CN109512442A - 一种基于LightGBM的EEG疲劳状态分类方法 - Google Patents

一种基于LightGBM的EEG疲劳状态分类方法 Download PDF

Info

Publication number
CN109512442A
CN109512442A CN201811571326.4A CN201811571326A CN109512442A CN 109512442 A CN109512442 A CN 109512442A CN 201811571326 A CN201811571326 A CN 201811571326A CN 109512442 A CN109512442 A CN 109512442A
Authority
CN
China
Prior art keywords
feature
eeg
data
fatigue
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811571326.4A
Other languages
English (en)
Inventor
曾虹
杨晨
孔万增
吴振华
张佳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201811571326.4A priority Critical patent/CN109512442A/zh
Publication of CN109512442A publication Critical patent/CN109512442A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • A61B2503/22Motor vehicles operators, e.g. drivers, pilots, captains

Abstract

本发明公开了一种基于LightGBM的EEG疲劳状态分类方法。本发明以共空间模式作为特征提取方法,梯度boosting框架LightGBM作为分类器,通过对EEG信号的分析,对驾驶员的疲劳程度进行分类,实现疲劳、清醒、中性三种状态的区分。首先获取数据并预处理;其次通过CSP对脑电数据进行特征提取,后对脑电特征进行降维;然后划定实验的训练集和测试集,再构建分类模型分类。针对精神状态预测,本发明获得的结果更好,且从时间消耗角度,本发明拥有较快的运行速度,这对后期应用于实时数据分析提供了基础。总之,本发明在精神状态预测方面具有较好的性能,以期在实际的脑机交互中有着广泛的应用前景。

Description

一种基于LightGBM的EEG疲劳状态分类方法
技术领域
本发明属于生物特征识别领域中的脑电信号识别领域,具体涉及一种基于LightGBM的EEG疲劳状态分类方法。
背景技术
驾驶疲劳是造成交通事故的重要原因,据美国国家公路交通安全委员会的数据显示:美国每年由于驾驶疲劳引发交通事故而造成的经济损失在125亿美元以上。疲劳并没有明显的症状,但通常表现为嗜睡、劳累或虚弱等。疲劳会导致驾驶员在驾驶过程中警觉性严重下降,使他们犯错从而导致交通事故。研究一种准确率高、时间空间复杂度低的精神状态分类方法,能够为减少驾驶疲劳所引发的交通事故奠定算法基础。
目前,针对疲劳检测这一问题,学术界开展了大量的的研究工作,总结下来,主要有以下几个方面:1)基于响应时间和注意力的心理活动测试;2)眼部运动参数的检测,如眼球扫视运动、眨眼率等;3)通过问卷调查方式的主动检测;4)通过生物电信号,如脑电、眼电、肌电以及心电等,进行疲劳驾驶状态检测。除此之外,近年来,转向握柄压力、皮肤电导率、血容量脉冲等指标,也被用于疲劳驾驶检测研究。
在上述用于疲劳检测的各种指标中,EEG分析方法被认为是最便捷及有效的。作为一种有效的对神经活动进行间接测量的工具,EEG广泛应用于神经科学,认知科学,认知心理学,神经科学和心理生理学研究中。另一方面,驾驶行为涉及运动、推理、视听觉加工、决策、感知和识别等多种行为,还受到情绪、焦虑和其他许多心理因素的影响,这些与驾驶有关的身体和精神活动都反映在脑电信号中。因此,将脑电EEG信号作为疲劳检测的一个可靠指标是完全可行的。
近年来,学术界已经提出了许多使用EEG进行疲劳检测的方法,比如,Correa等人采用时频及小波分析方法,基于EEG信号,针对不同嗜睡阶段,提出了一套自动检测方法检测清醒状态和嗜睡状态,分别获得了87.4%和83.6%的检测准确率。Khushaba等人提出了一种基于模糊互信息小波包变换的特征提取方法用于预测嗜睡状态。Mu等人采用四种不同的熵,包括频谱熵、近似熵、采样熵以及模糊熵,来提取EEG特征用于疲劳驾驶的检测。Wali等人融合了离散小波包变换和快速傅立叶变换对驾驶员在驾驶过程中注意力分散层级进行分类,分类准确率达到85%以上。Fu等人提出了一种基于隐马尔可夫的动态疲劳检测模型,用于估计驾驶员疲劳状态,得到了92.5%的准确率。
尽管上述方法已经取得了优秀的表现,但是,针对驾驶员疲劳状态监测这一问题,如何利用合适的模型,通过对EEG信号的分析,获得鲁棒性强、准确率高的检测性能,是目前的一大重要挑战。原因如下:首先,从脑电信号本身考虑,EEG是一种非稳定、随机性强的信号,且随着时间变化,对同一被试或不同被试采集的EEG信号往往具有较大的差异性;其次,EEG信号的低信噪比特征往往会影响到检测的准确率。第三,随着脑电采集设备的不断进步,脑电信号逐渐向特征的多维度和复杂化发展,时间及空间消耗也是需要考虑的一大问题。
发明内容
为了克服上述现有技术中存在的准确率低、鲁棒性差、时间空间消耗较大等问题,本发明提供了一种基于LightGBM的EEG疲劳状态分类方法。
本发明采用的技术方案是:
本发明以共空间模式作为特征提取方法,梯度boosting框架作为分类器,通过对EEG信号的分析,对驾驶员的疲劳程度进行分类,实现疲劳、清醒、中性三种状态的区分,具体实现包括如下步骤:
步骤1.获取数据:
搭建模拟驾驶平台:设计模拟驾驶实验,还原驾驶过程场景;同时选取多名被试驾驶员,并让他们分别进行模拟驾驶实验,采集多名被试驾驶员在模拟驾驶实验中的原始脑电信号Ⅰ、眼电信号Ⅰ和心电信号Ⅰ;
根据现有研究对眼电信号Ⅰ和心电信号Ⅰ进行分析,得出被试驾驶员的心率和每分钟的眨眼次数;以此为依据,为不同时间段内的原始脑电信号Ⅰ打上“疲劳”、“清醒”、“中性”这三种状态的标签;
步骤2.数据预处理:
对采集到的原始脑电信号Ⅰ均进行数据预处理,获取处理后的脑电信号Ⅱ,预处理包括独立成分分析和带通滤波;
步骤3.通过CSP对脑电数据进行特征提取
针对脑电信号Ⅱ,每个样本表示为X×S的矩阵W;其中,X是通道数,S是每一个通道的采样点数;规则化空间协方差如式(1)所示:
其中,trace()表示矩阵的对角元素之和;为了将两类方差分开,通过对训练数据中的两类样本的协方差之和进行平均,分别得到各自的平均协方差Cd和Ct,进而得到混合的空间协方差:Cc=Cd+Ct,将混合的空间协方差Cc分解为Cc=EcλcEc形式,其中Ec是协方差矩阵的特征向量,λc是特征值构成的对角阵;将特征值进行降序排列,按式(2)进行白化变换后获得P:
根据PCcPT对应的特征值为1,对Cd和Ct进行如下变换:Sd=PCdPT,St=PCtPT,则Sd和St具有共同的特征向量,当Sd=BλdBT时,有St=BλtBTdt=I;其中I是单位向量矩阵;因为对应的两个特征值之和总是1,所以当特征向量B对于Sd有最大的特征值时,对于St有最小的特征值;由此,能够得到投影矩阵:
PM=(BTP)T (3);
将疲劳和中性状态分别和清醒状态做投影,求得投影矩阵P_A和P_B,最终的投影矩阵为:PN=PA+PB (4)
对所有的实验样本,按照式(4)获取投影矩阵,得到所需的脑电特征F;
F=PNW (5)
步骤4.对脑电特征进行降维
使用方差var函数,对于每个实验样本,计算各个通道中数据的方差,对脑电特征进行降维;
步骤5.划定实验的训练集和测试集
针对每个被试驾驶员,将其所有脑电特征随机打散,并从中抽取80%作为训练集,记作Train_i,剩下的20%作为测试集,记作为Test_i,其中i表示第i个被试;为了避免不同类别样本测试和训练数据比例不同所带来的误差,对于三种状态的样本,抽取的训练和测试数据严格遵循4:1的比例;
从每一个被试被试驾驶员的所有脑电特征中各随机抽取出80%的数据,并将这些数据组合成跨被试的疲劳状态分类训练集,剩下的20%脑电特征组合成跨被试的疲劳状态分类测试集;
步骤6.分类
LightGBM中的主要参数包括num_leaves、num_trees和learning_rate;其中num_trees代表生成树的总数目,而num_leaves代表每棵生成树上叶子的数目;
构建一个基于LightGBM的分类模型,将num_leaves设置为63,learning_rate设置为0.01.num_trees则根据测试的结果进行动态调整;
使用训练集训练LightGBM模型,然后利用训练好的模型预测出未被训练的测试集所对应的类别;最后将预测分类结果与这些特征向量的实际类别进行比较,得到疲劳状态的分类准确率。
与现有技术相比,本发明的有益效果是:
1)针对精神状态预测,本发明可以得到比其他分类方法更好的结果;
2)高维度特征的会影响LightGBM的运行速度和内存消耗,但最终分类准确率并不依赖于高维度特征;
3)从时间消耗角度,本发明拥有较快的运行速度,这对后期应用于实时数据分析提供了基础。
总之,本发明在精神状态预测方面具有较好的性能,以期在实际的脑机交互中有着广泛的应用前景。
附图说明
图1为本发明流程图;
图2为脑电通道图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
请参阅图1和图2,本发明实施方式包括如下步骤:
步骤1.获取数据:
搭建模拟驾驶平台:设计合理的模拟驾驶实验,尽可能地还原驾驶时的场景。同时选取通过多名被试驾驶员,并让他们分别进行模拟驾驶实验,采集多名被试驾驶员在模拟驾驶实验中的原始脑电信号Ⅰ。同时,被试驾驶员的眼电信号和心电信号也被一并采集。
据研究,随着人进入疲劳状态,眼动的次数不断减少,而眨眼的频率却不断增加;另外,疲劳状态下,心率降低。通过对眼电信号和心电信号的分析,可以得出被试驾驶员的心率和每分钟的眨眼次数。以此为依据,为不同时间段内的脑电信号打上“疲劳”、“清醒”、“中性”这三种状态的标签。
步骤2.数据预处理:
对采集到的各类别的原始脑电信号均进行数据预处理,获取处理后的脑电信号Ⅱ,预处理包括独立成分分析和带通滤波,目的是减少伪迹的干扰,提高信噪比,从而提高特征提取的准确性。独立成分分析和带通滤波属于本领域技术人员所熟知的常规技术,故不详解。
步骤3.通过CSP对脑电数据进行特征提取
共空间算法能够找到最优空间投影使两类信号的功率最大,因此它能估计出两个空间滤波器来提取任务相关信号成分,并且同时去除任务不相关成分和噪声。共空间模式使用的方法是基于两个协方差矩阵的同时对角线化。
针对脑电信号Ⅱ,每个样本(trail)可表示为X×S的矩阵W,其中,X是通道数,S是每一个通道的采样点数。规则化空间协方差如式(1)所示:
其中,trace()表示矩阵的对角元素之和。为了将两类方差分开,通过对训练数据中的两类样本的协方差之和进行平均,分别得到各自的平均协方差Cd和Ct,进而得到混合的空间协方差:Cc=Cd+Ct,将空间协方差Cc分解为Cc=EcλcEc形式,其中Ec是协方差矩阵的特征向量,λc是特征值构成的对角阵。将特征值进行降序排列,按式(2)进行白化变换后获得P:
根据PCcPT对应的特征值为1,对Cd和Ct进行如下变换:Sd=PCdPT,St=PCtPT,则Sd和St具有共同的特征向量,当Sd=BλdBT时,有St=BλtBTdt=I。其中I是单位向量矩阵。因为对应的两个特征值之和总是1,所以当特征向量B对于Sd有最大的特征值时,对于St有最小的特征值。由此,能够得到投影矩阵:
PM=(BTP)T (3)
由于实验中用到了三种状态,因此通过设计一种针对三分类的CSP特征提取方法来对状态进行特征提取。
将疲劳和中性状态分别和清醒状态做投影,求得投影矩阵P_A和P_B,最终的投影矩阵为:PN=PA+PB (4)
对所有的实验样本(包括训练和测试),按照式(4)获取投影矩阵,得到所需的脑电特征F。
F=PNW (5)
步骤4.对脑电特征进行降维
脑电特征的高维度特性会增大LightGBM训练计算过程中的时间和空间损耗,而且通过我们的实验测试,我们得出一个结论:LightGBM并不像深度学习那样依赖高维度的数据特征,对特征降维后,加快了训练速度,降低了内存消耗,且最终准确率不会发生太大变化。因此,我们使用方差var函数,对于每个样本,计算各个通道中数据的方差,对脑电特征进行降维。
步骤5.划定实验的训练集和测试集
针对每个被试驾驶员,将其所有脑电特征随机打散,并从中抽取80%作为训练集,记作Train_i,剩下的20%作为测试集,记作为Test_i,其中i=1;2;…;10。i表示第i个被试。为了避免不同类别样本测试和训练数据比例不同所带来的误差,对于这三种状态的样本,我们所抽取的训练和测试数据严格遵循4:1的比例。
不同个体间的脑电信号差异很大,而这些差异会影响最终的分类结果。为了进一步验证模型性能,需要用到跨被试的数据集。我们从每一个被试的所有脑电特征中各随机抽取出80%的数据,并将这些数据组合成跨被试的疲劳状态分类训练集,剩下的20%脑电特征组合成跨被试的疲劳状态分类测试集。
步骤6.分类
LightGBM中的主要参数有num_leaves、num_trees和learning_rate等,其中num_trees代表生成树的总数目,而num_leaves代表每棵生成树上叶子的数目。较小的learning_rate和较大的num_trees可以在一定程度上提高最终的准确率,但会增大时间和空间上的开销。
构建一个基于LightGBM的分类模型,将num_leaves设置为63,learning_rate设置为0.01.num_trees则根据测试的结果进行动态调整。
使用训练集训练LightGBM模型,然后利用训练好的模型预测出未被训练的测试集所对应的类别。最后将预测分类结果与这些特征向量的实际类别进行比较,得到疲劳状态的分类准确率。单个被试的平均分类准确率为95.31%,跨被试的分类准确率为91.67%。

Claims (1)

1.一种基于LightGBM的EEG疲劳状态分类方法,其特征在于以共空间模式作为特征提取方法,梯度boosting框架作为分类器,通过对EEG信号的分析,对驾驶员的疲劳程度进行分类,实现疲劳、清醒、中性三种状态的区分,具体实现包括如下步骤:
步骤1.获取数据:
搭建模拟驾驶平台:设计模拟驾驶实验,还原驾驶过程场景;同时选取多名被试驾驶员,并让他们分别进行模拟驾驶实验,采集多名被试驾驶员在模拟驾驶实验中的原始脑电信号I、眼电信号I和心电信号I;
根据现有研究对眼电信号I和心电信号I进行分析,得出被试驾驶员的心率和每分钟的眨眼次数;以此为依据,为不同时间段内的原始脑电信号I打上“疲劳”、“清醒”、“中性”这三种状态的标签;
步骤2.数据预处理:
对采集到的原始脑电信号I均进行数据预处理,获取处理后的脑电信号II,预处理包括独立成分分析和带通滤波;
步骤3.通过CSP对脑电数据进行特征提取
针对脑电信号II,每个样本表示为X×S的矩阵W;其中,X是通道数,S是每一个通道的采样点数;规则化空间协方差如式(1)所示:
其中,trace()表示矩阵的对角元素之和;为了将两类方差分开,通过对训练数据中的两类样本的协方差之和进行平均,分别得到各自的平均协方差Cd和Ct,进而得到混合的空间协方差:Cc=Cd+Ct,将混合的空间协方差Cc分解为Cc=EcλcEc形式,其中Ec是协方差矩阵的特征向量,λc是特征值构成的对角阵;将特征值进行降序排列,按式(2)进行白化变换后获得P:
根据PCcPT对应的特征值为1,对Cd和Ct进行如下变换:Sd=PCdPT,St=PCtPT,则Sd和St具有共同的特征向量,当Sd=BλdBT时,有St=BλtBT,λdt=I;其中I是单位向量矩阵;因为对应的两个特征值之和总是1,所以当特征向量B对于Sd有最大的特征值时,对于St有最小的特征值;由此,能够得到投影矩阵:
PM=(BTP)T (3);
将疲劳和中性状态分别和清醒状态做投影,求得投影矩阵P_A和P_B,最终的投影矩阵为:PN=PA+PB (4)
对所有的实验样本,按照式(4)获取投影矩阵,得到所需的脑电特征F;
F=PNW (5)
步骤4.对脑电特征进行降维
使用方差var函数,对于每个实验样本,计算各个通道中数据的方差,对脑电特征进行降维;
步骤5.划定实验的训练集和测试集
针对每个被试驾驶员,将其所有脑电特征随机打散,并从中抽取80%作为训练集,记作Train_i,剩下的20%作为测试集,记作为Test_i,其中i表示第i个被试;为了避免不同类别样本测试和训练数据比例不同所带来的误差,对于三种状态的样本,抽取的训练和测试数据严格遵循4∶1的比例;
从每一个被试被试驾驶员的所有脑电特征中各随机抽取出80%的数据,并将这些数据组合成跨被试的疲劳状态分类训练集,剩下的20%脑电特征组合成跨被试的疲劳状态分类测试集;
步骤6.分类
LightGBM中的主要参数包括num_leaves、num_trees和learning_rate;其中num_trees代表生成树的总数目,而num_leaves代表每棵生成树上叶子的数目;
构建一个基于LightGBM的分类模型,将num_leaves设置为63,learning_rate设置为0.01.num_trees则根据测试的结果进行动态调整;
使用训练集训练LightGBM模型,然后利用训练好的模型预测出未被训练的测试集所对应的类别;最后将预测分类结果与这些特征向量的实际类别进行比较,得到疲劳状态的分类准确率。
CN201811571326.4A 2018-12-21 2018-12-21 一种基于LightGBM的EEG疲劳状态分类方法 Pending CN109512442A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811571326.4A CN109512442A (zh) 2018-12-21 2018-12-21 一种基于LightGBM的EEG疲劳状态分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811571326.4A CN109512442A (zh) 2018-12-21 2018-12-21 一种基于LightGBM的EEG疲劳状态分类方法

Publications (1)

Publication Number Publication Date
CN109512442A true CN109512442A (zh) 2019-03-26

Family

ID=65795620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811571326.4A Pending CN109512442A (zh) 2018-12-21 2018-12-21 一种基于LightGBM的EEG疲劳状态分类方法

Country Status (1)

Country Link
CN (1) CN109512442A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530662A (zh) * 2019-09-05 2019-12-03 中南大学 一种基于多源生理信号的列车座椅舒适性评价方法及系统
CN110674787A (zh) * 2019-10-09 2020-01-10 山东浪潮人工智能研究院有限公司 一种基于Hog特征和lgb分类器的视频解压缩方法及系统
CN110796207A (zh) * 2019-11-08 2020-02-14 中南大学 一种疲劳驾驶检测方法及系统
CN110916631A (zh) * 2019-12-13 2020-03-27 东南大学 基于可穿戴生理信号监测的学生课堂学习状态评测系统
CN111528866A (zh) * 2020-04-30 2020-08-14 北京脑陆科技有限公司 一种基于LightGBM模型的EEG信号情绪识别方法
CN111931717A (zh) * 2020-09-22 2020-11-13 平安科技(深圳)有限公司 基于语义和图像识别的心电信息提取方法及装置
CN112274154A (zh) * 2020-09-18 2021-01-29 杭州电子科技大学 基于脑电样本权重调整的跨被试疲劳驾驶分类方法
CN112274162A (zh) * 2020-09-18 2021-01-29 杭州电子科技大学 基于生成对抗域自适应的跨被试eeg疲劳状态分类方法
CN114424941A (zh) * 2022-01-26 2022-05-03 广东电网有限责任公司 疲劳检测模型构建方法、疲劳检测方法、装置及设备
CN115778390A (zh) * 2023-01-31 2023-03-14 武汉理工大学 基于线性预测分析与堆叠融合的混合模态疲劳检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019880A1 (en) * 2008-07-24 2010-01-28 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on traffic sensing
CN103876734A (zh) * 2014-03-24 2014-06-25 北京工业大学 一种基于决策树的脑电信号特征选择方法
CN105956624A (zh) * 2016-05-06 2016-09-21 东南大学 基于空时频优化特征稀疏表示的运动想象脑电分类方法
CN106934368A (zh) * 2017-03-13 2017-07-07 长安大学 一种基于眼动指标数据的驾驶疲劳检测系统及识别方法
CN107239142A (zh) * 2017-06-01 2017-10-10 南京邮电大学 一种结合公共空间模式算法和emd的脑电信号特征提取方法
CN107536613A (zh) * 2016-06-29 2018-01-05 深圳光启合众科技有限公司 机器人及其人体下肢步态识别装置和方法
CN108038429A (zh) * 2017-11-30 2018-05-15 西安交通大学 一种运动执行的单次脑电特征提取分类方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019880A1 (en) * 2008-07-24 2010-01-28 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on traffic sensing
CN103876734A (zh) * 2014-03-24 2014-06-25 北京工业大学 一种基于决策树的脑电信号特征选择方法
CN105956624A (zh) * 2016-05-06 2016-09-21 东南大学 基于空时频优化特征稀疏表示的运动想象脑电分类方法
CN107536613A (zh) * 2016-06-29 2018-01-05 深圳光启合众科技有限公司 机器人及其人体下肢步态识别装置和方法
CN106934368A (zh) * 2017-03-13 2017-07-07 长安大学 一种基于眼动指标数据的驾驶疲劳检测系统及识别方法
CN107239142A (zh) * 2017-06-01 2017-10-10 南京邮电大学 一种结合公共空间模式算法和emd的脑电信号特征提取方法
CN108038429A (zh) * 2017-11-30 2018-05-15 西安交通大学 一种运动执行的单次脑电特征提取分类方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANFENG HU等: "Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model", 《COGNITIVE NEURODYNAMICS》 *
QIAO XIE 等: "Electroencephalogram Emotion Recognition Based on A Stacking Classification Model", 《2018 37TH CHINESE CONTROL CONFERENCE (CCC)》 *
薛雷: "考虑驾驶员生物电信号的疲劳驾驶检测方法研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530662A (zh) * 2019-09-05 2019-12-03 中南大学 一种基于多源生理信号的列车座椅舒适性评价方法及系统
CN110674787A (zh) * 2019-10-09 2020-01-10 山东浪潮人工智能研究院有限公司 一种基于Hog特征和lgb分类器的视频解压缩方法及系统
CN110796207A (zh) * 2019-11-08 2020-02-14 中南大学 一种疲劳驾驶检测方法及系统
CN110796207B (zh) * 2019-11-08 2023-05-30 中南大学 一种疲劳驾驶检测方法及系统
CN110916631B (zh) * 2019-12-13 2022-04-22 东南大学 基于可穿戴生理信号监测的学生课堂学习状态评测系统
CN110916631A (zh) * 2019-12-13 2020-03-27 东南大学 基于可穿戴生理信号监测的学生课堂学习状态评测系统
CN111528866A (zh) * 2020-04-30 2020-08-14 北京脑陆科技有限公司 一种基于LightGBM模型的EEG信号情绪识别方法
CN112274154A (zh) * 2020-09-18 2021-01-29 杭州电子科技大学 基于脑电样本权重调整的跨被试疲劳驾驶分类方法
CN112274162A (zh) * 2020-09-18 2021-01-29 杭州电子科技大学 基于生成对抗域自适应的跨被试eeg疲劳状态分类方法
CN112274162B (zh) * 2020-09-18 2022-05-17 杭州电子科技大学 基于生成对抗域自适应的跨被试eeg疲劳状态分类方法
CN112274154B (zh) * 2020-09-18 2022-05-17 杭州电子科技大学 基于脑电样本权重调整的跨被试疲劳驾驶分类方法
CN111931717A (zh) * 2020-09-22 2020-11-13 平安科技(深圳)有限公司 基于语义和图像识别的心电信息提取方法及装置
WO2021159751A1 (zh) * 2020-09-22 2021-08-19 平安科技(深圳)有限公司 基于语义和图像识别的心电信息提取方法、装置、计算机设备及存储介质
CN114424941A (zh) * 2022-01-26 2022-05-03 广东电网有限责任公司 疲劳检测模型构建方法、疲劳检测方法、装置及设备
CN115778390A (zh) * 2023-01-31 2023-03-14 武汉理工大学 基于线性预测分析与堆叠融合的混合模态疲劳检测方法

Similar Documents

Publication Publication Date Title
CN109512442A (zh) 一种基于LightGBM的EEG疲劳状态分类方法
Mazher et al. An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence
CN104461007B (zh) 一种基于脑电信号的驾驶员辅助人车交互系统
CN105956624B (zh) 基于空时频优化特征稀疏表示的运动想象脑电分类方法
Dornhege et al. Optimizing spatio-temporal filters for improving brain-computer interfacing
Zou et al. Constructing multi-scale entropy based on the empirical mode decomposition (EMD) and its application in recognizing driving fatigue
CN108577865A (zh) 一种心理状态确定方法及装置
CN101987017A (zh) 用于驾车司机警觉度测定的脑电信号识别检测方法
Fattah et al. Identification of motor neuron disease using wavelet domain features extracted from EMG signal
Lahiri et al. Evolutionary perspective for optimal selection of EEG electrodes and features
Ramos-Aguilar et al. Analysis of EEG signal processing techniques based on spectrograms
CN110367975A (zh) 一种基于脑机接口的疲劳驾驶检测预警方法
CN113349780A (zh) 一种情绪设计对在线学习认知负荷影响的评估方法
CN109009098A (zh) 一种运动想象状态下的脑电信号特征识别方法
KR20080107961A (ko) 오감 정보 처리기법 및 뇌파를 활용한 사용자 적응형임상진단/치료시스템
Dzitac et al. Identification of ERD using fuzzy inference systems for brain-computer interface
Murugappan et al. Subtractive fuzzy classifier based driver drowsiness levels classification using EEG
CN111671421A (zh) 一种基于脑电图的儿童需求感知方法
Cecotti et al. Suboptimal sensor subset evaluation in a p300 brain-computer interface
Jeyabalan et al. Motor imaginary signal classification using adaptive recursive bandpass filter and adaptive autoregressive models for brain machine interface designs
Aznan et al. EEG-based motor imagery classification in BCI system by using unscented Kalman filter
Baziyad et al. A study and performance analysis of three paradigms of wavelet coefficients combinations in three-class motor imagery based BCI
Farooq et al. Motor Imagery based multivariate EEG Signal classification for brain controlled interface applications
CN110516711B (zh) Mi-bci系统的训练集质量评估方法和单次训练样本的优化方法
Kulkarni et al. Driver state analysis for ADAS using EEG signals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190326