m-1)L)],其中m为嵌入维数,L为延迟;②将序列Xi中的元素按照增序排列:[x(i+(j1-1)L)≤x(i+(j2-1)L)≤…≤x(i+(jm-1)L)];当序列中有元素相等,即x(i+(ji1-1)L)=x(i+(ji2-1)L)时,x按照相应的j的顺序排序,即如果ji1<ji2,x(i+(ji1-1)L)<x(i+(ji2-1)L);③将这个重构序列看作一种符号序列,设每种符号出现的概率分别为P1,P2,…PK,其中K≤m!,那么时间序列{x(i),i=1,2,…}的排序熵定义为:
H P ( m ) = - Σ j = 1 K P j ln P j
当Pj=1/m!时,HP(m)取得最大值ln(m!),据此将HP(m)规一化,表示为
0≤HP=HP/ln(m!)≤1
最终输出排序熵值和绘制排序熵图,根据排序熵值的大小估确定脑活动状态。
一种非线性脑电信号分析装置,包括:
用于实时采集原始脑电信号的采集模块;
用于对脑电信号分段的分段模块;
用于分析各段脑电信号状态并做预处理去除干扰的预处理模块;
用于计算各段脑电信号的排序熵,根据排序熵值的大小确定脑的活动状态的计算确定模块。
所述分段模块采用移动窗口技术对脑电信号进行分段。
所述脑电信号分段的分段长度选取10s,相邻数据段重叠75%。
所述预处理模块分析各段脑电信号状态,如果脑电信号为清醒脑电信号,则对清醒脑电信号进行如下预处理:
根据信号的统计特性确定阈值去除异常信号点或段;
利用眼动干扰信号的时域、频域特征检测其是否存在,存在的话应用平稳小波变换(SWT)设定阈值去除;
利用小波变换方法分解脑电信号,将最低频带系数置零以去除由于电极阻抗改变引起的基线漂移及呼吸伪差的影响,在其它频带上采用基于经验贝叶斯估计的阈值化方法去除信号中含有的高斯白噪声;
用卡尔曼滤波器训练自适应AR模型去除肌电信号以及其它瞬态高幅信号干扰;
如果脑电信号为睡眠脑电信号,则对睡眠脑电信号进行如下预处理:
去除奇异信号;根据信号的统计特性确定阈值去除异常信号点或段;
去除白噪声、基线漂移以及呼吸伪差;利用小波变换方法分解脑电信号,将最低频带系数置零以去除由于电极阻抗改变引起的基线漂移及呼吸伪差的影响,在其它频带上采用基于经验贝叶斯估计的阈值化方法去除信号中含有的高斯白噪声。
所述计算确定模块对脑电信号的排序熵计算为:
①将脑电信号{x(i),i=1,2,…}嵌入到一个m维空间中:Xi=[x(i),x(i+L),…,x(i+(m-1)L)],其中m为嵌入维数,L为延迟;②将序列Xi中的元素按照增序排列:[x(i+(j1-1)L)≤x(i+(j2-1)L)≤…≤x(i+(jm-1)L)];当序列中有元素相等,即x(i+(ji1-1)L)=x(i+(ji2-1)L)时,x按照相应的j的顺序排序,即如果ji1<ji2,x(i+(ji1-1)L)<x(i+(ji2-1)L);③将这个重构序列看作一种符号序列,设每种符号出现的概率分别为P1,P2,…PK,其中K≤m!,那么时间序列{x(i),i=1,2,…}的排序熵定义为:
H P ( m ) = - Σ j = 1 K P j ln P j
当Pj=1/m!时,HP(m)取得最大值ln(m!),据此将HP(m)规一化,表示为
0≤HP=HP/ln(m!)≤1
最终输出排序熵值和绘制排序熵图,根据排序熵值的大小估确定脑活动状态。
本发明可用于大脑不同认知功能活动、生理状态情况下的脑电信号分析,尤其可以应用于研究睡眠脑活动的变化等。
本发明的方法和装置与现有方法相比,有益效果:
(1)排序熵从相空间的角度出发,对脑电信号的结构变化的模式进行统计分析,揭示脑电信号的不确定性、稳定程度和信息量。
(2)本发明是从脑电信号的复杂性特征出发进行分析的,该方法在本质上与脑电信号的特点吻合。
(3)排序熵将脑电序列映射为符号序列并恰当的表示和分析,概念简单、计算速度快,抗噪能力强。
附图说明
图1为本发明的方法工作流程示意图。
图2A为从慢波睡眠状态(SWS)到快速眼动睡眠状态(REM)转换期间的原始脑电信号。
图2B为图2A的脑电信号预处理后计算的排序熵。
图3A为快速眼动睡眠状态(REM)到清醒状态(AWK)转换期间的原始脑电信号。
图3B为图3A的脑电信号预处理后计算的排序熵。
图4A是在清醒状态下采集的一段长10秒的含噪脑电信号。
图4B是应用步骤3中所述的预处理方法对图4A的脑电信号处理的结果。
图5为m=3和L=1,2,3,4,5(即PE(3,1),PE(3,2),PE(3,3),PE(3,4),PE(3,5))时,SWS和REM状态下的排序熵的比较结果(左列),以及REM和AWK状态下的排序熵的比较结果(右列)。
图6是本发明分析装置的结构框图。
具体实施方式
下面结合附图和一个具体实施例对本发明作进一步的详细说明。
图1为本发明的方法工作流程示意图。首先是步骤101,采集脑电信号。本实施例对4只大鼠进行了脑电信号采集,采样频率是128Hz。图2A为一例从慢波睡眠状态(SWS)到快速眼动睡眠状态(REM)转换期间的脑电信号。图3A为一例快速眼动睡眠状态(REM)到清醒状态(AWK)转换期间的脑电信号。
在步骤102,采用移动窗口技术对采集的脑电信号数据进行分段处理。
为了实时跟踪大脑状态的变化,需要对脑电信号进行分段处理。在此实施例中,对上述脑电数据分段,分段长度选取10s,即N=1280(采样频率128Hz),相邻数据段重叠75%进行数据分析。
在步骤103,对分段脑电信号进行预处理。
预处理前须判断脑电信号所处的状态。通过脑电中肌电分量的存在性来判断大鼠处于清醒还是意识消失的睡眠状态。肌电分量的出现表明大鼠可对外部激励产生响应,清醒时这种响应会比较显著,而进入睡眠后这种响应会减弱。本实施例借助时频均衡谱熵算法来实现失意时刻的检测。该算法分别测定了反应熵与状态熵,两熵之差为肌电熵即反映了肌电活动。通过监测脑电信号中肌电熵的变化,当熵值低于某一阈值时,即判断此时大鼠由清醒转入失意状态,然后在此前后将采用不同的预处理方案。
若大鼠处于清醒期,则对脑电信号采取如下的预处理措施:①去除奇异信号;具体可根据信号的统计特性,如均值、方差等确定阈值去除异常信号点或段;②去除眼动干扰;眼动干扰信号表现为高幅慢波,其频率范围一般在2-16Hz。先利用时频域的一些特征检测是否存在眼动干扰,再应用平稳小波变换(SWT)设定阈值去除眼动干扰;③去除白噪声和基线漂移以及呼吸伪差;基于小波变换的方法将信号分解到不同频带,将最低频带(0-0.8Hz)系数置零以去除由于电极阻抗改变引起的基线漂移以及呼吸伪差,在其它频带上采用基于经验贝叶斯估计的阈值化方法,去除脑电信号中可能含有的高斯白噪声;④去除肌电等干扰;肌电信号通常表现为高频瞬态大幅度特征,频率范围为32-47Hz,用卡尔曼滤波器训练的自适应的AR模型可有效去除肌电信号以及其它瞬态大幅度信号干扰。
若大鼠脑电信号处于睡眠状态,仅采用清醒时预处理措施的第①和③措施,即无需检测和去除眼动和肌电干扰。
图4A是在清醒状态下采集的一段长10秒的含噪脑电信号,图4B是应用步骤103中所述的预处理方法对图4A的脑电信号处理的结果。
在步骤104,通过计算排序熵来描述脑状态,其具体细节如下:
将每一段脑电信号{x(i),i=1,2,…}嵌入到一个m维空间中:Xi=[x(i),x(i+L),…,x(i+(m-1)L)]。其中m为嵌入维数,L为延迟。
对序列Xi中的元素按照增序排列:[x(i+(j1-1)L)≤x(i+(j2-1)L)≤…≤x(i+(jm-1)L)]。当有数相等,即x(i+(ji1-1)L)=x(i+(ji2-1)L)时,x按照相应的j的顺序排序,即如果ji1<ji2,那么x(i+(ji1-1)L)<x(i+(ji2-1)L)。那么任意向量Xi都能唯一的映射为(j1,j2,…jm)。
对于m个符号(1,2,…m)可能最多有m!种排列方式。显然,在m维空间中的每个向量Xi,都能被映射为m!种排列方式中的一种。令每种排列方式出现的概率为P1,P2,…PK,其中K≤m!。那么时间序列{x(i),i=1,2,…}的排序熵为:
H P ( m ) = - Σ j = 1 K P j ln P j
这里举一个例子来说明排序熵的计算。如x={4,7,9,10,6,11,3},取m=3,L=1,可重构序列到相空间:
X = 4 7 9 7 9 10 9 10 6 10 6 11 6 11 3
将其每一行中的数据按增序进行排列并映射为符号,则各行依次可表示为012,012,120,102,120,那么共有5种排列,且排列号012的次数为2次,排列号120的次数为2次,排列号102的次数为1次,因此排序熵为:
H p ( 3 ) = - 2 5 ln 2 5 - 2 5 ln 2 5 - 1 5 ln 1 5 ≈ 1.522
当Pj=1/m!时,HP(m)取得最大值ln(m!)。用ln(m!)将HP(m)归一化
0≤HP=HP/ln(m!)≤1
排序熵计算的第一步是将时间序列重构相空间,这里涉及嵌入维数m和延迟时间L的选取,不同的参数选择将改变排序熵的性能(参见:Cao Y,Tung W-W,Gao J B,et al.Detecting dynamical changes in time series using thepermutation entropy[J].Physicai Review E,2004,70(4):046217),一般建议m=3,…,7,而L的选择与所分析的信号和其采样频率有关。本实施例涉及基于脑电信号的睡眠状态的识别,根据不同状态下脑电信号排序熵的统计比较分析,来确定参数的选取问题。
对于所有大鼠,共观察到18次SWS到REM转换过程,从中提取SWS和REM状态下的脑电信号进行分析;同样的观察到10次REM到AWK转换过程,从中提取REM和AWK状态下的脑电信号进行分析。图5给出了对于所有大鼠,当排序熵取m=3和L=1,2,3,4,5(即PE(3,1),PE(3,2),PE(3,3),PE(3,4),PE(3,5))时,SWS和REM状态下的排序熵的比较结果(左列),以及REM和AWK状态下的排序熵的比较结果(右列)。图中排序熵值以盒状图(boxplot)表示,盒中的线指示排序熵的中值,而盒的下端和上端分别指示第25和第75个百分位数,底部和顶部的尾线分别指示第10和第90个百分位数,离群值用“+”显示。随着大鼠由SWS经REM到AWK状态,一个理想的状态识别指标应该单调变化,即或者单调增大,或者单调减小。由图5可见,在本实施例中,当m=3,L=1时,SWS到REM状态时排序熵值增大,其中值由约0.86增大到约0.91,对两状态下排序熵值的统计比较表明存在显著差异(样本数n=18,显著性水平p<0.001,配对t测试);当m=3,L=4时,REM和AWK状态时排序熵值再次增大,其中值由约0.95增大到0.97左右,对两状态下排序熵值的统计比较表明存在显著差异(样本数n=10,显著性水平p<0.01,配对t测试)。
因此,基于以上统计比较分析的结果,本实施例选择m=3,L=1用于SWS和REM状态的识别,而m=3,L=4用于REM和AWK状态的识别。另外,我们选择了不同m参数进行以上的比较分析,发现当m变化时,排序熵区分不同睡眠状态的性能几乎与m=3时相同,为简便起见,选择m=3。
图2B是对图2A中由SWS到REM转换期间的脑电信号计算排序熵的结果,其中m=3,L=1。当大鼠由SWS状态转换到REM状态,排序熵值从0.85左右增大到0.9左右。图3B是对图3A中由REM到AWK转换期间的脑电信号计算排序熵的结果,其中m=3,L=4。当大鼠由REM状态转换到AWK状态,排序熵值进一步从0.94左右增大到0.97左右。
根据现有脑神经生理学产生机制的研究,脑电信号起源于一个高度的非线性系统,不仅在中枢神经系统每个分层层次发现许多的反馈环路,而且单个神经元自身也表现出高度非线性因素。清醒状态下,中枢脑神经元激动,其对丘脑、皮层神经元环路的机理增加,抑制了后者环路自身的振荡,使脑皮层出现去同步的高频低幅波;随着进入睡眠状态,中枢脑神经激励下降,使其对丘脑、皮层环路的控制减小,并到达一定水平时,丘脑、皮层环路发生自发振荡,使皮层出现同步化的低频高幅波。这些脑电模式的变化,可以通过计算排序熵等表现出来,因此脑电信号的排序熵可以用来体现睡眠状态下大脑脑电活动的变化。
上面已结合附图对本发明的具体实施方式进行了示例性的描述,显然本发明并不限于此,在本发明范围内进行的各种形式的改变均没有超出本发明的保护范围。

Claims (10)

1.一种非线性脑电信号分析方法,其特征在于,包括以下步骤:
步骤101,实时采集原始脑电信号;
步骤102,对采集的脑电信号进行分段;
步骤103,分析各段脑电信号状态并做预处理去除干扰;
步骤104,计算各段脑电信号的排序熵,根据排序熵值的大小确定脑的活动状态。
2.根据权利要求1所述的一种非线性脑电信号分析方法,其特征在于,步骤102种采用移动窗口技术对脑电信号分段。
3.根据权利要求2所述的一种非线性脑电信号分析方法,其特征在于,所述脑电信号分段的分段长度选取10s,相邻数据段重叠75%。
4.根据权利要求1或2所述的一种非线性脑电信号分析方法,其特征在于,步骤103中分析各段脑电信号状态,如果脑电信号为清醒脑电信号,则对清醒脑电信号的预处理采取以下措施:
去除奇异信号;根据信号的统计特性确定阈值去除异常信号点或段;
去除眼动干扰;利用眼动干扰信号的时域、频域特征检测其是否存在,存在的话应用平稳小波变换设定阈值去除;
去除白噪声、基线漂移以及呼吸伪差;利用小波变换方法分解脑电信号,将最低频带系数置零以去除由于电极阻抗改变引起的基线漂移及呼吸伪差的影响,在其它频带上采用基于经验贝叶斯估计的阈值化方法去除信号中含有的高斯白噪声;
去除肌电干扰;用卡尔曼滤波器训练自适应AR模型去除肌电信号以及瞬态高幅信号干扰;
如果脑电信号为睡眠脑电信号,则对睡眠脑电信号的预处理采取以下措施:
去除奇异信号;根据信号的统计特性确定阈值去除异常信号点或段;
去除白噪声、基线漂移以及呼吸伪差;利用小波变换方法分解脑电信号,将最低频带系数置零以去除由于电极阻抗改变引起的基线漂移及呼吸伪差的影响,在其它频带上采用基于经验贝叶斯估计的阈值化方法去除信号中含有的高斯白噪声。
5.根据权利要求4所述的一种非线性脑电信号分析方法,其特征在于,步骤104中脑电信号的排序熵计算采用以下方法:
①将脑电信号{x(i),i=1,2,…}嵌入到一个m维空间中:Xi=[x(i),x(i+L),…,x(i+(m-1)L)],其中m为嵌入维数,L为延迟;②将序列Xi中的元素按照增序排列:[x(i+(j1-1)L)≤x(i+(j2-1)L)≤…≤x(i+(jm-1)L)];当序列中有元素相等,即x(i+(ji1-1)L)=x(i+(ji2-1)L)时,x按照相应的j的顺序排序,即如果ji1<ji2,x(i+(ji1-1)L)<x(i+(ji2-1)L);③将这个重构序列看作一种符号序列,设每种符号出现的概率分别为P1,P2,…PK,其中K≤m!,那么时间序列{x(i),i=1,2,…}的排序熵定义为:
H P ( m ) = - Σ j = 1 K P j ln P j
当Pj=1/m!时,HP(m)取得最大值ln(m!),据此将HP(m)规一化,表示为
0≤HP=HP/ln(m!)≤1
最终输出排序熵值和绘制排序熵图,根据排序熵值的大小估确定脑活动状态。
6.一种非线性脑电信号分析装置,其特征在于,包括:
用于实时采集原始脑电信号的采集模块;
用于对脑电信号分段的分段模块;
用于分析各段脑电信号状态并做预处理去除干扰的预处理模块;
用于计算各段脑电信号的排序熵,根据排序熵值的大小确定脑的活动状态的计算确定模块。
7.根据权利要求6所述的一种非线性脑电信号分析装置,其特征在于,所述分段模块采用移动窗口技术对脑电信号进行分段。
8.根据权利要求7所述的一种非线性脑电信号分析装置,其特征在于,所述脑电信号分段的分段长度选取10s,相邻数据段重叠75%。
9.根据权利要求6或7所述的一种非线性脑电信号分析装置,其特征在于,所述预处理模块分析各段脑电信号状态,如果脑电信号为清醒脑电信号,则对清醒脑电信号进行如下预处理:
根据信号的统计特性确定阈值去除异常信号点或段;
利用眼动干扰信号的时域、频域特征检测其是否存在,存在的话应用平稳小波变换(SWT)设定阈值去除;
利用小波变换方法分解脑电信号,将最低频带系数置零以去除由于电极阻抗改变引起的基线漂移及呼吸伪差的影响,在其它频带上采用基于经验贝叶斯估计的阈值化方法去除信号中含有的高斯白噪声;
用卡尔曼滤波器训练自适应AR模型去除肌电信号以及瞬态高幅信号干扰;
如果脑电信号为睡眠脑电信号,则对睡眠脑电信号进行如下预处理:
去除奇异信号;根据信号的统计特性确定阈值去除异常信号点或段;
去除白噪声、基线漂移以及呼吸伪差;利用小波变换方法分解脑电信号,将最低频带系数置零以去除由于电极阻抗改变引起的基线漂移及呼吸伪差的影响,在其它频带上采用基于经验贝叶斯估计的阈值化方法去除信号中含有的高斯白噪声。
10.根据权利要求9所述的一种非线性脑电信号分析装置,其特征在于,所述计算确定模块对脑电信号的排序熵计算为:
①将脑电信号{x(i),i=1,2,…}嵌入到一个m维空间中:Xi=[x(i),x(i+L),…,x(i+(m-1)L)],其中m为嵌入维数,L为延迟;②将序列Xi中的元素按照增序排列:[x(i+(j1-1)L)≤x(i+(j2-1)L)≤…≤x(i+(jm-1)L)];当序列中有元素相等,即x(i+(ji1-1)L)=x(i+(ji2-1)L)时,x按照相应的j的顺序排序,即如果ji1<ji2,x(i+(ji1-1)L)<x(i+(ji2-1)L);③将这个重构序列看作一种符号序列,设每种符号出现的概率分别为P1,P2,…PK,其中K≤m!,那么时间序列{x(i),i=1,2,…}的排序熵定义为:
H P ( m ) = - Σ j = 1 K P j ln P j
当Pj=1/m!时,HP(m)取得最大值ln(m!),据此将HP(m)规一化,表示为
0≤HP=HP/ln(m!)≤1
最终输出排序熵值和绘制排序熵图,根据排序熵值的大小估确定脑活动状态。
CN2011104143886A 2011-12-13 2011-12-13 一种非线性脑电信号分析方法以及装置 Pending CN102488516A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104143886A CN102488516A (zh) 2011-12-13 2011-12-13 一种非线性脑电信号分析方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104143886A CN102488516A (zh) 2011-12-13 2011-12-13 一种非线性脑电信号分析方法以及装置

Publications (1)

Publication Number Publication Date
CN102488516A true CN102488516A (zh) 2012-06-13

Family

ID=46180427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104143886A Pending CN102488516A (zh) 2011-12-13 2011-12-13 一种非线性脑电信号分析方法以及装置

Country Status (1)

Country Link
CN (1) CN102488516A (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102813514A (zh) * 2012-08-30 2012-12-12 杭州电子科技大学 一种基于对称导极的脑电信号分析方法
CN102920453A (zh) * 2012-10-29 2013-02-13 泰好康电子科技(福建)有限公司 一种脑电波信号处理方法及其装置
CN103190904A (zh) * 2013-04-03 2013-07-10 山东大学 基于缺项特征的脑电图分类检测装置
CN104622467A (zh) * 2015-01-12 2015-05-20 天津大学 一种检测阿尔兹海默症的脑电信号复杂度异常的方法
CN105203150A (zh) * 2015-09-11 2015-12-30 中国石油化工股份有限公司 一种化工装置仪表数据异常点型过失误差检测方法
CN105595961A (zh) * 2015-12-21 2016-05-25 天津大学 基于脑电信号的阿尔兹海默症检测系统及检测方法
CN105942974A (zh) * 2016-04-14 2016-09-21 禅客科技(上海)有限公司 一种基于低频脑电的睡眠分析方法及系统
CN106777972A (zh) * 2016-12-15 2017-05-31 清华大学 脑电波分析方法和系统
CN106805969A (zh) * 2016-12-20 2017-06-09 广州视源电子科技股份有限公司 基于卡尔曼滤波和小波变换的脑电放松度识别方法及装置
CN107320115A (zh) * 2017-07-04 2017-11-07 重庆大学 一种自适应的精神疲劳评估装置及方法
CN107423668A (zh) * 2017-04-14 2017-12-01 山东建筑大学 基于小波变换和稀疏表达的脑电信号分类系统与方法
CN107423682A (zh) * 2017-06-09 2017-12-01 北京工业大学 一种非线性脑电信号的复杂度分析方法
CN107693043A (zh) * 2017-08-18 2018-02-16 中国人民解放军总医院 肠鸣音信号的非线性动力学分析方法
CN107811635A (zh) * 2016-09-12 2018-03-20 深圳先进技术研究院 一种基于人体生理信号的健康状态分类方法及装置
CN109144259A (zh) * 2018-08-23 2019-01-04 杭州电子科技大学 一种基于多尺度排列传递熵的脑区间同步关系分析方法
CN109195517A (zh) * 2016-02-29 2019-01-11 艾克斯-马赛大学 用于检测电生理信号中的感兴趣元素的方法以及检测器
CN109464131A (zh) * 2019-01-09 2019-03-15 浙江强脑科技有限公司 睡眠质量改善方法、装置及计算机可读存储介质
CN110198658A (zh) * 2017-01-19 2019-09-03 波尓瑟兰尼提公司 用于监测受试者电生理活动的设备
CN111317446A (zh) * 2020-02-27 2020-06-23 中国人民解放军空军特色医学中心 基于人体肌肉表面电信号的睡眠结构自动分析方法
CN111990991A (zh) * 2020-08-22 2020-11-27 陇东学院 一种基于复杂网络的脑电信号分析方法及应用
CN114052662A (zh) * 2021-11-11 2022-02-18 四川省医学科学院·四川省人民医院 一种结合大脑、小脑脑电和肌电整合分析睡眠分期的方法
CN114081504A (zh) * 2021-11-23 2022-02-25 青岛理工大学 一种基于脑电信号的驾驶意图识别方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547090A (zh) * 2003-12-03 2004-11-17 中国科学院昆明动物研究所 人工智能脑电采集和分析系统
CN2740134Y (zh) * 2004-09-30 2005-11-16 秦树人 虚拟式脑电检测分析仪
CN101449974A (zh) * 2007-12-05 2009-06-10 李小俚 一种自动实时估计麻醉深度的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547090A (zh) * 2003-12-03 2004-11-17 中国科学院昆明动物研究所 人工智能脑电采集和分析系统
CN2740134Y (zh) * 2004-09-30 2005-11-16 秦树人 虚拟式脑电检测分析仪
CN101449974A (zh) * 2007-12-05 2009-06-10 李小俚 一种自动实时估计麻醉深度的方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102813514A (zh) * 2012-08-30 2012-12-12 杭州电子科技大学 一种基于对称导极的脑电信号分析方法
CN102920453A (zh) * 2012-10-29 2013-02-13 泰好康电子科技(福建)有限公司 一种脑电波信号处理方法及其装置
CN103190904A (zh) * 2013-04-03 2013-07-10 山东大学 基于缺项特征的脑电图分类检测装置
CN104622467A (zh) * 2015-01-12 2015-05-20 天津大学 一种检测阿尔兹海默症的脑电信号复杂度异常的方法
CN105203150A (zh) * 2015-09-11 2015-12-30 中国石油化工股份有限公司 一种化工装置仪表数据异常点型过失误差检测方法
CN105595961A (zh) * 2015-12-21 2016-05-25 天津大学 基于脑电信号的阿尔兹海默症检测系统及检测方法
CN109195517A (zh) * 2016-02-29 2019-01-11 艾克斯-马赛大学 用于检测电生理信号中的感兴趣元素的方法以及检测器
CN109195517B (zh) * 2016-02-29 2022-10-11 艾克斯-马赛大学 用于检测电生理信号中的感兴趣元素的方法以及检测器
US11944445B2 (en) 2016-02-29 2024-04-02 Université D'aix-Marseille (Amu) Method for detecting elements of interest in electrophysiological signals and detector
CN105942974A (zh) * 2016-04-14 2016-09-21 禅客科技(上海)有限公司 一种基于低频脑电的睡眠分析方法及系统
CN107811635A (zh) * 2016-09-12 2018-03-20 深圳先进技术研究院 一种基于人体生理信号的健康状态分类方法及装置
CN107811635B (zh) * 2016-09-12 2021-01-19 深圳先进技术研究院 一种基于人体生理信号的健康状态分类方法及装置
CN106777972A (zh) * 2016-12-15 2017-05-31 清华大学 脑电波分析方法和系统
CN106777972B (zh) * 2016-12-15 2019-04-05 清华大学 脑电波分析方法和系统
CN106805969A (zh) * 2016-12-20 2017-06-09 广州视源电子科技股份有限公司 基于卡尔曼滤波和小波变换的脑电放松度识别方法及装置
CN110198658A (zh) * 2017-01-19 2019-09-03 波尓瑟兰尼提公司 用于监测受试者电生理活动的设备
CN107423668A (zh) * 2017-04-14 2017-12-01 山东建筑大学 基于小波变换和稀疏表达的脑电信号分类系统与方法
CN107423682A (zh) * 2017-06-09 2017-12-01 北京工业大学 一种非线性脑电信号的复杂度分析方法
CN107320115A (zh) * 2017-07-04 2017-11-07 重庆大学 一种自适应的精神疲劳评估装置及方法
CN107320115B (zh) * 2017-07-04 2020-03-17 重庆大学 一种自适应的精神疲劳评估装置及方法
CN107693043A (zh) * 2017-08-18 2018-02-16 中国人民解放军总医院 肠鸣音信号的非线性动力学分析方法
CN107693043B (zh) * 2017-08-18 2019-10-11 中国人民解放军总医院 肠鸣音信号的非线性动力学分析方法
CN109144259A (zh) * 2018-08-23 2019-01-04 杭州电子科技大学 一种基于多尺度排列传递熵的脑区间同步关系分析方法
CN109464131A (zh) * 2019-01-09 2019-03-15 浙江强脑科技有限公司 睡眠质量改善方法、装置及计算机可读存储介质
CN111317446A (zh) * 2020-02-27 2020-06-23 中国人民解放军空军特色医学中心 基于人体肌肉表面电信号的睡眠结构自动分析方法
CN111990991A (zh) * 2020-08-22 2020-11-27 陇东学院 一种基于复杂网络的脑电信号分析方法及应用
CN114052662A (zh) * 2021-11-11 2022-02-18 四川省医学科学院·四川省人民医院 一种结合大脑、小脑脑电和肌电整合分析睡眠分期的方法
CN114052662B (zh) * 2021-11-11 2023-08-08 四川省医学科学院·四川省人民医院 一种结合大脑、小脑脑电和肌电整合分析睡眠分期的方法
CN114081504A (zh) * 2021-11-23 2022-02-25 青岛理工大学 一种基于脑电信号的驾驶意图识别方法及系统
CN114081504B (zh) * 2021-11-23 2024-03-01 青岛理工大学 一种基于脑电信号的驾驶意图识别方法及系统

Similar Documents

Publication Publication Date Title
CN102488516A (zh) 一种非线性脑电信号分析方法以及装置
CN103690163B (zh) 基于ica和hht融合的自动眼电干扰去除方法
CN102824172B (zh) 一种脑电特征提取方法
CN101690659B (zh) 脑电波分析方法
CN110338786B (zh) 一种癫痫样放电的识别与分类方法、系统、装置和介质
CN105956624B (zh) 基于空时频优化特征稀疏表示的运动想象脑电分类方法
CN102119857B (zh) 基于匹配追踪算法的疲劳驾驶脑电检测系统及检测方法
Kumari et al. Seizure detection in EEG using time frequency analysis and SVM
CN114533086B (zh) 一种基于空域特征时频变换的运动想象脑电解码方法
CN103919565A (zh) 一种疲劳驾驶脑电信号特征提取与识别的方法
CN101449974A (zh) 一种自动实时估计麻醉深度的方法
CN103610461A (zh) 基于双密度小波邻域相关阈值处理的脑电信号消噪方法
CN106491125B (zh) 一种脑电状态识别方法及装置
CN109512442A (zh) 一种基于LightGBM的EEG疲劳状态分类方法
CN106175754B (zh) 睡眠状态分析中清醒状态检测装置
CN103610447A (zh) 一种基于前额脑电信号的脑力负荷在线检测方法
CN1317624C (zh) 基于瞬态视觉诱发电位提取脑机接口控制信号的方法
CN101515200A (zh) 基于瞬态视觉诱发脑电的目标选择方法
Wang et al. Driving fatigue detection based on EEG signal
CN104173046A (zh) 一种色彩标记振幅整合脑电图的提取方法
CN107595302A (zh) 一种利用脑电信号监测用户精神状态的装置及方法
CN108420406A (zh) 基于脉搏波睡眠分期的方法
CN117421539B (zh) 一种脑机接口系统数据优化处理方法
CN107361764A (zh) 一种心电信号特征波形r波的快速提取方法
CN110367975A (zh) 一种基于脑机接口的疲劳驾驶检测预警方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120613