CN103876734A - 一种基于决策树的脑电信号特征选择方法 - Google Patents
一种基于决策树的脑电信号特征选择方法 Download PDFInfo
- Publication number
- CN103876734A CN103876734A CN201410112806.XA CN201410112806A CN103876734A CN 103876734 A CN103876734 A CN 103876734A CN 201410112806 A CN201410112806 A CN 201410112806A CN 103876734 A CN103876734 A CN 103876734A
- Authority
- CN
- China
- Prior art keywords
- sample
- data
- training
- attribute
- decision tree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013459 approach Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000013598 vector Substances 0.000 claims abstract description 16
- 238000002474 experimental method Methods 0.000 claims abstract description 14
- 238000000605 extraction Methods 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims abstract description 5
- 238000012706 support-vector machine Methods 0.000 claims abstract description 4
- 238000012360 testing method Methods 0.000 claims description 46
- 238000012549 training Methods 0.000 claims description 43
- 238000003066 decision tree Methods 0.000 claims description 33
- 239000011159 matrix material Substances 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 7
- 230000006798 recombination Effects 0.000 claims description 6
- 238000005215 recombination Methods 0.000 claims description 6
- 238000002372 labelling Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 2
- 238000012847 principal component analysis method Methods 0.000 abstract 1
- 210000004556 brain Anatomy 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000002490 cerebral effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000004761 scalp Anatomy 0.000 description 3
- 244000141353 Prunus domestica Species 0.000 description 2
- 230000001054 cortical effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/377—Electroencephalography [EEG] using evoked responses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/291—Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/377—Electroencephalography [EEG] using evoked responses
- A61B5/378—Visual stimuli
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Psychiatry (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychology (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Signal Processing (AREA)
- Physiology (AREA)
- Fuzzy Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Computational Linguistics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
实验序号 | 本发明所述方法的分类正确率(%) | 传统分类方法的分类正确率(%) |
1 | 91.0714 | 87.5 |
2 | 89.2857 | 85.7143 |
3 | 89.2857 | 85.7143 |
4 | 92.8571 | 89.2857 |
5 | 91.0714 | 85.7143 |
6 | 76.7857 | 80.3571 |
7 | 89.4737 | 91.2281 |
8 | 91.0714 | 96.4286 |
9 | 89.2857 | 91.4286 |
10 | 91.0714 | 89.2857 |
平均值 | 89.1259 | 88.2300 |
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410112806.XA CN103876734B (zh) | 2014-03-24 | 2014-03-24 | 一种基于决策树的脑电信号特征选择方法 |
US14/583,127 US20150269336A1 (en) | 2014-03-24 | 2014-12-25 | method for selecting features of EEG signals based on decision tree |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410112806.XA CN103876734B (zh) | 2014-03-24 | 2014-03-24 | 一种基于决策树的脑电信号特征选择方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103876734A true CN103876734A (zh) | 2014-06-25 |
CN103876734B CN103876734B (zh) | 2015-09-02 |
Family
ID=50946099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410112806.XA Active CN103876734B (zh) | 2014-03-24 | 2014-03-24 | 一种基于决策树的脑电信号特征选择方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20150269336A1 (zh) |
CN (1) | CN103876734B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104571505A (zh) * | 2014-12-24 | 2015-04-29 | 天津大学 | 一种基于序列性复合肢体想象动作的脑-机接口方法 |
CN104644166A (zh) * | 2015-02-16 | 2015-05-27 | 浙江大学 | 一种基于格子复杂性算法的无线动态麻醉深度检测方法 |
CN104850833A (zh) * | 2015-05-07 | 2015-08-19 | 北京工业大学 | 一种脑电混沌特性分析的方法及系统 |
CN105335752A (zh) * | 2015-09-18 | 2016-02-17 | 国网山东省电力公司菏泽供电公司 | 一种基于主成分分析多变量决策树的接线方式识别方法 |
CN106777891A (zh) * | 2016-11-21 | 2017-05-31 | 中国科学院自动化研究所 | 一种数据特征选择和预测方法及装置 |
CN108520781A (zh) * | 2018-03-28 | 2018-09-11 | 北京大学人民医院 | 一种计算试管婴儿成功结局几率的方法 |
CN109303559A (zh) * | 2018-11-01 | 2019-02-05 | 杭州质子科技有限公司 | 一种基于梯度提升决策树的动态心电图心拍分类方法 |
CN109512442A (zh) * | 2018-12-21 | 2019-03-26 | 杭州电子科技大学 | 一种基于LightGBM的EEG疲劳状态分类方法 |
CN113806371A (zh) * | 2021-09-27 | 2021-12-17 | 重庆紫光华山智安科技有限公司 | 数据类型确定方法、装置、计算机设备及存储介质 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10223634B2 (en) | 2014-08-14 | 2019-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Multiplicative recurrent neural network for fast and robust intracortical brain machine interface decoders |
US10779746B2 (en) * | 2015-08-13 | 2020-09-22 | The Board Of Trustees Of The Leland Stanford Junior University | Task-outcome error signals and their use in brain-machine interfaces |
CN105260616A (zh) * | 2015-10-30 | 2016-01-20 | 刘炜 | 一种医院数据的自动分析方法及自动分析系统 |
US12008987B2 (en) | 2018-04-30 | 2024-06-11 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for decoding intended speech from neuronal activity |
US10949086B2 (en) | 2018-10-29 | 2021-03-16 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for virtual keyboards for high dimensional controllers |
CN110133599B (zh) * | 2019-01-08 | 2022-12-06 | 西安电子科技大学 | 基于长短时记忆模型的智能雷达辐射源信号分类方法 |
CN110164524A (zh) * | 2019-04-29 | 2019-08-23 | 北京国润健康医学投资有限公司 | 一种偏瘫患者康复训练任务自适应匹配方法及其系统 |
CN110141236B (zh) * | 2019-05-22 | 2022-11-25 | 重庆邮电大学 | 用于阻抗成像的频变自适应阻抗采集控制装置及方法 |
CN110189803A (zh) * | 2019-06-05 | 2019-08-30 | 南京理工大学 | 基于聚类与分类相结合的疾病危险因素提取方法 |
CN110390272B (zh) * | 2019-06-30 | 2023-07-18 | 天津大学 | 一种基于加权主成分分析的eeg信号特征降维方法 |
US11640204B2 (en) | 2019-08-28 | 2023-05-02 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods decoding intended symbols from neural activity |
CN111134667B (zh) * | 2020-01-19 | 2024-01-26 | 中国人民解放军战略支援部队信息工程大学 | 基于脑电信号的时间迁移情绪识别方法及系统 |
CN111368884B (zh) * | 2020-02-22 | 2023-04-07 | 杭州电子科技大学 | 一种基于矩阵变量高斯模型的运动想象脑电特征提取方法 |
CN112001305B (zh) * | 2020-08-21 | 2022-08-05 | 西安交通大学 | 基于梯度提升决策树的特征优化ssvep异步识别方法 |
CN112215771B (zh) * | 2020-10-10 | 2024-10-15 | 徐州医科大学 | 一种骨科植入物类特征智能构建方法及系统 |
CN113269048B (zh) * | 2021-04-29 | 2024-05-28 | 北京工业大学 | 基于深度学习和混合噪声数据增强的运动想象脑电信号分类方法 |
CN113919387A (zh) * | 2021-08-18 | 2022-01-11 | 东北林业大学 | 基于gbdt-lr模型的脑电信号情感识别 |
CN113902951B (zh) * | 2021-10-13 | 2024-05-24 | 中国检验检疫科学研究院 | 基于主成分分析和梯度提升决策树的油菜蜜真伪鉴别方法 |
CN118278826B (zh) * | 2024-06-03 | 2024-09-13 | 山东特发光源光通信有限公司 | 一种光缆生产的实时数据采集与管理系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101219048A (zh) * | 2008-01-25 | 2008-07-16 | 北京工业大学 | 想象单侧肢体运动的脑电特征的提取方法 |
US20080235164A1 (en) * | 2007-03-23 | 2008-09-25 | Nokia Corporation | Apparatus, method and computer program product providing a hierarchical approach to command-control tasks using a brain-computer interface |
CN101596101A (zh) * | 2009-07-13 | 2009-12-09 | 北京工业大学 | 依据脑电信号判定疲劳状态的方法 |
CN102499676A (zh) * | 2011-11-03 | 2012-06-20 | 北京工业大学 | 基于有效时间序列和电极重组的脑电信号分类系统和方法 |
CN102835955A (zh) * | 2012-09-08 | 2012-12-26 | 北京工业大学 | 一种无需设定阈值的脑电信号中眼电伪迹自动去除的方法 |
-
2014
- 2014-03-24 CN CN201410112806.XA patent/CN103876734B/zh active Active
- 2014-12-25 US US14/583,127 patent/US20150269336A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080235164A1 (en) * | 2007-03-23 | 2008-09-25 | Nokia Corporation | Apparatus, method and computer program product providing a hierarchical approach to command-control tasks using a brain-computer interface |
CN101641660A (zh) * | 2007-03-23 | 2010-02-03 | 诺基亚公司 | 为使用脑机接口的命令控制任务提供分层方法的装置、方法和计算机程序产品 |
CN101219048A (zh) * | 2008-01-25 | 2008-07-16 | 北京工业大学 | 想象单侧肢体运动的脑电特征的提取方法 |
CN101596101A (zh) * | 2009-07-13 | 2009-12-09 | 北京工业大学 | 依据脑电信号判定疲劳状态的方法 |
CN102499676A (zh) * | 2011-11-03 | 2012-06-20 | 北京工业大学 | 基于有效时间序列和电极重组的脑电信号分类系统和方法 |
CN102835955A (zh) * | 2012-09-08 | 2012-12-26 | 北京工业大学 | 一种无需设定阈值的脑电信号中眼电伪迹自动去除的方法 |
Non-Patent Citations (3)
Title |
---|
刁智华 等: "一种新的基于平衡决策树的SVM多类分类算法", 《控制与决策》 * |
黄玲 等: "改进的决策树SVM在脑电识别中的应用", 《计算机工程与设计》 * |
黄玲: "基于支持向量机的多类意识任务分类方法研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104571505B (zh) * | 2014-12-24 | 2017-08-25 | 天津大学 | 一种基于序列性复合肢体想象动作的脑‑机接口方法 |
CN104571505A (zh) * | 2014-12-24 | 2015-04-29 | 天津大学 | 一种基于序列性复合肢体想象动作的脑-机接口方法 |
CN104644166A (zh) * | 2015-02-16 | 2015-05-27 | 浙江大学 | 一种基于格子复杂性算法的无线动态麻醉深度检测方法 |
CN104850833A (zh) * | 2015-05-07 | 2015-08-19 | 北京工业大学 | 一种脑电混沌特性分析的方法及系统 |
CN104850833B (zh) * | 2015-05-07 | 2018-05-01 | 北京工业大学 | 一种脑电混沌特性分析的方法及系统 |
CN105335752A (zh) * | 2015-09-18 | 2016-02-17 | 国网山东省电力公司菏泽供电公司 | 一种基于主成分分析多变量决策树的接线方式识别方法 |
CN106777891A (zh) * | 2016-11-21 | 2017-05-31 | 中国科学院自动化研究所 | 一种数据特征选择和预测方法及装置 |
CN106777891B (zh) * | 2016-11-21 | 2019-06-07 | 中国科学院自动化研究所 | 一种数据特征选择和预测方法及装置 |
CN108520781A (zh) * | 2018-03-28 | 2018-09-11 | 北京大学人民医院 | 一种计算试管婴儿成功结局几率的方法 |
CN109303559A (zh) * | 2018-11-01 | 2019-02-05 | 杭州质子科技有限公司 | 一种基于梯度提升决策树的动态心电图心拍分类方法 |
CN109303559B (zh) * | 2018-11-01 | 2021-05-14 | 杭州质子科技有限公司 | 一种基于梯度提升决策树的动态心电图心拍分类方法 |
CN109512442A (zh) * | 2018-12-21 | 2019-03-26 | 杭州电子科技大学 | 一种基于LightGBM的EEG疲劳状态分类方法 |
CN113806371A (zh) * | 2021-09-27 | 2021-12-17 | 重庆紫光华山智安科技有限公司 | 数据类型确定方法、装置、计算机设备及存储介质 |
CN113806371B (zh) * | 2021-09-27 | 2024-01-19 | 重庆紫光华山智安科技有限公司 | 数据类型确定方法、装置、计算机设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20150269336A1 (en) | 2015-09-24 |
CN103876734B (zh) | 2015-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103876734B (zh) | 一种基于决策树的脑电信号特征选择方法 | |
CN110070105B (zh) | 基于元学习实例快速筛选的脑电情绪识别方法、系统 | |
CN102835955B (zh) | 一种无需设定阈值的脑电信号中眼电伪迹自动去除的方法 | |
CN114224342B (zh) | 一种基于时空融合特征网络的多通道脑电信号情绪识别方法 | |
CN106569604B (zh) | 视听双模态语义匹配和语义失配协同刺激脑机接口方法 | |
CN102722728B (zh) | 基于通道加权支持向量的运动想象脑电分类方法 | |
CN102542283B (zh) | 脑机接口的最优电极组自动选取方法 | |
CN103996054B (zh) | 一种基于组合差异进化的脑电信号特征选择及分类方法 | |
CN104035563B (zh) | 基于w‑pca和无监督ghsom的脑电信号识别方法 | |
US20220265218A1 (en) | Real-time evaluation method and evaluation system for group emotion homogeneity | |
CN106529476A (zh) | 一种基于深层堆叠网络的脑电信号特征提取及分类方法 | |
CN114521903B (zh) | 一种基于特征选择的脑电注意力识别系统及方法 | |
CN104127179B (zh) | 一种优势电极组合与经验模式分解的脑电特征提取方法 | |
CN110262658B (zh) | 一种基于强化注意的脑机接口字符输入系统及实现方法 | |
CN113191225A (zh) | 一种基于图注意力网络的情绪脑电识别方法及系统 | |
CN103767702A (zh) | 一种脑电非线性双测度特征提取与融合处理方法 | |
CN104545900A (zh) | 一种基于配对样本t检验的事件相关电位分析方法 | |
CN113208593A (zh) | 基于相关性动态融合的多模态生理信号情绪分类方法 | |
CN106510702B (zh) | 基于中潜伏期听觉诱发电位的听觉注意特征提取、识别系统及方法 | |
CN113995421A (zh) | 应用前额叶单通道脑电信号对睡眠分期的深度学习算法 | |
CN109858537A (zh) | 改进的eemd与csp结合的脑电信号特征提取方法 | |
Krusienski et al. | Common spatio-temporal patterns for the P300 speller | |
CN109009098A (zh) | 一种运动想象状态下的脑电信号特征识别方法 | |
CN115659207A (zh) | 一种脑电情绪识别方法及系统 | |
CN103300850A (zh) | 一种中风病人脑电信号采集与处理的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20140625 Assignee: LUOYANG YAHUI EXOSKELETON POWER-ASSISTED TECHNOLOGY CO.,LTD. Assignor: Beijing University of Technology Contract record no.: X2024980000190 Denomination of invention: A decision tree based feature selection method for EEG signals Granted publication date: 20150902 License type: Common License Record date: 20240105 Application publication date: 20140625 Assignee: Luoyang Lexiang Network Technology Co.,Ltd. Assignor: Beijing University of Technology Contract record no.: X2024980000083 Denomination of invention: A decision tree based feature selection method for EEG signals Granted publication date: 20150902 License type: Common License Record date: 20240104 |