CN102482964B - 内燃机的排气装置 - Google Patents

内燃机的排气装置 Download PDF

Info

Publication number
CN102482964B
CN102482964B CN200980161153.1A CN200980161153A CN102482964B CN 102482964 B CN102482964 B CN 102482964B CN 200980161153 A CN200980161153 A CN 200980161153A CN 102482964 B CN102482964 B CN 102482964B
Authority
CN
China
Prior art keywords
mentioned
tail pipe
open end
pipe
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980161153.1A
Other languages
English (en)
Other versions
CN102482964A (zh
Inventor
若月一稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102482964A publication Critical patent/CN102482964A/zh
Application granted granted Critical
Publication of CN102482964B publication Critical patent/CN102482964B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/20Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having flared outlets, e.g. of fish-tail shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/06Silencing apparatus characterised by method of silencing by using interference effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/083Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using transversal baffles defining a tortuous path for the gases or successively throttling gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/08Two or more expansion chambers in series separated by apertured walls only

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

提供无需在尾管夹装副消声器、或在尾管的上游开口端设置具有大容量共鸣室的消音器,便能抑制因尾管的气柱共鸣导致声压级增大、能减少重量、降低制造成本及设置空间的内燃机的排气装置,具备将从内燃机(21)排出的废气排出的排气管(28),排气管(28)具有与消音器(27)连接的上游开口端(28a)、及将从消音器(27)排出的废气向大气排出的下游开口端(28b),排气管(28)的排气方向上游侧以及排气方向下游侧的至少一方具有随着趋向上游开口端(28a)以及下游开口端(28b)中的任一方而直径扩大的扩径构造(38),在扩径构造(38)的内部与废气的排气方向相对地设置有形成有开口部(41d)的板(41)。

Description

内燃机的排气装置
技术领域
本发明涉及内燃机的排气装置,特别是涉及抑制因设置于废气的排气方向的最下游的尾管的气柱共鸣而导致的声压的增大的内燃机的排气装置。
背景技术
作为在汽车等车辆中使用的内燃机的排气装置,已知有图32所示的装置(例如,参照专利文献1)。在图32中,从作为内燃机的发动机1排出的废气经过排气歧管2,在由催化转换器3净化之后被导入到该排气装置4。
排气装置4构成为包括:与催化转换器3连结的前部管5;与前部管5连结的中部管6;与中部管6连结的作为消音器的主消声器7;与主消声器7连结的尾管8;以及夹装于尾管8的副消声器9。
如图33所示,主消声器7具备:扩张室7a,废气从中部管6的小孔6a扩张而被导入该扩张室7a;以及共鸣室7b,中部管6的下游开口端6b插通于该共鸣室7b,对于从中部管6的下游开口端6b被导入到共鸣室7b的废气,借助亥姆霍兹共鸣,特定频率的排气音被消音。
在此,当将中部管6的突出至共鸣室7b的部分的突出部分的长度设定为L1(m)、将中部管6的截面积设定为S(m2)、将共鸣室7b的容积设定为V(m3)、将空气中的音速设定为c(m/s)时,空气中的共鸣频率fn(Hz)由与亥姆霍兹共鸣相关的下述的式(1)而求得。
f n = c 2 π S L 1 · V . . . . . . . . . . ( 1 )
根据式(1)可知,能够通过增大共鸣室7b的容积V、或增长中部管6的突出部分的长度L1而将共鸣频率朝低频侧调谐;或者通过减小共鸣室7b的容积V、或缩短中部管6的突出部分的长度L1而将共鸣频率朝高频侧调谐。
副消声器9形成为:抑制因通过发动机1运转时的排气脉动在尾管8内产生与尾管8的管长对应的气柱共鸣而导致声压增大。
一般地,对于在废气的排气方向上游侧以及下游侧分别具有上游开口端8a以及下游开口端8b的尾管8,由发动机1运转时的排气脉动产生的入射波在尾管8的上游开口端8a以及下游开口端8b进行反射,由此,将以尾管8的管长L作为半波长的频率的气柱共鸣作为基本成分,产生波长为该半波长的自然数倍的气柱共鸣。
具体地说,基本振动(一次成分)的气柱共鸣的波长λ1为尾管8的管长L的大致2倍,二次成分的气柱共鸣的波长λ2为管长L的大致1倍。并且,三次成分的气柱共鸣的波长λ3为管长L的2/3倍。这样,在尾管8内能够形成上游开口端8a以及下游开口端8b成为声压的波节的驻波。
并且,气柱共鸣频率fa由下述式(2)来表示。
fa = c 2 L n . . . . . . . . . . ( 2 )
其中,c:音速(m/s),L:尾管的管长(m),n:次数
根据式(2)可知,由于音速c为与温度相应的恒定的值,因此尾管8的管长L越长,则气柱共鸣频率fa越朝低频侧过渡,从而在低频区域中容易引起因排气音的气柱共鸣而导致的噪声的问题。
例如,当将音速c设定为400m/s时,在尾管8的管长L为1.2m的情况下,因气柱共鸣而导致的排气音的一次成分f1为166.7Hz,二次成分f2为333.3Hz。另一方面,在管8的管长L为3.0m的情况下,因气柱共鸣而导致的排气音的一次成分f1为66.7Hz,二次成分f2为133.3Hz。这样,尾管8的管长L越长,则气柱共鸣频率fa越朝低频侧过渡。
并且,发动机1的排气脉动的频率fe(Hz)由下述式(3)表示。
fe = Ne 60 × N 2 . . . . . . . . . . ( 3 )
其中,Ne:发动机转速(rpm),N:发动机的缸数(自然数)
并且,在因与特定的发动机转速Ne对应产生的气柱共鸣而导致的排气音的一次成分f1处,排气音的声压级(dB)显著变高。并且,在二次成分f2处,排气音的声压级(dB)也显著变高。
例如,当将音速c设定为400m/s时,在四缸发动机的情况下,N=4,故在尾管8的管长L为3.0m的情况下,当发动机转速Ne为2000rpm时,会产生频率66.7Hz的一次成分f1的气柱共鸣,当发动机转速Ne为4000rpm时,会产生频率133.3Hz的二次成分f2的气柱共鸣。
特别是当在发动机1的排气脉动的频率为100Hz以下的低频区域产生气柱共鸣的情况下,噪声成为问题。例如,如上所述,当在发动机1的转速为2000rpm的低转速下在尾管8内产生气柱共鸣时,该气柱共鸣的排气音传递到车厢内,在车厢内产生隆隆声,给驾驶员带来不快感。
因此,对于由气柱共鸣产生的驻波的声压高的波腹的部分,在尾管8的最佳位置设置容量小于主消声器7的容量的副消声器9,由此来防止气柱共鸣的产生。
因而,例如,当将音速c设定为400m/s时,在未设置副消声器9的状态的尾管8的管长L为3.0m的情况下,如上所述在发动机1的排气脉动的频率为100Hz以下(发动机转速Ne为3000rpm以下)产生气柱共鸣。与此相对,当在尾管8夹装有副消声器9而使得从副消声器9朝后方延伸的尾管8的管长为1.5m时,因气柱共鸣而导致的排气音的一次成分f1的频率=133.3Hz、发动机转速Ne为4000rpm,气柱共鸣频率fa过渡至高频侧。
因此,通过在尾管8设置副消声器9,能够抑制在发动机1的转速为2000rpm的低转速下在车厢内产生隆隆声的情况,能够防止给驾驶员带来不快感。
另一方面,考虑废除副消声器9的对策,以减少排气装置4的制造成本、重量。作为该对策,例如,考虑通过使与尾管8的上游开口端8a连接的主消声器7的共鸣频率与气柱共鸣频率一致,而在主消声器7的共鸣室内对尾管8的气柱共鸣的排气音进行消音。
即,基于式(1),考虑通过增大共鸣室7b的容积V、或者加长中部管6的突出部分的长度L1而将共鸣室7b的共鸣频率朝低频侧调谐,由此,利用共鸣室7b预先对在尾管8内产生的气柱共鸣进行消音。
专利文献1:日本特开2006-46121号公报
在这种现有的发动机1的排气装置中,在利用主消声器7的共鸣室7b来降低尾管8的气柱共鸣的结构中,需要增大共鸣室7b的容积V,因此存在主消声器7大型化的问题。并且,伴随着主消声器7的大型化,存在排气装置4的重量增大、并且排气装置4的制造成本升高的问题。
并且,由于当车辆减速时加速器踏板被释放,因此仅形成为从发动机1向排气装置4排出的废气量急剧降低的排气流,被导入到共鸣室7b的空气压力变小。
因此,在共鸣室7b中无法得到进行亥姆霍兹共鸣而需要的充分的空气量,而难以抑制尾管8的气柱共鸣。特别是,由于当车辆减速时发动机1的转速急剧下降,故会在2000rpm左右(因气柱共鸣而导致的排气音的一次成分f1)的低转速下在车厢内产生隆隆声,从而给驾驶员带来不快感。
因而,需要将副消声器9设置在尾管8的最佳位置,来抑制因尾管8的气柱共鸣而导致声压增大,结果,产生了排气装置4的重量增大、并且排气装置4的制造成本升高的问题。
发明内容
本发明是为了解决上述的现有问题而完成的,本发明的课题在于,提供一种内燃机的排气装置,无需在尾管夹装副消声器、或在尾管的上游开口端侧设置具有大容量的共鸣室的消音器,就能抑制因尾管的气柱共鸣而导致声压级增大的情况,能够降低重量,并且能够降低制造成本、设置空间。
为了解决上述课题,本发明所涉及的内燃机的排气装置的特征在于,该内燃机的排气装置具备排气管,该排气管在一端部具有与从内燃机排出的废气的排气方向上游侧的消音器连接的上游开口端,在另一端部具有用于将上述废气向大气排出的下游开口端,其中,上述排气管的上述排气方向上游侧以及上述排气方向下游侧的至少一方具有扩径构造,该扩径构造是随着趋向上述上游开口端以及上述下游开口端中的任一方而直径扩大的构造,在上述扩径构造的内部与上述废气的排气方向相对地设置有板,该板形成有沿上述废气的排气方向贯通的开口部以及遮蔽上述排气管的口的闭口部,上述板设置成,使得由上述开口部生成的开口端反射波与由上述闭口部生成的闭口端反射波发生干涉。
在该排气装置中,排气管的排气方向上游侧以及排气方向下游侧的至少一方具有随着趋向上游开口端以及下游开口端中的任一方而直径扩大的扩径构造,在扩径构造的内部设置有形成有开口部的板,使由开口部生成的开口端反射波与由闭口部生成的闭口端反射波发生干涉,因此,能够利用扩径构造抑制因内燃机工作而产生脉动的废气流入排气管内而产生的排气音在排气管内部反射,并且,当排气音的频率与排气管的气柱共鸣频率一致时,相位与排气音的入射波的相位相同且从开口部反射的开口端反射波、和相位与入射波的相位错开180°且从板反射的闭口端反射波发生干涉而抵消,能够抑制排气音的声压级。
这样,能够抑制排气管发生气柱共鸣,能够抑制因排气管的气柱共鸣而导致声压级增大,因此,尤其能够消除作为现有问题存在的当内燃机处于低速旋转时在车厢内所产生的隆隆声。
结果,无需像以往那样使相当于主消声器的消音器大型化、或在排气管夹装副消声器,能够防止排气装置的重量增大、能够防止排气装置的制造成本增大、能够减少设置空间。
对于具有上述结构的内燃机的排气装置,优选的是:设置于上述排气管的上述排气方向上游侧以及上述排气方向下游侧的至少一方的上述扩径构造具有指数形状部,上述指数形状部以形成指数曲线的方式随着趋向开口端而扩大直径。
在该排气装置中,设置于排气方向上游侧的扩径构造和设置于排气方向下游侧的扩径构造的至少一方具有指数形状部,因此入射波不会在排气方向上游侧和排气方向下游侧的中途反射,能够可靠地到达板。结果,基于上述开口端反射的反射波和基于闭口端反射的反射波可靠地抵消,能够更可靠地抑制因排气音的反射波而产生的气柱共鸣。在此,指数形状部是指由相对于一变量值而其他变量值确定的指数函数所描绘的曲线。
对于具有上述结构的内燃机的排气装置,优选的是:将上述开口部的开口面积大小设定成上述板的上述开口部与上述闭口部相加的总面积的1/3。
在该排气装置中,板的开口部的面积为包括开口部的面积在内的板的总面积的1/3,因此声波在板处的反射率为0.5,以1∶1的比例产生闭口端反射波与开口端反射波,相位差相差180°从而因干涉而相互抵消的反射波的量相同,能够最大限度地提高声压级的降低效果。
根据本发明,能够提供如下的内燃机的排气装置:无需在尾管夹装副消声器、或在尾管的上游开口端设置具有大容量的共鸣室的消音器,就能抑制因尾管的气柱共鸣而导致声压级增大的情况,能够降低重量,能够降低制造成本,并且能够减少设置空间。
附图说明
图1是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是示出内燃机的排气系统的结构的立体图。
图2是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是以截面示出供尾管连结的消声器的一部分的消声器的立体图。
图3是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是以通过图2的尾管与中部管的中心轴的面切断后的消声器的纵剖视图。
图4是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是尾管的下游开口端的立体图。
图5是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是尾管的下游开口端的主视图。
图6是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是示出图5的A-A截面的剖视图。
图7是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是示出消声器以及尾管内的废气的流动的图。
图8是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是根据利用纵轴示意性地表示粒子速度、利用横轴示意性表示尾管的位置的粒子速度分布,对在尾管内产生的由开口端反射而引起的气柱共鸣的驻波进行说明的图。
图9是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是示出尾管的声压级与发动机转速之间的关系的图。
图10是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是根据利用纵轴示意性地表示粒子速度、利用横轴示意性表示尾管的位置的粒子速度分布,对入射波G在上游开口端被分配为反射波R1、R2的状态进行说明的图。
图11是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是根据利用纵轴示意性地表示粒子速度、利用横轴示意性表示尾管的位置的粒子速度分布,对在尾管内产生的由闭口端反射而引起的气柱共鸣的驻波进行说明的图。
图12是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是利用截面示出供局部结构不同的尾管连结的消声器的一部分的消声器的立体图。
图13是示出本发明所涉及的内燃机的排气装置的第一实施方式的图,是以通过局部结构不同的图12的尾管与中部管的中心轴的面切断后的消声器的纵剖视图。
图14是示出本发明所涉及的内燃机的排气装置的第二实施方式的图,是示出内燃机的排气系统的结构的立体图。
图15是示出本发明所涉及的内燃机的排气装置的第二实施方式的图,是以截面示出供尾管连结的消声器的一部分的消声器的立体图。
图16是示出本发明所涉及的内燃机的排气装置的第二实施方式的图,是以通过图15的尾管与中部管的中心轴的面切断后的消声器的纵剖视图。
图17是示出本发明所涉及的内燃机的排气装置的第二实施方式的图,是尾管的下游开口端的立体图。
图18是示出本发明所涉及的内燃机的排气装置的第二实施方式的图,是尾管的下游开口端的主视图。
图19是示出本发明所涉及的内燃机的排气装置的第二实施方式的图,是示出图18的B-B截面的剖视图。
图20是示出本发明所涉及的内燃机的排气装置的第二实施方式的图,是用于对指数扩径构造进行说明的说明图。
图21是示出本发明所涉及的内燃机的排气装置的第三实施方式的图,是尾管的下游开口端的立体图。
图22是示出本发明所涉及的内燃机的排气装置的第三实施方式的图,是示出图21的截面的剖视图。
图23是示出本发明所涉及的内燃机的排气装置的第三实施方式的图,是对尾管的开口端修正进行说明的示意图。
图24是示出本发明所涉及的内燃机的排气装置的第三实施方式的图,是局部结构不同的尾管的下游开口端的主视图。
图25是示出本发明所涉及的内燃机的排气装置的第四实施方式的图,是尾管的下游开口端的立体图。
图26是示出本发明所涉及的内燃机的排气装置的第四实施方式的图,是示出图25的截面的剖视图。
图27是示出本发明所涉及的内燃机的排气装置的第五实施方式的图,是尾管的下游开口端的立体图。
图28是示出本发明所涉及的内燃机的排气装置的第五实施方式的图,是示出图27的截面的剖视图。
图29是示出本发明所涉及的内燃机的排气装置的第六实施方式的图,是尾管的下游开口端的立体图。
图30是示出本发明所涉及的内燃机的排气装置的第七实施方式的图,是尾管的下游开口端的立体图。
图31是示出本发明所涉及的内燃机的排气装置的第七实施方式的图,是示出图30的截面的剖视图。
图32是示出具备现有的排气装置的排气系统的结构的立体图。
图33是示出具备现有的排气装置的排气系统的图,是连结有两端均形成为开口端的尾管的消声器的纵剖视图。
具体实施方式
以下,参照附图对本发明所涉及的内燃机的排气装置的第一实施方式~第七实施方式进行说明。
(第一实施方式)
图1~图13是示出本发明所涉及的内燃机的排气装置的第一实施方式的图。首先,对结构进行说明。
如图1所示,本实施方式所涉及的排气装置20适用于作为直列四缸内燃机的发动机21,与连接于该发动机21的排气歧管22连接。在该排气装置20中,从发动机21排出的废气被净化,排气音被抑制,而后废气被向大气排出。
另外,发动机21并不局限于直列四缸,也可以是直列三缸或者直列五缸以上,也可以是在被左右离开开的各汽缸组(bank)具有三个以上的气缸的V型发动机。
排气歧管22构成为包括:四个排气支管22a、22b、22c、22d,其分别连接于分别与发动机21的第一缸~第四缸连通的排气口;以及排气集合管22e,其使排气支管22a、22b、22c、22d的下游侧汇合,从发动机21的各气缸被排出的废气经排气支管22a、22b、22c、22d被导入到排气集合管22e。
排气装置20具备催化转换器24、圆筒状的前部管25、圆筒状的中部管26、作为消音器的消声器27以及圆筒状的作为排气管的尾管28。该排气装置20形成为在车体的地板下面弹性地垂下,并被设置于发动机21的废气的排气方向下游侧。即,排气方向下游侧或者上游侧表示从发动机21被排出的废气在排气装置20内流动的方向的上游侧,排气方向下游侧或者下游侧表示废气在排气装置20内流动的方向上的废气的下游侧、即与上游侧相反的方向。
催化转换器24的上游侧的端部与排气集合管22e的下游侧的端部连接,催化转换器24的下游侧的端部经万向接头29与前部管25连接。该催化转换器24构成为在主体壳体内收纳有使白金、钯等催化剂附着于蜂窝状基材或者粒状的活性氧化铝制载体而成的部件,进行NOx的还原、CO、HC的氧化。
万向接头29由球节等球面接头构成,允许催化转换器24与前部管25之间的相对位移。并且,前部管25的下游侧的端部经万向接头30与中部管26的上游侧的端部连接。万向接头30由球节等球面接头构成,允许前部管25与中部管26之间的相对位移。
中部管26的下游侧的端部与消声器27连接,该消声器27用于消除排气音。
如图2、图3所示,消声器27具备:形成为中空筒状的外壳31;封闭外壳31的两端的端板32、33;以及夹装在端板32与端板33之间的分隔板34。外壳31、端板32、33以及分隔板34构成消音器主体。
本第一实施方式所涉及的消声器27构成本发明所涉及的内燃机的排气装置的消音器。
设置于外壳31内的分隔板34将外壳31内部划分为:扩张室35,该扩张室35用于使废气扩张;以及共鸣室36,该共鸣室36用于利用亥姆霍兹共鸣来消除特定频率的排气音。并且,在端板32与分隔板34分别形成插通孔32a、34a,中部管26的下游侧的端部、即中部管26中的由被收纳于消声器27的内部的部分构成的入口管部26A插通于该插通孔32a、34a。
该入口管部26A被收纳于扩张室35以及共鸣室36,并由端板32以及分隔板34支承,作为下游开口端的下游开口端26b在共鸣室36开口。
并且,在入口管部26A上、在入口管部26A的延伸方向(废气的排气方向)以及周方向形成有多个小孔26a,入口管部26A的内部与扩张室35经由小孔26a连通。
因而,经中部管26的入口管部26A被导入到消声器27的废气,经由小孔26a被导入到扩张室35,并且从入口管部26A的下游开口端26b被导入到共鸣室36。
进而,对于被导入到共鸣室36的废气,利用亥姆霍兹共鸣来消除特定频率(Hz)的排气音。
即,当将入口管部26A的突出到共鸣室36的突出部分的长度设定为L1(m)、将入口管部26A的截面积设定为S(m2)、将共鸣室36的容积设定为V(m3)、将空气中的音速设定为c(m/s)时,空气中的共鸣频率fb(Hz)由与亥姆霍兹共鸣有关的下述的式(4)求得。
f b = c 2 π S L 1 · V . . . . . . . . . . ( 4 )
根据式(4)可知,通过减小共鸣室36的容积V、缩短入口管部26A的突出部分的长度L1、或者增大入口管部26A的截面积S,能够将共鸣频率朝高频侧调谐。并且,通过增大共鸣室36的容积V、加长入口管部26A的突出部分的长度L1、或者减小入口管部26A的截面积S,能够将共鸣频率朝低频侧调谐。
另一方面,在分隔板34与端板33分别形成有插通孔34b、33a,尾管28的上游侧的端部、即尾管28中的由收纳于消声器27的内部的部分构成的出口管部28A插通于该插通孔34b、33a。
尾管28由圆筒状的管构成,在出口管部28A的上游侧的端部设置有上游开口端28a。并且,如图3所示,在尾管28的下游侧的端部设置有下游开口端28b,该下游开口端28b与上游开口端28a隔开距离L设置。并且,出口管部28A以上游开口端28a在扩张室35开口的方式插通于插通孔34b、33a,由此,该出口管部28A与消声器27连接。
如图4、图5以及图6所示,在该尾管28的排气方向下游侧设置有扩径构造38,并且与废气的排气方向相对地设置板41,上述扩径构造是随着趋向开口端的外侧而直径扩大的构造。
如图6所示,该扩径构造38具备:基端部38a,其具有与尾管28的内径相同的内径D1,且与尾管28连接;末端部38b,其具有大于内径D1的内径D2,且与基端部38a相对;以及圆锥部38c,其形成在基端部38a与末端部38b之间,且随着从基端部38a靠近末端部38b而内径从D1向D2逐渐增大。
圆锥部38c形成为:使得直线La与直线Lb之间的夹角为θ,上述直线La连结基端部38a的内周上的点Pa与末端部38b的内周上的点Pb,上述直线Lb与尾管28的内周部28c相切,通过点Pa且沿尾管28的轴线方向延伸。
因而,点Pa与点Pb之间的在轴线方向上的距离L2由下式(5)表示。
L 2 = D 2 - D 1 2 tan θ . . . . . . . . . . ( 5 )
已知:通常情况下,通过截面积恒定的管内部的声波呈平面波而行进,但当该截面积变化时,将在该变化的部分产生声波的反射。
然而,即便在该截面积变化的情况下,如果该变化的部分具备上述的圆锥部38c,则当排气音入射至尾管28且该入射波经过圆锥部38c之际,排气音的平面波的变化被抑制,圆锥部38c内的反射被抑制。
在此,内径D1、内径D2以及夹角θ基于本第一实施方式所涉及的排气装置20所被应用的车辆的设计诸元、仿真、实验或经验值等数据适当选择。另外,对连结基端部38a的内周上的点Pa与末端部38b的内周上的点Pb的线为直线La的情况进行了说明,但亦可由形成为平缓的凹形状的具有大曲率半径的曲线来构成连结该基端部38a的内周上的点Pa与末端部38b的内周上的点Pb的线。
板41具备:外周部41a,该外周部41a的外径与扩径构造38的末端部38b的内径D2几乎相同;以及侧面部41b,该侧面部41b与在尾管28内流动的废气的排气方向相对。在该侧面部41b形成有直径与内径D1几乎相同的直径为D3的圆形的贯通孔,利用该贯通孔构成板41的开口部41d。因而,该侧面部41b具备该开口部41d和由该开口部41d以外的部分构成的闭口部41e,废气从该开口部41d被向大气排出。
在此,该板41设置成与在尾管28内流动的废气的排气方向相对,更具体地说,以与尾管28的轴线方向正交的方式安装于尾管28。并且,板41以外周部41a与尾管28的内周部28c密接的方式安装于尾管28。在此,板41相对尾管28的安装方法优选为接合或压合等固定方法。另外,亦可替代上述安装方法而通过拉深加工等一体形成方法进行加工。
板41以侧面部41b的位于排气方向上游侧的反射面部41f从尾管28的下游开口端28b离开距离L3的方式利用外周部41a被设置于尾管28的内周部28c。经过扩径构造38后的排气音维持平面波的状态而达到该反射面部41f。
在该板41的侧面部41b中,对于入射到尾管28的入射波,利用开口部41d进行所谓的开口端反射,利用闭口部41e进行所谓的闭口端反射。即,利用板41的反射面部41f进行排气音的反射。
在该情况下,由开口部41d以及闭口部41e分别进行的开口端反射以及闭口端反射而形成的反射波相互抵消,结果,因相互的干涉效果,反射音的声压级降低。另外,反射面部41f由对排气音的入射波、反射波进行反射的面构成,由开口部41d以及闭口部41e的一部分构成。
为了得到该反射音的最佳消音效果,当将图5所示的开口部41d的开口面积设定为S2(m2)、将包含板41的开口部41d的面积在内的侧面部41b的总面积设定为S1(m2)时,以满足下式(6)的方式来形成该开口部41d。
Figure BDA0000139008030000131
式(6)可按下述方式导出。即,为了得到反射音的最佳消音效果,当将开口部41d的排气音的粒子速度的反射率设定为Rv1,将开口部41d的排气音的粒子速度的透射率设定为Tv1,将闭口部41e的排气音的粒子速度的反射率设定为Rv2时,为使(Rv1×Tv1)与Rv2重叠,只要使它们正负相反且大小相等即可。即,使(Rv1×Tv1)+Rv2=0即可。
在此,当将尾管28的内部的介质的固有声阻抗设定为Z1,将尾管28的板41的开口部41d附近的介质的固有声阻抗设定为Z2,将尾管28的外部的下游开口端28b附近、即大气侧的介质的固有声阻抗设定为Z3,将与大气连通侧的开口面积S2相对的面积设定为S3时,反射率Rv1,透射率Tv1以及反射率Rv2分别由下式(7)、(8)、(9)表示。
Rv 1 = Z 3 S 3 - Z 2 S 2 Z 2 S 2 + Z 3 S 3 . . . . . . . . . . ( 7 )
Tv 1 = 2 Z 2 S 2 Z 1 S 1 + Z 2 S 2 . . . . . . . . . . ( 8 )
Rv 2 = Z 2 S 2 - Z 1 S 1 Z 1 S 1 + Z 2 S 2 . . . . . . . . . . ( 9 )
因此,(Rv1×Tv1)+Rv2=0如下表示。
Z 3 S 3 - Z 2 S 2 Z 2 S 2 + Z 3 S 3 × 2 Z 2 S 2 Z 1 S 1 + Z 2 S 2 + Z 2 S 2 - Z 1 S 1 Z 1 S 1 + Z 2 S 2 0 . . . . . . . . . . ( 10 )
在此,由于固有声阻抗由介质的密度ρ(Kg/m3)与音速c(m/s)的积表示,因此为Z1=ρ1c1,Z2=ρ2c2,Z3=ρ3c3。进而,尾管28的内部的介质ρ1以及音速c1、尾管28的板41的开口部41d附近的介质ρ2、尾管28的外部的下游开口端28b附近、即大气侧的介质ρ3均为废气。另外,当发动机21在不喷射燃料的状态下旋转时,均为空气。由于在均为废气以及空气的情况下,ρ1c1=ρ2c2=ρ3c3,因此Z1=Z2=Z3,式(10)由下式(11)表示。
S 1 = S 2 + 2 S 2 ( S 3 - S 2 ) S 2 + S 3 . . . . . . . . . . ( 11 )
在此,由于面积S3与大气连通,故其面积S3为∞,即无穷大。因而,当使式(11)的面积S3为∞而进行计算时,得到前式(6)。
其次,对排气装置20的作用以及气柱共鸣的产生原因进行说明。
当排气装置20的上游侧的发动机21起动时,从发动机21的各气缸排出的废气从排气歧管22被导入到催化转换器24,利用催化转换器24来进行NOx的还原、CO、HC的氧化。
由催化转换器24净化并排出的废气经前部管25以及中部管26被导入到排气装置20的消声器27。如图7的箭头所示,被导入到消声器27的废气经入口管部26A的小孔26a被导入到扩张室35,并且从入口管部26A的下游开口端26b被导入到共鸣室36。
被导入到扩张室35后的废气经出口管部28A的上游开口端28a而被导入到尾管28,然后,经设置于尾管28的下游开口端28b的扩径构造38的末端部38b的板41的开口部41d被排出到大气。通过形成扩径构造38,设置在该下游开口端28b侧的板41的内径D2大于尾管28的内径D1,板41的开口部41d的内径D3具有与尾管28的内径D1同等的大小,因此,当废气经过开口部41d之际,废气顺利地通过,能够抑制废气的背压升高的现象。
由于发动机21运转时由发动机21的各爆发气缸激起的排气脉动,从各爆发气缸产生根据发动机21的转速(rpm)而变化的频率(Hz)的排气音。随着发动机21的转速增大,该排气音的频率变大,且该排气音以废气作为介质经排气歧管22、催化转换器24、前部管25以及中部管26入射到消声器27的入口管部26A。
入射到入口管部26A的排气音经入口管部26A的小孔26a进入扩张室35并扩张,排气音的声压级遍及整个频带都被降低。并且,入射到入口管部26A的排气音从下游开口端26b进入共鸣室36。对于进入共鸣室36的排气音,借助亥姆霍兹共鸣,设定的特定频率的排气音被消除。
并且,进入到扩张室35的排气音入射到尾管28,该入射波由尾管28的下游开口端28b的板41反射而成为反射波。
在此,通过在下游开口端28b侧形成扩径构造38,包含板41的开口部41d的面积在内的侧面部41b的总面积S1大于尾管28的截面积,但由于扩径构造38具有前述的圆锥部38c,因此能够抑制排气音在扩径构造38内反射。
因而,入射到尾管28的排气音在经过扩径构造38内部之际不发生反射,能够可靠地到达板41的反射面部41f。
并且,基于开口端反射的反射波与基于闭口端反射的反射波发生干涉而相互抵消,并且,基于开口端反射的反射波以及基于闭口端反射的反射波在尾管28的上游开口端28a进一步反射并与入射波相同地朝下游开口端28b方向分别行进,与入射波相同由板41再次反射。反复进行这样的反射,从而产生驻波。
本来认为:在管的开口端那样具有相同介质的介质彼此的边界,介质是相同的,声波能够透射而不会反射。然而,在尾管28那样的相对于排气音的波长具有充分小的截面尺寸的管内行进的排气音形成为由纵波构成的平面波,在下游开口端28b以及上游开口端28a反射。
在下游开口端28b发生开口端反射的原因如下。即,在尾管28内流动的废气的压力高,尾管28的下游开口端28b外侧的大气压比在尾管28内流动的废气的压力低。因此,入射波从下游开口端28b趋势良好地向大气飞出,由此产生下游开口端28b内的废气的压力变低的低压部,该低压部分在尾管28内开始朝上游开口端28a行进。
因而,反射波形成为与入射波相反方向的平面波,并朝与入射波相反的方向行进。并且,在上游开口端28a侧产生反射波的原因也与在下游开口端28b产生反射波的原因相同。
进而,朝向下游开口端28b的开口部41d的入射波、和朝向远离下游开口端28b的开口部41d的方向的第一反射波发生干涉。此外,第一反射波在上游开口端28a的开口反射,形成为朝向开口部41d的第二反射波,该第二反射波、第一反射波以及入射波在上游开口端28a与下游开口端28b之间反复行进,彼此发生干涉。
这样,入射波反复反射,由此,能够在尾管28的上游开口端28a的开口与下游开口端28b的开口部41d之间形成驻波。
并且,当尾管28的管长L与驻波的波长λ处于特定关系时,该驻波形成为尾管28的上游开口端28a的开口以及下游开口端28b的开口部41d分别成为粒子速度的波腹的驻波,在该情况下,振幅显著变大,产生气柱共鸣。对于该气柱共鸣,以尾管28的管长L作为半波长的频率为基本频率,产生该基本频率的自然数倍的频率的气柱共鸣,产生波长为利用基本波长除以自然数而得的长度的波长的气柱共鸣,声压显著增大,从而形成噪声。
具体地说,如图8所示的气柱共鸣的驻波的粒子速度分布那样,由排气音的基本振动构成的一次成分的气柱共鸣的波长λ1为尾管28的管长L的大致2倍,基本振动的二倍的二次成分的气柱共鸣的波长λ2为管长L的大致1倍。并且,基本振动的三倍的三次成分的气柱共鸣的波长λ3为管长L的2/3倍,从图8可知,对于各个驻波,尾管28的上游开口端28a以及下游开口端28b形成粒子速度的波腹,粒子速度最大。
并且,对于排气音的一次成分至三次成分的气柱共鸣的驻波的声压分布,如图8所示,粒子速度分布的波腹与波节分别相反,尾管28的上游开口端28a以及下游开口端28b形成声压的波节,声压为0。
此外,如图9所示,伴随着发动机转速Ne(rpm)增大,排气音的声压级(dB)在与一次成分f1、二次成分f2的共鸣频率(Hz)对应的发动机转速Ne处增大。
在此,将音速设定为c(m/s)、将尾管28的长度设定为L(m)、将次数设定为n时的气柱共鸣频率fc(Hz)由下面的式(12)表示。
fc = c 2 L n . . . . . . . . . . ( 12 )
在将音速c设定为400m/s、将尾管28的管长L设定为3.0m的情况下,基于上述式(12),基于尾管28的气柱共鸣的排气音的一次成分f1为66.7Hz,二次成分f2为133.3Hz,在与发动机21的转速对应的基于气柱共鸣的共鸣频率的一次成分f1与二次成分f2处,排气音的声压级(dB)变高。
并且,在本第一实施方式中,由于发动机21为四缸,故在上述式(3)中,N=4,当发动机转速Ne为2000rpm时,因一次成分f1的气柱共鸣,排气音的声压级(dB)增大,当发动机转速Ne为4000rpm时,因二次成分f2的气柱共鸣,排气音的声压级(dB)增大。
特别是,在排气音的一次成分f1的气柱共鸣那样的100Hz以下的低频的低速旋转区域中,在车厢内产生隆隆声,从而给驾驶员带来不快感。在三次成分的气柱共鸣频率处,发动机转速Ne为6000rpm,在四次成分的气柱共鸣频率处,发动机转速Ne为8000rpm,虽也会像这样产生多次成分的气柱共鸣频率,但驾驶者不会注意到由这种气柱共鸣引起的噪声,故在图9中,对三次成分以上的多次成分不进行图示。
在本第一实施方式所涉及的排气装置中,当发动机转速Ne为低转速的2000rpm(一次成分f1)以及中转速的4000rpm(二次成分f2)时,能够可靠地抑制在现有的尾管中因产生气柱共鸣而导致的声压级(dB)的增大。
其次,对能够抑制因气柱共鸣而导致的声压级增大的原因进行说明。
如上所述,利用板41的开口部41d对入射到尾管28的入射波进行开口端反射,利用闭口部41e进行闭口端反射。换言之,利用板41的反射面部41f进行开口端反射以及闭口端反射。
具体地说,入射波被分配为:以与入射波相同的相位在占据板41的包含开口部41d的面积在内的侧面部41b的总面积S1的约33%的开口部41d反射的基于开口端反射的反射波;以及相位与入射波的相位相差180°、在占据上述总面积S1的约67%的板41的侧面部41b的闭口部41e反射的基于闭口端反射的反射波。在开口部41d以及闭口部41e分配的基于开口端反射的反射波以及基于闭口端反射的反射波相互抵消,结果,反射音的声压级降低,能够抑制因气柱共鸣而导致声压级(dB)增大。
在该情况下,为了得到该反射音的最佳的消音效果,如上所述,板41处的对入射的排气音的反射率Rp被设定为0.5,以使得开口端反射与闭口端反射的分配的比例为一半一半。为了使该反射率Rp为0.5,开口部41d形成为:图5所示的开口部41d的开口面积S2(m2)、与包含板41的开口部41d的面积在内的侧面部41b的总面积S1(m2),如上述的式(6)所示,满足的关系。
首先,参照图10,对基于发动机21运转时的排气脉动的排气音的入射波G入射到管28内、且该入射波G是以尾管28的管长L为半波长的入射波G的情况,即对开口端反射进行说明。
当入射波G的频率与尾管28所具有的气柱共鸣频率一致时,如图10所示,入射波G的一部分从设置于尾管28的下游开口端28b的板41的开口部41d透射而形成透射波G1并进入到大气中。另一方面,在板41的开口部41d发生上述的开口端反射,开口部41d处的入射波G形成由实线所示的反射波R1并朝远离板41的方向行进。
该反射波R1形成为:其相位与入射波G的相位相同。即,沿着尾管28内的狭窄的气柱传递来的密或疏的废气、空气的群一旦到达开口部41d处的与大气的广阔空间的边界,就一气地膨胀,借助其惯性,在原本为密部的位置形成疏部,该疏部成为新的波源,反射波R1使气柱朝此前行进的方向折返,由于密部成为疏部、疏部成为密部,故入射波G的相位保持原样而成为反射波R1的相位,反射波R1的相位与入射波G的相位相同。
这样,由于入射波G的相位与反射波R1的相位相同,故本来该反射波R1与入射波G在同一直线重叠,但为了方便说明,在图10中,使反射波R1相对于入射波G朝下方偏移。
另一方面,在设置于尾管28的下游开口端28b侧的板41的闭口部41e处发生上述的闭口端反射,闭口部41e处的入射波G形成由虚线表示的反射波R2并朝远离板41的方向行进。
该反射波R2的相位与入射波G的相位相反,其相位与反射波R1的相位错开180°。即,沿着尾管28内的狭窄的气柱传递来的密或疏的废气、空气的群,在闭口部41e处与闭口部41e的壁面碰撞而以密部保持为密部、疏部保持为疏部的状态弹回,故入射波G的相位反转,成为反射波R2的相位,反射波R2的相位与入射波G的相位相反。
这样,入射波G的相位与反射波R2的相位相反。本来该反射波R2以相位为0的横线为中心而与入射波G对称,但为了方便说明,在图10中,使反射波R2朝相位0的横线方向偏移,使得反射波R1与反射波R2以相位为0的横线为中心而对称。
虽然该反射波R1的相位与反射波R2的相位相反,但粒子速度的大小是相同的,故以相互抵消的方式发生干涉,在尾管28内的气柱中,不产生气柱共鸣。结果,如图9所示,由气柱共鸣引起的排气音的以虚线所示的一次成分f1如由实线所示那样被抑制,排气音的声压级被大幅降低。
并且,对于以一次成分f1为基本振动的二次成分f2的气柱共鸣,与图10相同,从尾管28的下游开口端28b反射的反射波被分配为:相位与入射波G的相位相同的在开口部41d反射的反射波R1、和相位与入射波G的相位错开180°的在闭口部41e反射的反射波R2,反射波R1与反射波R2以相互抵消的方式发生干涉。结果,如图9所示,由气柱共鸣引起的排气音的以虚线所示的二次成分f2如由实线所示那样被抑制,排气音的声压级被大幅降低。
其次,对由发动机21运转时的排气脉动引起的入射波G入射到尾管28内,且该入射波G的波长为以尾管28的管长L的1/4波长为基本波长的入射波G的情况进行说明。
如图8所示,开口端反射以将尾管28的管长L作为半波长的频率为基本频率,产生利用此时的基本波长除以自然数而得的波长的气柱共鸣。
与此相对,如图11所示,闭口端反射以将尾管28的管长L作为1/4波长的频率的气柱共鸣为基本成分,产生利用此时的基本波长除以奇数而得的波长的气柱共鸣,从尾管28的开口端入射到管内的入射波在闭口端以与入射波的相位错开180°的相位进行反射。
具体地说,如图11所示,由基本振动构成的一次成分的气柱共鸣的波长λ1为尾管28的管长L的大致4倍,二次成分的气柱共鸣的波长λ2为管长L的大致4/3倍。并且,三次成分的气柱共鸣的波长λ3为管长L的4/5倍,能够形成闭口端为粒子速度的波节、开口端为粒子速度的波腹的驻波。
并且,一次成分至三次成分的气柱共鸣的驻波中的声压分布的波腹与波节分别与粒子速度分布相反,能够形成闭口端为声压的波腹、开口端为声压的波节的驻波。
即便在入射波G是波长以尾管28的管长L的1/4波长为基本波长的入射波G的情况下,也与入射波G是波长以尾管28的管长L的半波长为基本波长的入射波G的情况相同,会因共鸣频率而导致排气音的声压级(dB)增大。
即,与图9所示的曲线图相同,伴随着发动机转速Ne(rpm)增大,排气音的声压级(dB)在与一次成分f1、二次成分f2的共鸣频率(Hz)对应的发动机转速Ne处增大。
在此,将音速设定为c(m/s)、将尾管28的长度设定为L(m)、将次数设定为n时的气柱共鸣频率fd(Hz)由下面的式(13)表示。
fd = c 4 L ( 2 n - 1 ) . . . . . . . . . . ( 13 )
在将音速c设定为400m/s、将尾管28的管长L设定为3.0m的情况下,基于上述式(13),由尾管28的气柱共鸣导致的排气音的一次成分f1为33.3Hz,二次成分f2为100Hz,在与发动机21的转速对应的由气柱共鸣导致的共鸣频率的一次成分f1与二次成分f2处,排气音的声压级(dB)变高。
并且,在本第一实施方式中,由于发动机21为四缸,故在上述的式(3)中,N=4,当发动机转速Ne为1000rpm时,因一次成分f1的气柱共鸣而导致排气音的声压级(dB)增大,当发动机转速Ne为3000rpm时,因二次成分f2的气柱共鸣而导致排气音的声压级(dB)增大。
在本第一实施方式中,当因发动机21运转时的排气脉动而以尾管28的管长L为1/4波长的入射波G入射到尾管28内时,该入射波G的频率与尾管28的气柱共鸣频率一致。
此时,从尾管28的下游开口端28b反射的反射波被分配为:相位与入射波G的相位相同、因开口部41d的开口端反射而产生的反射波R1;以及相位与入射波G的相位错开180°、因闭口部41e的闭口端反射而产生的反射波R2
虽然该反射波R1与反射波R2的相位相反,但粒子速度的大小是相同的,故反射波R1与反射波R2以相互抵消的方式发生干涉,由气柱共鸣导致的排气音的一次成分f1被抑制,排气音的声压级被大幅降低。
并且,即便对于以一次成分f1为基本振动的二次成分f2的气柱共鸣,与图10相同,从尾管28的下游开口端28b反射的反射波被分配为:相位与入射波G的相位相同、在板41的开口部41d反射的反射波R1;以及相位与入射波G的相位错开180°、在板41的闭口部41e反射的反射波R2。此时,反射波R1与反射波R2相互抵消,因气柱共鸣而导致的排气音的二次成分f2被抑制,排气音的声压级被大幅降低。
本第一实施方式所涉及的排气装置20的消声器27的长度(mm)、外形的大小(mm)以及共鸣室、扩张室的个数,入口管部26A以及尾管28的内径(mm)、厚度(mm)以及长度(mm),板41的厚度(mm),包含板41的开口部41d的面积在内的侧面部41b的总面积S1、开口面积S2、距离L(mm)、L1(mm)、L2(mm)、L3(mm),均基于适用本第一实施方式所涉及的排气装置20的车辆的设计诸元、仿真、实验、经验值等数据而适当选择。
在本第一实施方式所涉及的内燃机的排气装置20中,由于以上述方式构成,故能得到下述的效果。
即,本第一实施方式所涉及的内燃机的排气装置20具备将从发动机21排出的废气排出至大气的尾管28。进而,该尾管28具有上游开口端28a和下游开口端28b,上述上游开口端28a与废气的排气方向上游侧的消声器27连接,上述下游开口端28b位于比消声器27靠下游侧的位置,用于将废气向大气排出。在该尾管28的排气方向下游侧设置有扩径构造38,该扩径构造是随着趋向下游开口端28b而直径扩大的构造,并且,在该扩径构造38的内部与废气的排气方向相对地设置有板41,该板41形成有沿排气方向贯通该板41的一个开口部41d。进而,该开口部41d的开口面积S2设定成包含板41的开口部41d的面积在内的侧面部41b的总面积S1的约1/3。进而,在该扩径构造38形成有圆锥部38c。
结果,由于在尾管28的下游侧设置有扩径构造38,因此能够增大形成于板41的开口部41d的开口面积S2。进而,由于在该扩径构造38形成有圆锥部38c,因此可得到如下效果:入射到尾管28的排气音不会在该扩径构造38发生反射,能够可靠地到达板41的反射面部41f。
进而,由于在板41形成有开口部41d,因此利用板41在下游开口端28b不仅限定出开口部41d,还限定出闭口部41e。
若如此在下游开口端28b也限定出闭口部41e,则当因发动机21运转时的排气脉动而产生的入射波入射到尾管28内并到达下游开口端28b之际,能够将从尾管28的下游开口端28b反射的反射波按照如下方式进行分配。
即,被分配为:相位与入射波的相位相同、且从开口部41d反射的所谓的基于开口端反射的反射波;和相位与入射波的相位错开180°、且从闭口部41e反射的所谓的基于闭口端反射的反射波。
因此,基于开口端反射的反射波与基于闭口端反射的反射波发生干涉而相互抵消,由此能够抑制因尾管28的气柱共鸣导致声压级增大的现象,能够得到高消音效果。
特别是,当该入射波的频率与尾管28的固有的气柱共鸣频率一致时,可得到如下效果:基于开口端反射的反射波与基于闭口端反射的反射波之间的干涉效果变得明显,能够抑制尾管28产生气柱共鸣。
当如此在尾管28的下游开口端28b侧设置有具有开口部41d的板41时,可抑制因尾管28的气柱共鸣而导致声压增大。特别是,能够得到如下效果:防止当发动机21处于低转速时在车厢内产生隆隆声。
并且,由于无需像以往那样使与主消声器相当的消音器大型化,或在尾管28夹装副消声器,形成为仅在尾管28设置板41的简单构造,因此能够得到如下效果:能够防止排气装置的重量的增大,并防止排气装置的制造成本的增大,减少设置空间。
特别是,能够将开口部41d的开口面积S2设定成包含板41的侧面的开口部41d的面积在内的侧面部41b的总面积S1的约1/3,即将尾管28的下游开口端28b的开口率设定为约33%。在该情况下,当因发动机21运转时的排气脉动而产生的入射波入射到尾管28内并到达下游开口端28b之际,能够如下述那样有效地分配从尾管28的下游开口端28b反射的反射波。
即,能够分配为:相位与入射波的相位相同、且从占总面积的约33%的开口部41d反射的基于开口端反射的反射波;和相位与入射波的相位错开180°、且从占前述的总面积的约67%的闭口部41e反射的基于闭口端反射的反射波。
因此,基于开口端反射的反射波与基于闭口端反射的反射波相互可靠地发生干涉而相互抵消,由此能够得到能够抑制因尾管28的气柱共鸣而导致声压增大的效果。因而能够得到高消音效果。
当该入射波的频率与尾管的固有的气柱共鸣频率一致时,可得到如下效果:基于开口端反射的反射波与基于闭口端反射的反射波之间的干涉效果变得明显,能够进一步抑制尾管28产生气柱共鸣。
在本第一实施方式所涉及的排气装置20中,以将尾管28的管长L作为半波长的波长设定为基本波长,即便在产生以该基本波长除以自然数而得的长度的波长的气柱共鸣的情况下,也能够得到如下效果:能够抑制因尾管28的气柱共鸣而导致声压增大,并且能够防止在发动机21处于低转速时(2000rpm)在车厢内产生隆隆声。
并且,以将尾管28的管长L作为1/4波长的波长设定为基本波长,即便在产生以该基本波长除以奇数而得的长度的波长的气柱共鸣的情况下,也能够抑制因尾管28的气柱共鸣而导致声压增大,并且能够防止在发动机21处于低转速时(1000rpm)在车厢内产生隆隆声。
即,在本第一实施方式所涉及的排气装置20中,由于将下游开口端28b的开口率设定为33%,因此会产生如下的两个反射模式:完全开口端的反射模式,其中,以将尾管28的管长L作为半波长的波长设定为基本波长,具有以该基本波长除以自然数而得的长度的波长的气柱共鸣的驻波;以及完全闭口端的反射模式,以将尾管28的管长L作为1/4波长的波长设定为基本波长,具有以该基本波长除以奇数而得的长度的波长的气柱共鸣的驻波。
然而,无论在产生哪种反射模式的情况下,都能够产生如下效果:能够如图10所示那样使反射波R1与反射波R2相互抵消,能够大幅降低由气柱共鸣导致的排气音的声压级。因而,能够得到高消音效果。尤其能够得到如下效果:在任何反射模式下都能够可靠地抑制在发动机21的低转速区域中尾管28产生气柱共鸣。
并且,在本第一实施方式所涉及的排气装置20中,对于仅在尾管28的下游开口端28b设置扩径构造38以及板41的情况进行了说明。然而,亦可形成为仅在尾管28的下游开口端28b设置扩径构造38以及板41的构造以外的构造。
例如,如图12以及图13所示,亦可是在尾管28的上游开口端28a以及下游开口端28b双方设置扩径构造38以及板41的构造。并且,亦可是仅在尾管28的上游开口端28a设置扩径构造38以及板41的构造。
在这样的在尾管28的上游开口端28a以及下游开口端28b双方设置扩径构造38以及板41的构造中、以及仅在尾管28的上游开口端28a设置扩径构造38以及板41的构造中,也能够得到与上述相同的作用效果。
(第二实施方式)
如图14~图20所示,本第二实施方式所涉及的排气装置60与第一实施方式的排气装置20以相同方式构成。
另外,在第二实施方式所涉及的排气装置60中,与第一实施方式所涉及的排气装置20的消声器27的尾管28不同,其他的结构要素均以相同方式构成。因而,对于相同的结构,使用与图1~图13所示的第一实施方式相同的附图标记进行说明,特别是仅对不同点进行详细描述。
首先,对结构进行说明。
如图14所示,本第二实施方式所涉及的排气装置60与第一实施方式相同,适用于发动机21,仅构成排气装置60的尾管68与第一实施方式不同。
如图15以及图16所示,尾管68由圆筒状的管构成,在出口管部68A的上游侧的端部设置上游开口端68a,在尾管68的下游侧的端部设置下游开口端68b,如图16所示,下游开口端68b与上游开口端68a隔开距离L设置。并且,出口管部68A以上游开口端68a在扩张室35开口的方式插通于插通孔34b、33a,由此与消声器27连接。
如图17、图18以及图19所示,在该尾管68的下游开口端68b设置有扩径构造78,并且,与废气的排气方向相对地设置板41,上述扩径构造78是随着趋向该下游开口端68b的外侧而直径扩大的构造。
如图19以及图20所示,该扩径构造78具备:基端部78a,其内径D1与尾管68的内径相同;末端部78b,其内径D4大于内径D1;以及指数形状部78c,其形成在基端部78a与末端部78b之间,且截面形状形成为随着从基端部78a趋向末端部78b而沿指数曲线扩大直径。
在指数形状部78c中,连结基端部78a的内周上的点Ea、与末端部78b的内周上的点Eb的曲线Ec形成为指数曲线。在此,将通过点Ea的截面积设定为S0,将通过点Ea而与尾管68正交的基准线设定为L0,将该位置设定为x=0。
并且,将通过点Eb的指数形状部78c的截面积设定为SL,将通过点Eb而与尾管68正交的基准线设定为LL,将该位置设定为x=L,x为从x=0到x=L之间的任意点到x=0的距离,ε为常量,m为指数形状部78c的截面积Sx的增加率,m由基于自然对数的下式(14)表示。在该情况下,基于该指数曲线的x的位置处的截面积Sx由下式(15)的指数函数表示。并且,Ln表示以常量e(2.71828182845904)为底的自然对数。
m = ( 1 L ) Ln ( S 1 S 0 ) . . . . . . . . . . ( 14 )
SX=S0εmx……….(15)
在该情况下,扩径后的各截面的中心与尾管68的轴线Lp相同。即,如图20所示,截面积S0的截面、截面积S0的截面、截面积Sx的截面、截面积SL的截面的各自的中心与轴线Lp相同。
由于该扩径构造78具备指数形状部78c,因此当排气音入射至尾管68且该入射波到达板41之际,能够可靠地抑制该入射波在扩径构造78内产生反射的情况。
已知:通常情况下,通过截面积恒定的管内的声波以平面波的形式行进,但当该截面积发生变化时,将在该变化的部分产生声波的反射。
然而,当截面积变化的情况下,若该变化的部分形成为由基于指数曲线的式(15)所表示的指数形状,则截面积Sx将基于0≤x≤L的范围内的位置x的指数曲线变化。
在该情况下,在指数形状部78c内,能够实现几乎理想的平面波传播,经过指数形状部78c内部的入射波不会反射。因而,入射至尾管68的入射波在经过指数形状部78c内部之际不会反射,而以平面波的状态到达板41的反射面部41f。
在此,截面积S0、截面积SL以及距离L可根据应用本第二实施方式所涉及的排气装置60的车辆的设计诸元、仿真、实验或经验值等数据而适当选择。
另外,指数形状部78c不仅可形成为前述的指数函数,亦可形成为由下式(16)所表示的、具有所谓双曲线形状的双曲线形状部。
SX=S0(cosh·mx+Tsinh·mx)……….(16)
在此,cosh表示双曲线余弦,sinh表示双曲线正弦,m表示前式(14)所示的函数,Sx表示基于该双曲线形状的x的位置处的双曲线形状部的截面积,T表示0~∞。
在这种情况下,当双曲线形状部形成为由式(16)所表示的形状时,截面积Sx将基于0≤x≤L的范围内的位置x的函数变化。在这种情况下,在双曲线形状部内,能够实现几乎理想的平面波传播,经过双曲线形状部的内部的入射波不会反射。因而,入射至尾管68的入射波在经过双曲线形状部的内部之际不会反射,而以平面波的状态到达板41的反射面部41f。
其次,对排气装置60的作用以及气柱共鸣的产生原因进行说明。
当排气装置60上游侧的发动机21起动时,从发动机21的各气缸排出的废气与第一实施方式相同,经过设置在扩径构造78的末端部78b的板41的开口部41d被排出至大气。
与第一实施方式相同,通过形成扩径构造78,该下游开口端68b侧的板41的内径D4大于尾管68的内径D1,板41的开口部41d由与尾管68的内径D1同等的内径D3形成,因此,当废气经过开口部41d之际,废气能够顺利通过,能够抑制废气的背压升高。
与第一实施方式相同,由于发动机21运转时由发动机21的各爆发气缸激起的排气脉动,从各爆发气缸产生根据发动机21的转速(rpm)而变化的频率(Hz)的排气音。该排气音入射至入口管部26A。入射至入口管部26A的排气音从下游开口端26b进入共鸣室36。对于进入共鸣室36的排气音,借助亥姆霍兹共鸣,设定的特定频率的排气音被消除。
并且,进入到扩张室35的排气音入射到尾管68,该入射波由尾管68的下游开口端68b的板41反射而成为反射波。
在此,通过在下游开口端68b形成扩径构造78,包含板41的开口部41d的面积在内的侧面部41b的总面积S1大于尾管68的截面积,但由于扩径构造78具有前述的指数形状部78c,入射波在扩径构造78内以几乎完全平面波的形式传播,因此能够抑制排气音反射而无法到达板41的反射面部41f的情况。因而,入射到尾管68的排气音在经过扩径构造78内之际,不会受到因反射而造成的损失,能够可靠地到达板41的反射面部41f。
并且,基于开口端反射的反射波以及基于闭口端反射的反射波发生干涉而相互抵消,并且基于开口端反射的反射波以及基于闭口端反射的反射波在尾管68的上游开口端68a进一步反射并与入射波相同分别朝下游开口端68b的方向行进,并与入射波相同在板41再次反射。重复进行上述的反射。
在本第二实施方式所涉及的内燃机的排气装置60中,由于以上述方式构成,因此能够得到如下的效果。
即,本第二实施方式所涉及的内燃机的排气装置60具备将从发动机21排出的废气朝大气排出的尾管68。进而,该尾管68具有上游开口端68a和下游开口端68b,上述上游开口端连接于位于废气的排气方向上游侧的消声器27,上述下游开口端位于比消声器27靠下游侧的位置,用于将废气向大气排出。
在该下游开口端68b设置有随着趋向外侧而扩径的扩径构造78,并且与废气的排气方向相对地设置有板41,在该板41的与排气方向相对的侧面部41b形成有一个开口部41d。进而,该开口部41d的开口面积S2设定成包含板41的开口部41d的面积在内的侧面部41b的总面积S1的约1/3。在扩径构造38形成有指数形状部78c。
结果,由于在尾管68的下游开口端68b设置有扩径构造78,因此能够增大形成在板41的开口部41d的开口面积S2。进而,由于在该扩径构造78形成有指数形状部78c,因此能够得到如下效果:入射至尾管68内的排气音不会在该扩径构造78发生反射,而是能够以几乎完全平面波的形式可靠地到达板41的反射面部41f。因而,基于开口端反射的反射波与基于闭口端反射的反射波可靠地抵消,能够更可靠地抑制因排气音的反射波而导致发生气柱共鸣。
并且,在本第二实施方式所涉及的排气装置60中,对于仅在尾管68的下游开口端68b设置扩径构造78以及板41的情况进行了说明。然而,亦可是仅在尾管68的下游开口端68b设置扩径构造78以及板41的构造以外的构造。
例如,亦可是在尾管68的上游开口端68a以及下游开口端68b双方设置扩径构造78以及板41的构造。并且,亦可是仅在尾管68的上游开口端68a设置扩径构造78以及板41的构造。
在这样的在尾管68的上游开口端68a以及下游开口端68b双方设置扩径构造78以及板41的构造中、以及仅在尾管68的上游开口端68a设置扩径构造78以及板41的构造中,都能得到与上述相同的作用效果。
(第三实施方式)
图21~图23是示出第三实施方式所涉及的尾管110的图。
如图21所示,第三实施方式所涉及的尾管110在第二实施方式所涉及的排气装置60的尾管68新设置有贯通孔78d。该贯通孔78d是为了对在板41的开口部41d进行的开口端反射中的入射波的反射位置进行修正而设置的,以下,对该开口端修正进行说明。
(开口端修正)
已知:通常情况下,当存在这样的管的开口端反射时,严格来说在管内产生的气柱共鸣中的气柱的长度比由管的两端限定出的实际的管的气柱的长度长。这是因为:在开口端反射的情况下,声波的实际反射位置处于从管离开规定的距离的位置。
例如,如图23所示意性地示出那样,在尾管P内产生的气柱共鸣中的实际的气柱的长度为:比从尾管P的上游开口端a到下游开口端b为止的管长L稍长的气柱的长度Lh。为了正确地把握这样的实际的气柱的长度,通常需要进行被称作开口端修正的长度修正。
具体地说,当将从上游开口端a到向外侧远离的排气音的实际反射位置的距离、以及从下游开口端b起到向外侧远离的排气音的实际反射位置的距离分别设定为ΔL、将尾管P的内径设定为D时,距离ΔL由下式(17)表示。
ΔL = 0.6 D 2 . . . . . . . . . . ( 17 )
因而,考虑开口端修正后的气柱的长度Lh由Lh=L+2ΔL表示。
作为需要进行这样的开口端修正的理由,可列举如下理由。
即,如上述那样在尾管P内传播的行波实际在从下游开口端b向下游侧离开ΔL的位置发生反射,该反射波实际在从上游开口端a向上游侧离开ΔL的位置发生反射。在这样的两端开口的尾管P中,在比下游开口端b以及上游开口端a靠外侧的位置也存在具有与尾管P内的废气的温度相同温度(℃)的同样的废气,严格来说声音的能量(J)也会从尾管P排出而传递至下游开口端b以及上游开口端a附近的外侧。
因而,声压(Pa)在下游开口端b以及上游开口端a不为零,而是在从下游开口端b以及上游开口端a向外侧离开ΔL的位置声压(Pa)为零,从下游开口端b以及上游开口端a向外侧离开ΔL的位置成为实效管端。结果,入射波在从下游开口端b向外侧离开ΔL的实效管端发生反射。并且,在下游开口端b反射后的反射波,在从上游开口端a向外侧离开ΔL的位置亦即实效管端发生反射。
这样,为了得到更高的消音效果,优选从下游开口端b修正ΔL的量,从而将下游开口端b作为实效管端。
在本第三实施方式所涉及的尾管110中,设置有贯通孔78d,以使实效管端接近尾管110的下游开口端110b的方式进行修正,从而得到高消音效果。
即,如图21以及图22所示,在尾管110的指数形状部78c中,在相对于板41的侧面部41b朝尾管110的轴向内侧从板41的侧面部41b离开距离L5的位置形成直径为D5的贯通孔78d,该贯通孔78d贯通尾管110的内周部110a与外周部110c。换言之,贯通孔78d相对于板41位于尾管110内的废气的排气方向上游侧、且相对于下游开口端110b位于尾管110内的废气的排气方向上游侧。
另外,该贯通孔78d亦可由多个贯通孔构成。例如,如图24所示,亦可在从板41的侧面部41b离开距离L5的位置形成三个贯通孔78d,使这三个贯通孔相对于板41位于尾管110内的废气的排气方向上游侧、且相对于下游开口端110b位于排气方向上游侧。
由此,通过以该1个或者多个贯通孔78d虚拟地形成板41的开口部41d的一部分,使得从下游开口端110b向外侧离开距离ΔL的气柱共鸣的实效管端接近下游开口端110b。即,距离ΔL无限接近于零,将在板41的开口部41d进行实效的开口端反射。
在此,直径D5、距离L5可根据应用本第三实施方式的尾管110的车辆的设计诸元、仿真、实验或经验值等数据而适当地选择。另外,距离L5优选为与前述的开口端修正中的式(17)所表示的距离ΔL几乎相等。该距离L5是为了得到如下效果而设定的:利用贯通孔78d虚拟地构成板41的开口部41d的一部分,在板41的开口部41d进行实效的开口端反射。
因而,本第三实施方式所涉及的尾管110,凭借仅设置贯通孔78d的简单构造,就能够使板41的开口部41d处的开口端反射的相位、与闭口部41e处的闭口端反射的相位几乎完全相反。
因此,能够得到如下效果:基于开口端反射的反射波与基于闭口端反射的反射波相互可靠地干涉而抵消,能够可靠地抑制因尾管110的气柱共鸣而导致声压增大。
(第四实施方式)
图25以及图26是示出第四实施方式所涉及的尾管120的图。
如图25所示,第二实施方式所涉及的尾管68具有圆形的截面,与此相对,本第四实施方式所涉及的尾管120具有大致椭圆形的截面。并且,在尾管120、且在其排气方向下游侧一体地形成扩径构造121以及板部122。
如图26所示,该扩径构造121具备:基端部121a,其具有与尾管120相同的大致椭圆形的截面积S0;末端部121b,其具有大致椭圆形的截面积SL;以及指数形状部121c,其形成在基端部121a与末端部121b之间,截面形状随着从基端部121a趋向末端部121b而沿指数曲线扩径,且具有大致椭圆形的截面积Sx。该扩径构造121与第二实施方式所涉及的扩径构造78不同,如图26所示,逐渐扩径的各个截面被形成为在各附图的下方处于同一直线上。即,如图26所示,截面积S0的下方、截面积Sx的下方和截面积SL的下方处于同一直线上。
在指数形状部121c,其截面积的变化与第二实施方式所涉及的尾管68的截面积的变化相同。即,形成为也满足前式(14)以及式(15)。
板部122例如通过拉深加工等的机械加工或压铸等成形加工而与末端部121b形成为一体,板部122具有:侧面部122a、贯通该侧面部而形成的开口部122b、以及由该开口部122b以外的部分构成的闭口部122c。如图34以及图35所示,该开口部122b的下方贯通侧面部122a的下方侧而形成,存留在尾管120内的废气冷凝水得以排出至外部。
根据该结构,与第二实施方式所涉及的板41相同,开口部122b处的开口端反射的相位、与闭口部122c处的闭口端反射的相位完全相反,能够得到相互抵消的效果,能够得到高消音效果。此外,由于在板41的下方形成有开口部122b,因此能使存留在尾管120内的废气冷凝水从开口部122b排出,能够凭借简单构造实现尾管120的耐蚀性等耐久性的提高。
(第五实施方式)
图27以及图28是示出第五实施方式所涉及的尾管130的图。
如图27所示,第二实施方式所涉及的尾管68在其排气方向下游侧具有扩径构造78以及中央部开口的板41,与此相对,本第五实施方式所涉及的尾管130在其排气方向下游侧具有扩径构造78以及中央部遮蔽的板131。
详细而言,第二实施方式所涉及的板41在中央部具有呈圆形截面的开口部41d,与此相对,本第五实施方式所涉及的板131在中央部具有闭口部131a,并且具有在闭口部131a的周围以均等间隔形成的由切口构成的开口部131b、131c、131d、131e。
根据该结构,与第二实施方式所涉及的板41相同,开口部131b、131c、131d、131e处的开口端反射的相位、和闭口部131a处的闭口端反射的相位完全相反,能够得到相互抵消的效果,能够得到高的消音效果。此外,由于在板131形成有开口部131d,因此能将存留在尾管130内的废气冷凝水从开口部131d排出,能够凭借简单构造实现尾管130的耐蚀性等的耐久性的提高。
(第六实施方式)
图29是示出第六实施方式所涉及的尾管140的图。
第二实施方式所涉及的尾管68具有扩径构造78以及在中央部形成有一个开口部41d的板41,与此相对,如图29所示,第六实施方式所涉及的尾管140在排气方向下游侧具有扩径构造78以及在中央部形成有多个贯通孔141a的板141。
详细而言,第二实施方式所涉及的板41在中央部具有呈圆形截面的一个开口部41d,与此相对,本第六实施方式所涉及的板141在中央部具有由8个贯通孔141a构成的开口部141b,并且在下部具有由切口构成的开口部141c。并且,具有该开口部141b以及由开口部141c以外的侧面部141d构成的闭口部141e。
根据该结构,与第二实施方式所涉及的板41相同,开口部141b、141c处的开口端反射的相位、和闭口部141e处的闭口端反射的相位完全相反,能够得到相互抵消的效果,能够得到高的消音效果。此外,由于开口部141c设置在板141的下部,因此能够将存留在尾管140内的废气冷凝水排出,能够凭借简单构造实现尾管140的耐蚀性等耐久性的提高。
(第七实施方式)
图30以及图31是示出第七实施方式所涉及的尾管150的图。
对于第七实施方式所涉及的尾管150,第二实施方式所涉及的尾管68与扩径构造78形成一体,于此相对,如图30所示,本第七实施方式所涉及的尾管150具有与尾管150分体的扩径构造151。
详细而言,对于该尾管150,第二实施方式所涉及的扩径构造78与尾管68形成一体,与此相对,尾管150与扩径构造151分开形成,扩径构造151以包围尾管150的下游开口端150a的方式安装于尾管150。
并且,该扩径构造151具有:与尾管150连接的基端部151a;与该基端部151a相对、且直径大于基端部151a的内径的末端部151b;以及位于基端部151a与末端部151b之间的指数形状部151c。
该指数形状部151c与第二实施方式所涉及的扩径构造78的指数形状部78c相同,形成有满足前式(14)以及式(15)的各构成要素。
并且,如图31所示,末端部151b的端部通过拉深加工等成形加工形成,且被实施折回加工,顺滑地形成圆周的边缘部151d、提高了美观性。
并且,第二实施方式所涉及的尾管68的板41形成为圆盘状,与此相对,本第七实施方式所涉及的板152形成为圆周的边缘部分朝一个方向突出,且该板152以该突出部分被收容在末端部151b的折回部分的方式被装配于末端部151b。
在该板152的中央部分形成有由贯通孔152a构成的开口部152b,此外,以包围该贯通孔152a的方式形成有朝与形成于板152的突出部分的突出方向的相同方向突出的环状突出部152c。并且,具有由该开口部152b以外的侧面部152d构成的闭口部152e。
根据该结构,与第二实施方式所涉及的板41相同,开口部152b处的开口端反射的相位、和闭口部152e处的闭口端反射的相位完全相反,能够得到相互抵消的效果,能够得到高的消音效果。此外,由于该尾管150具有扩径构造151以及板152,因此能够形成为能够以尽可能小的压力损失将流体引导至所需位置的所谓的扩散器,且外观相同。能够呈现出在该尾管150的下游开口端150a装配有扩散器的外观,能够提高美观性。
工业实用性
如上所述,本发明所涉及的内燃机的排气装置不需要在尾管夹装副消声器、或在尾管的上游开口端设置具有大容量的共鸣室的消音器,能够抑制因尾管的气柱共鸣而导致声压级增大,能够减少重量,能够降低制造成本,并且能够减少设置空间,对于内燃机的排气装置是普遍有用的。
标号说明
20、60:排气装置;21:发动机;22:排气歧管;24:催化转换器;25:前部管;26:中部管;26A:入口管部;27:消声器;28、68、110、120、130、140、150:尾管;28A、68A:出口管部;28a、68a:上游开口端;28b、68b、110b、150a:下游开口端;28c:内周部;38、78、121、151:扩径构造;41、131、141、152:板;41b、141d、152d:侧面部;41d、131b、131c、131d、131e、141b、141c、152b:开口部;41e、131a、141e、152e:闭口部;41f:反射面部;78c、121c、151c:指数形状部;78d:贯通孔;L5、L8:距离;S1:总面积;S2:开口面积。

Claims (3)

1.一种内燃机的排气装置,该内燃机的排气装置具备排气管,该排气管在一端部具有与从内燃机排出的废气的排气方向上游侧的消音器连接的上游开口端,在另一端部具有用于将上述废气向大气排出的下游开口端,
上述内燃机的排气装置的特征在于,
上述排气管具有下述扩径构造中的任一个,该扩径构造为:上述排气管的上述上游开口端随着趋向上述排气方向上游侧而直径扩大的扩径构造、上述排气管的上述上游开口端以及上述下游开口端分别随着趋向上述排气方向上游侧以及上述排气方向下游侧而直径扩大的扩径构造以及上述排气管的上述下游开口端随着趋向上述排气方向下游侧而直径扩大的扩径构造,
在上述扩径构造的内部与上述废气的排气方向相对地设置有板,该板形成有沿上述废气的排气方向贯通的开口部以及遮蔽上述排气管的口的闭口部,
上述板设置成,使得由上述开口部生成的开口端反射波与由上述闭口部生成的闭口端反射波发生干涉。
2.根据权利要求1所述的内燃机的排气装置,其特征在于,
设置于上述排气管的上述排气方向上游侧以及上述排气方向下游侧的至少一方的上述扩径构造具有指数形状部,上述指数形状部以形成指数曲线的方式随着趋向开口端而扩大直径。
3.根据权利要求1或2所述的内燃机的排气装置,其特征在于,
将上述开口部的开口面积大小设定成上述板的上述开口部与上述闭口部相加的总面积的1/3。
CN200980161153.1A 2009-08-28 2009-08-28 内燃机的排气装置 Expired - Fee Related CN102482964B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004227 WO2011024234A1 (ja) 2009-08-28 2009-08-28 内燃機関の排気装置

Publications (2)

Publication Number Publication Date
CN102482964A CN102482964A (zh) 2012-05-30
CN102482964B true CN102482964B (zh) 2014-01-29

Family

ID=43627364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980161153.1A Expired - Fee Related CN102482964B (zh) 2009-08-28 2009-08-28 内燃机的排气装置

Country Status (5)

Country Link
US (1) US8356690B2 (zh)
JP (1) JP5229391B2 (zh)
CN (1) CN102482964B (zh)
DE (1) DE112009005180B4 (zh)
WO (1) WO2011024234A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686840A (zh) * 2009-12-28 2012-09-19 丰田自动车株式会社 内燃机的排气装置
DE102010045551A1 (de) * 2010-09-16 2012-05-03 Friedrich Boysen Gmbh & Co. Kg Abgasanlage
KR101744804B1 (ko) * 2011-07-28 2017-06-09 현대자동차 주식회사 차량용 테일 파이프 어셈블리
JP5857982B2 (ja) * 2013-02-13 2016-02-10 ヤマハ株式会社 消音器
US20140326350A1 (en) * 2013-05-01 2014-11-06 Timothy Riley Tailpipe customization
JP2015068505A (ja) * 2013-09-26 2015-04-13 株式会社Ihi グランドフレア
JP5811155B2 (ja) 2013-10-07 2015-11-11 トヨタ自動車株式会社 燃料電池用の配管部材およびそれを備えた燃料電池車両
CN105545413B (zh) * 2016-02-23 2018-12-04 绍兴市华锐汽车零部件有限公司 一种内燃机多气室排气消音器
CN105673138B (zh) * 2016-02-23 2018-11-23 广州三雅摩托车有限公司 一种内燃机多气室回旋消音方法
EP3869497B1 (en) 2018-10-19 2023-10-18 FUJIFILM Corporation Soundproof structural body
US11236653B2 (en) 2019-01-24 2022-02-01 Caterpillar Inc. Multi-chambered sound attenuation with resonant frequency targeting
CN111794828A (zh) * 2019-04-09 2020-10-20 罗伯特·博世有限公司 集成有消音结构的机动车发动机废气处理系统
CN110450652A (zh) * 2019-09-02 2019-11-15 恒勃控股股份有限公司 一种氢能源汽车用储排水装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202240A (en) * 1963-12-09 1965-08-24 Kenneth L Treiber Muffler with aspirating means
FR1571626A (zh) * 1968-06-07 1969-06-20

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE698589C (de) * 1936-09-13 1940-11-13 Eberspaecher J Schalldaempfer fuer Ansaug- und Auspuffschall mit Schallreflexion und Interferenz des ankommenden und reflektierten Schalles, insbesondere fuer Brennkraftmaschinen
DE755035C (de) * 1942-05-28 1952-10-20 Eberspaecher J Schalldaempfer mit Schallreflexion und Interferenz des ankommenden und reflektiertenSchalles, insbesondere fuer Brennkraftmaschinen
US2570728A (en) * 1948-11-29 1951-10-09 William D Storey Muffler with frusto-conical baffle and removably disposed perforated extension tube
US3788417A (en) * 1972-04-26 1974-01-29 Raymond Lee Organization Inc Exhaust device for automotive vehicles
JPS54166624U (zh) * 1978-05-16 1979-11-22
JPS5823929Y2 (ja) 1978-05-16 1983-05-23 カルソニックカンセイ株式会社 排気導管
JPS5823929A (ja) * 1981-07-31 1983-02-12 尾池工業株式会社 難染金銀糸
JPS5943916A (ja) 1982-09-04 1984-03-12 Makoto Minamidate 圧気消音装置
JPH0681901B2 (ja) * 1986-06-19 1994-10-19 ヤマハ発動機株式会社 2サイクルエンジンの排気装置
JPH055213Y2 (zh) * 1987-11-12 1993-02-10
DD286727A7 (de) 1989-03-15 1991-02-07 Veb Motorradwerk Zschopau,De Auspuffanlage fuer eine brennkraftmaschine
JPH055213A (ja) 1991-06-24 1993-01-14 Toray Ind Inc ポリエステル繊維の製造法
JPH0577536U (ja) 1992-03-30 1993-10-22 カルソニック株式会社 フィニッシャ
JP3010341B2 (ja) 1995-05-09 2000-02-21 ティーオーエー株式会社 消音装置
JP2002089230A (ja) * 2000-09-20 2002-03-27 Daihatsu Motor Co Ltd 排気消音器の流出パイプ
JP2003041934A (ja) 2001-07-30 2003-02-13 Fuji Heavy Ind Ltd 排気系のテールパイプ
US7364011B2 (en) * 2002-04-05 2008-04-29 Martin Hirschorn Attenuating power booster
JP2004204802A (ja) 2002-12-26 2004-07-22 Apex:Kk 車両用マフラー
JP4759700B2 (ja) * 2004-08-02 2011-08-31 トヨタ自動車株式会社 排気構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202240A (en) * 1963-12-09 1965-08-24 Kenneth L Treiber Muffler with aspirating means
FR1571626A (zh) * 1968-06-07 1969-06-20

Also Published As

Publication number Publication date
DE112009005180B4 (de) 2015-10-01
US8356690B2 (en) 2013-01-22
US20120138384A1 (en) 2012-06-07
JP5229391B2 (ja) 2013-07-03
CN102482964A (zh) 2012-05-30
DE112009005180T5 (de) 2012-06-21
JPWO2011024234A1 (ja) 2013-01-24
WO2011024234A1 (ja) 2011-03-03

Similar Documents

Publication Publication Date Title
CN102482964B (zh) 内燃机的排气装置
CN102482965B (zh) 内燃机的排气装置
KR101211301B1 (ko) 공명기
US7942239B2 (en) Exhaust muffler
CN107429585B (zh) 排气系统
US7798286B2 (en) Exhaust muffler having a horizontally extending sound attenuation chamber
CN102782266B (zh) 内燃机的排气装置
US20080093162A1 (en) Gas flow sound attenuation device
US6959679B2 (en) Air intake device for internal combustion engine
US3655011A (en) Sound attenuating chamber
JPS60184919A (ja) 内燃機関用触媒マフラ−装置
US11143069B2 (en) Method and apparatus to enable package space reduction in a vehicle exhaust system
CN110388245A (zh) 包括亥姆霍兹共振器的消声器及包括这种消声器的车辆
US6595319B1 (en) Muffler
US6912843B2 (en) Exhaust system for a multi-cylinder internal combustion engine
US7942235B2 (en) Exhaust system for an internal combustion engine
US8936133B2 (en) Four cycle internal combustion engine exhaust
JP6131936B2 (ja) 多気筒エンジンの排気装置
JP3337556B2 (ja) 消音器
CN110056420A (zh) 用于排气系统的具有声学容积的车辆框架
JP2015017549A (ja) 自動車の内燃機関用の吸気システム
JP2517428Y2 (ja) 車両吸気管の消音構造
CN209100113U (zh) 一种suv排气消声器
US20080011541A1 (en) Internal combustion engine
JPS6146170Y2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140129

Termination date: 20190828

CF01 Termination of patent right due to non-payment of annual fee