CN102452657B - 一种制备分子筛的设备 - Google Patents

一种制备分子筛的设备 Download PDF

Info

Publication number
CN102452657B
CN102452657B CN 201010515177 CN201010515177A CN102452657B CN 102452657 B CN102452657 B CN 102452657B CN 201010515177 CN201010515177 CN 201010515177 CN 201010515177 A CN201010515177 A CN 201010515177A CN 102452657 B CN102452657 B CN 102452657B
Authority
CN
China
Prior art keywords
gas
molecular sieve
tubular reactor
section
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010515177
Other languages
English (en)
Other versions
CN102452657A (zh
Inventor
朱玉霞
于大平
宋武
田辉平
许明德
周灵萍
张蔚琳
田华
周岩
张志良
杨凌
陶金
张蓬来
赵峰
吕卫东
陈玉华
苏周全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN 201010515177 priority Critical patent/CN102452657B/zh
Publication of CN102452657A publication Critical patent/CN102452657A/zh
Application granted granted Critical
Publication of CN102452657B publication Critical patent/CN102452657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

一种制备分子筛的设备,其中,该设备包括管状反应器、气固分离器、吸收塔和原料混合单元,所述管状反应器包括至少一个进料口、出料口和管体,所述至少一个进料口中的一个进料口和出料口分别位于所述管体的两个端部,所述管状反应器通过一个所述进料口与所述原料混合单元连通,通过所述出料口与所述气固分离器连通,所述管状反应器通过所述出料口与所述气固分离器连通,所述气固分离器的上部与所述吸收塔连通,所述气固分离器与出料口连接的位置低于所述气固分离器与所述吸收塔连接的位置。该设备能够实现分子筛与SiCl4的接触反应连续进行,通过控制载气的流速和管状反应器的长度,能够控制分子筛与SiCl4接触的时间,保证反应的充分进行。

Description

一种制备分子筛的设备
技术领域
本发明是关于一种制备分子筛的设备。
背景技术
在催化裂化催化剂中,分子筛是一种应用非常广泛的材料,同时也是非常重要的一种组分,分子筛的性能直接影响到了催化裂化催化剂的反应性能。根据不同的需要,可以对分子筛进行不同的改性以达到使用的要求。比如高硅铝比的分子筛普遍被认为是催化裂化催化剂所需求的。
在制备高硅铝比的分子筛方面,主要有以下几种方法:氟硅酸铵法抽铝补硅、水热法抽铝补硅和气相化学法抽铝补硅。
氟硅酸铵法抽铝补硅(也称为化学法抽铝补硅)主要是用氟硅酸铵脱铝补硅,获得的分子筛的结晶度高,Si/Al比及热稳定性高,但脱铝过程中形成的难溶物AlF3和残留的氟硅酸盐影响水热稳定性,还会污染环境。
水热法仍是目前工业上普遍采用的方法,但是在水热过程中存在脱铝后补硅不及时,易造成晶格塌陷,且非骨架铝碎片堵塞孔道,这不仅影响了活性中心的可接近性,也影响其热稳定性的进一步提高。
气相化学法抽铝补硅的特点是脱铝均匀,补硅及时,产品结晶保留度高,热稳定性好,孔道畅通。例如,CN1057977C公开了一种含富硅超稳Y沸石的催化剂组合物的制备方法,它包括将含水量小于900ppm的干燥空气携带的四氯化硅气体与NaY沸石和耐热无机氧化物的干燥成型物按四氯化硅总量∶成型物=0.1-0.8∶1的重量比,在150-550℃接触反应10分钟至5小时,所述干燥成型物中粒径为35-125微米的颗粒占总颗粒数的80%以上,NaY沸石和耐热无机氧化物的重量比为1∶0.2-1.0,NaY沸石的硅铝比为3-6。该方法所用成型物流动性好,避免了聚结成块和堵塞的现象,易于实现连续化大规模生产。
CN1121903C公开了一种稀土高硅Y型沸石的制备方法,该方法包括将含稀土的Y型沸石进行干燥处理,使其水含量低于10重量%后,按照四氯化硅∶Y沸石=0.1-0.9∶1的重量比,通入干燥空气携带的四氯化硅气体,在温度150-600℃下,反应10分钟至6小时,反应后,用干燥空气吹扫5分钟至2小时,用脱阳离子水洗涤除去沸石中残存的Na+、Cl-、Al3+等可溶性副产物。该方法较现有技术更简单、节省能源且无污染。
CN1281493C公开了含稀土高硅Y型沸石及其制备方法,该沸石含有稀土,且该沸石的硅铝比为5-30,初始晶胞常数为2.430-2.465nm,平衡晶胞常数与初始晶胞常数的比值至少为0.985。该沸石的制备方法包括将含稀土Y型沸石与四氯化硅接触,所述接触在一个反应设备中进行,该设备如图1所示,包括一个反应釜(1),一个进料口(2)和一个出气口(3),在反应釜(1)的内部还包括一个搅拌器(4),出气口(3)上安装有一个气固分离器(5),气固分离器(5)所含孔的孔直径和孔隙度保证气体能通过而沸石固体颗粒不能通过,搅拌器(4)的搅拌杆伸出反应釜(1)外,在搅拌器(4)的搅拌下,所述含稀土的Y型沸石与四氯化碳气体接触,接触的温度为100-500℃,接触的时间为5分钟至10小时,含稀土的Y型沸石与四氯化碳的重量比为1∶0.05-0.5,所述含稀土的Y型沸石的硅铝比为3-8,晶胞常数为2.45-2.48nm。该方法使四氯化硅气体与分子筛固体颗粒接触反应更加均匀,避免了分子筛固体颗粒之间的聚结成致密块状物的现象,可以降低劳动强度,能减少环境污染,显著地降低了生产成本,易于进行大规模工业应用。
显然,上面所述方法所需的接触时间一般都比较长,需要数小时,加上反应前的装料和反应完毕后的卸料,一般一个白班至多只能进行一次上述脱铝补硅反应,即便采用倒班的作业方式也只能进行两次上述脱铝补硅反应,而且由于反应釜中需要搅拌,因此反应釜也不可能无限大,基于目前的水平,能用于上述脱铝补硅反应的最大的反应釜的产能为600kg,继续增大反应釜,则反应釜内很难保证充分搅拌,因此,采用上述反应釜的方式,一天至多可以获得1200kg的高硅分子筛。而且,在上述现有技术的方法中,为了保证获得的分子筛的高硅含量,一般都使SiCl4远远过量,过量的SiCl4的使用无疑增加了生产成本和环保费用。另一方面,上述方法都需要非常繁杂的人工操作,诸如:人工装料、人工卸料及在反应完成后需要长时间的吹扫管线等,这些不但带来人工劳动强度大,生产效率很低的问题,而且,装料和卸料时的分子筛粉尘以及过量的SiCl4还造成严重的环境污染和严重危害操作人员的健康。因此,上述釜式的气相超稳工艺很难进行工业化生产。
发明内容
针对釜式的气相超稳工艺存在的严重缺点,本发明的目的是开发一种能够降低SiCl4用量、降低劳动强度且极大提高生产效率的适用于连续化工业化生产的制备分子筛的设备。
本发明提供了一种制备分子筛的设备,其中,该设备包括管状反应器、气固分离器、吸收塔和原料混合单元,
所述管状反应器包括至少一个进料口、出料口和管体,所述进料口中的一个进料口和出料口分别位于所述管体的两个端部;
所述气固分离器通过所述出料口与所述管状反应器连通,所述气固分离器的上部与所述吸收塔连通,所述气固分离器与出料口连接的位置低于所述气固分离器与所述吸收塔连接的位置;
所述原料混合单元用于将不同的气体混合和/或将气体与固体混合,所述原料混合单元通过所述进料口中的一个与所述管状反应器连通。
本发明提供的制备分子筛的设备通过将SiCl4与载气空气以及分子筛在原料混合单元中充分混合均匀后从管状反应器的进料口送入管状反应器内,在管状反应器内充分反应后再从出料口排出至气固分离器中,固体留在气固分离器中,气相组分则进入吸收塔,吸收掉少量过量的SiCl4后的空气能够直接排放。由此可见,本发明提供的气相法制备高硅分子筛的设备由于使分子筛与SiCl4的接触在管状反应器内进行,因而能够实现分子筛与SiCl4的接触反应连续进行,通过控制混合气的流速和管状反应器的长度,能够控制分子筛与SiCl4接触的时间,从而能够使分子筛与SiCl4的接触反应在管状反应器内充分的进行。本发明提供的制备分子筛的设备由于包括原料混合单元,使得原料在原料混合单元中充分混合后再送入管状反应器中进行反应,从而能够保证管状反应器各部分的物料均能够充分反应,所制备的分子筛的结晶度更高、反应程度均一、质量更稳定、性能更好。
与现有的釜式气相超稳工艺相比,本发明提供的气相法制备高硅分子筛的设备能够实现连续化气相超稳反应,且反应操作可以全部自动化连续化进行,人工劳动强度小,而且生产效率高,产品性能稳定,使得分子筛连续化气相超稳工艺的工业化生产成为现实。实验证明,采用CN1281493C公开的釜式反应法,即便采用倒班的作业方式,每天也至多能够生产1200kg的高硅分子筛,而采用本发明提供的上述设备,每小时即可生产1000kg的高硅分子筛,每天可生产24000kg的高硅分子筛,其生产效率是CN1281493C公开的釜式反应法的20倍,而且工人的劳动作业强度也大大降低了,由此可见,本发明提供的设备的经济效益是非常显著的。
附图说明
图1为现有技术的用于气相法制备高硅分子筛的设备的结构示意图;
图2为本发明提供的制备分子筛的设备的结构示意图;
图3为图2所示设备的管状反应器1的第一倾斜段131的轴线与水平面之间的夹角α的示意图;
图4为图2所示设备的管状反应器1的第二倾斜段132的轴线与水平面之间的夹角β的示意图。
具体实施方式
下面结合附图进一步详细说明本发明提供的设备。
根据本发明提供的用于制备分子筛的设备,其中,所述管状反应器1的长度以保证所述分子筛与SiCl4的反应充分进行即可。管道太短,不足以使分子筛与SiCl4的反应充分进行或者为保证分子筛与SiCl4的反应充分进行,生产效率太低。尽管比较长的管道有利于提供更长的接触时间,但是管道越长,所需的输送分子筛和气体等原料所需的动力越大,对相应的提供动力的装置的要求也就越高,而且,反应时间太长,容易导致分子筛的结晶度降低。因此,综合考虑反应的充分进行、反应所需的动力和生产效率,本发明的发明人发现,所述管状反应器的长度为5-100米是较佳的,因此,本发明优选所述管状反应器的长度为5-100米,进一步优选为7-95米,更进一步优选为50-95米。所述管状反应器的直径优选为0.01-1.5米,进一步优选为0.02-1.4米,更进一步优选为0.1-1.4米。
根据本发明提供的设备,尽管直线的管道也能实现分子筛与SiCl4的反应充分进行的目的,但是,优选情况下,为了防止在管状反应器内气流不稳定的情况下引起的气固分离器内的分子筛倒流到管状反应器内的情况的发生,并进一步充分保证在较短的管道内实现较充分的接触,如图2所示,所述管体13包括第一倾斜段131和竖直段132,所述第一倾斜段131的一端与所述竖直段132的一端相接,所述出料口位于所述第一倾斜段131的另一端,且所述第一倾斜段131与所述竖直段132连接的位置高于所述出料口所在的位置。在该优选情况下,所述第一倾斜段131的设置能够有效防止上述倒吸现象的发生,所述竖直段132则使得所述管状反应器类似于提升管反应器。本发明中,所述竖直段并非绝对的垂直于水平面,只要看起来是竖直朝上即按在该范围内。
所述第一倾斜段131与竖直段132之间的夹角可以为10-90°,优选为30-80°,即当所述竖直段132垂直于水平面时,如图3所示,所述第一倾斜段131的轴线与水平面之间的夹角α可以为大于0°至80°,优选情况下,所述第一倾斜段131的轴线与水平面之间的夹角为10°至60°。在该优选情况下,能够使得分子筛和SiCl4在第一倾斜段131也能充分进行反应,而不至因重力作用而快速进入气固分离器2中。
根据本发明提供的设备,优选情况下,所述第一倾斜段131和竖直段132的长度比为0.1-10∶1,进一步优选为0.2-9∶1,更进一步优选0.4-0.6∶1。
根据本发明的一种优选实施方式,所述管体13还包括第二倾斜段133,所述第二倾斜段133的一端与所述竖直段132的另一端相接,所述第一进料口位于所述第二倾斜段133的另一端。这样设置可以避免分子筛固体物料在重力的作用下的流动速度过快,增加反应物料间的接触反应时间。
进一步优选情况下,所述进料口所在的位置高于所述第二倾斜段133与所述竖直段132连接的位置,以便物料能够快速、直接进入第二倾斜段133中,然后进一步输送。
所述第二倾斜段133与竖直段132之间的夹角可以为10-90°,优选为30-80°,即当所述竖直段132垂直于水平面时,如图4所示,根据本发明提供的设备,所述第二倾斜段133的轴线与水平面之间的夹角β可以为大于0°至80°,优选为10°至60°。在该优选情况下,能够使得分子筛和SiCl4在第一倾斜段131也能充分进行反应,而不至因重力作用而快速进入竖直段132的端部。
进一步优选情况下,所述第二倾斜段133和竖直段132的长度比为0.1-10∶1,更优选为0.2-9∶1,更进一步优选为0.3-9∶1。
根据本发明提供的设备,所述原料混合单元4包括气固混合器和/或气体混合器,所述气固混合器和/或气体混合器通过所述进料口中的一个与所述管状反应器1连通。
当所述原料混合单元仅包括气体混合器而不包括气固混合器时,为了便于工业化连续生产时与其他装置的配合,所述管状反应器1优选包括两个进料口,其中一个进料口即第一进料口为管状反应器1的端口,另一个进料口即第二进料口位于与所述第一进料口相邻的位置。其中两个进料口中的任意一个与该气固混合器连通,另一个进料口则与分子筛供应单元(未示出)连通。使用时,所述载气空气与气相SiCl4在气体混合器中混合均匀后,通过与所述气体混合器连通的进料口进入所述管状反应器1的管体13,分子筛则从另一进料口进入所述管状反应器1的管体13,从而在管状反应器1的管体13内进行反应。所述分子筛供应单元优选为焙烧炉,也就是说,本发明的制备分子筛的设备的另一个进料口通常与焙烧炉连通。为了有效利用管状反应器的长度,优选第一进料口和第二进料口尽量靠近,但同时也为了保证两个进料口的进料之间的干扰尽可能小,优选所述第一进料口与所述第二进料口之间的距离为所述管状反应器1的长度的0.5-15%,进一步优选为1-10%。
进一步优选情况下,所述进料口为一个,所述原料混合单元4包括气固混合器和气体混合器,气体混合器与气固混合器连通,气固混合器通过所述进料口中的一个与所述管状反应器1连通。所述载气空气与气相SiCl4在原料混合单元4的气体混合器中混合均匀后,进入气固混合器与分子筛进行气固混合,混合均匀后通过进料口进入管状反应器1中。
所述气体混合器可以是本领域技术人员公知的各种能够实现气相四氯化硅与载气混合的装置,例如,可以为管道,即将气相四氯化硅与载气同时送入管道中进行混合。所述气固混合器可以是本领域技术人员公知的各种能够用于将气相四氯化硅和/或载气与分子筛混合均匀的装置,例如所述气固混合器可以为圆筒混合器,该圆筒混合器包括圆筒状主体和位于圆筒状主体内的格栅。所述格栅优选为沿筒状主体的轴向以螺旋上升的方式固定在圆筒状主体内壁上的不锈钢板,格栅用于使原料即气相四氯化硅和分子筛分散均匀并增加原料间的接触时间,格栅板的螺距优选为0.1~1米,更优选为0.2~0.7米,格栅板的宽度(即格栅从与圆筒状主体的内壁到圆筒状主体的轴线之间的距离)优选为圆筒状主体的直径的三分之一到三分之二。进一步优选所述气体混合器和气固混合器均为圆筒型,且二者的圆筒为一体结构。
本发明中,所述气固分离器2用于收集与SiCl4气体接触后的分子筛。在该气固分离器内,将固体分子筛和气体进行分离,从而获得高硅分子筛产品。各种能够实现上述目的的容器均可作为本发明的气固分离器2,本发明对其形状可以没有特别的限定,例如可以为圆柱状。进一步优选情况下,所述气固分离器2的底部为端部具有开口的锥形。从而获得的高硅分子筛能够从所述开口排出。
所述气固分离器一般包括进料口和顶部气体出口。所述第一倾斜段的另一端与所述气固分离器连通,所述气固分离器的截面积大于所述管状反应器管体的横截面积。通过使所述气固分离器的截面积大于所述管状反应器管体的横截面积,可以实现使原本悬浮在SiCl4气流或者SiCl4气流和载气流的混合气流中的分子筛在重力作用下的沉降,从而实现气固分离。进一步优选情况,所述气固分离器的截面积与所述管状反应器管体的横截面积之比为2-10∶1,这样即可充分实现分子筛的快速沉降。为了进一步保证分子筛充分沉降到气固分离器中,本发明还优选所述气固分离器的高度不小于5米,例如5-10米。更进一步优选情况下,所述气固分离器的进料口位于所述气固分离器的中部,这样一方面可以保证不对沉降在气固分离器底部的分子筛产生搅动,另一方面还能保证较充分的沉降时间。
进一步优选情况下,所述气固分离器还包括底部固体出口,用于排出分离得到的分子筛固体。更进一步优选情况下,所述气固分离器还包括用于控制所述底部固体出口开和关的阀门,从而能够适时的将气固分离器中收集的分子筛固体排出。
为了使反应后的混合物中的气体组分尽可能进入吸收塔而不从上述开口排出,优选情况下,所述气固分离器2与管状反应器1出料口连接的位置高于所述锥形的起始位置。进一步优选情况下,所述气固分离器2与管状反应器1出料口连接的位置位于所述气固分离器2的中上部,气固分离器2通过其顶部气体出口与所述吸收塔3连通。
所述吸收塔3用于吸收过量的未反应的SiCl4,从而使气固分离器出来的气体达到排放标准。所述吸收塔3可以是本领域常规使用的各种吸收塔,只要能吸收SiCl4即可。一般使用碱液如氢氧化钠水溶液吸收SiCl4。因此,本发明中,所述吸收塔3优选包括两个入口和两个出口,其中一个所述入口与气固分离器2连通,优选位于所述吸收塔的中上部,另一个入口用于加入碱液,该入口优选也位于所述吸收塔的中上部。所述两个出口分别位于所述吸收塔的顶部和底部,分别用于排放气体(空气)和吸收废液。为了保证排出的空气中SiCl4含量足够低,优选情况下,所述吸收塔为串联的多个。串联的多个吸收塔对SiCl4形成多级吸收。
本发明中,所述载气可以是各种在气相SiCl4与分子筛反应的条件下呈惰性的气体,即所述载气可以是各种不干扰气相SiCl4与分子筛在管状反应器内反应的气体,例如可以是空气、氮气、氦气、氖气、氩气和氙气中的一种或多种。
根据本发明的优选实施方式,采用本发明提供的设备制备高硅分子筛的工作流程如图2所示。温度为200-600℃的分子筛a、载气c和气相SiCl4原料b在原料混合单元4中混合均匀后,从进料口送入管状反应器1内,分子筛随载气和气相SiCl4的混合气体在管状反应器1内流动接触,之后进入气固分离器2,在气固分离器2内,高硅分子筛d沉降在气固分离器2的底部,直接或定期排出,载气和气相SiCl4则通过气固分离器2顶部的出口进入吸收塔3内,与吸收塔3中的吸收剂碱液接触,载气(尾气e)从碱液中溢出,从吸收塔3顶部的出口排出,SiCl4则与碱液反应,之后通过底部出口直接或定期排出废水f。
采用本发明提供的制备分子筛的设备对分子筛进行气相脱铝补硅时,所述气相脱铝补硅的条件包括分子筛的固含量优选大于98重量%,所述分子筛的固含量为分子筛经过高温焙烧后的重量与焙烧前的重量比,即分子筛的固含量=100%-分子筛的含水量;分子筛的温度为200-600℃,气相SiCl4的温度为60-150℃,载气如空气的温度为60-200℃,SiCl4与分子筛的重量比优选为0.01-1∶1,进一步优选为0.05-0.60∶1,混合气体的流速使SiCl4与分子筛在管状反应器内的停留时间为10秒至100分钟,优选为1分钟至20分钟,分子筛在管状反应器内的停留时间为管状反应器的长度除以分子筛的流速所得的值。由于分子筛在管状反应器中是由混合气体携带而在管状反应器内呈流化态的,因此分子筛的流速等于混合气体的流速。本发明优选所述混合气体的流速为0.015-3m/s,更优选为0.03-3m/s,进一步优选为0.1-2.5m/s。相对于直径为0.01-1.5米、长度为50-95米的管状反应器,分子筛的流量优选为50-2000kg/小时,进一步优选为100-1500kg/小时,更进一步优选为200-1200kg/小时。由于焙烧后的分子筛的温度通常为300℃以上,因此上述分子筛的温度可以通过将管状反应器与焙烧炉相结合而获得,也就是说,优选情况下,本发明提供的制备分子筛的设备优选与焙烧炉连通,并作为焙烧炉的下游设备,这样一方面能够利用焙烧后分子筛的高温作为脱铝补硅反应的热源,启动脱铝补硅反应,从而节约能源;另一方面还能节约加热分子筛的时间,从而使反应在较短的时间内即可充分进行。另外,尽管通过使空气和SiCl4气体的温度升高也能达到反应所需的温度,但是,显然外界的加热只能使分子筛由外到内逐渐加热,因而相对来说更难保证脱铝补硅反应的充分进行。
本发明提供的分子筛气相补硅设备可以用于对各种分子筛进行气相脱铝补硅,例如所述分子筛可以是不同稀土含量的Y型分子筛,以RE2O3计,所述Y型分子筛中稀土含量可以为10-20重量%。
下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1-5用于说明本发明提供的制备分子筛的设备。
实施例1
使用厚度为3毫米的工业牌号为NiCr18Ti的不锈钢制作图2所示的分子筛气相补硅设备,其中管状反应器1的管体13由第一倾斜段131、竖直段132和第二倾斜段133构成,第一倾斜段131的长度为20米,直径为0.8米,竖直段132的长度为40米,直径为0.8米,第二倾斜段133的长度为15米,直径为0.8米,竖直段132垂直于水平面,第一倾斜段131的轴线与水平面之间的夹角α为75°(即第一倾斜段131与竖直段132之间的夹角为15°),第二倾斜段133的轴线与水平面之间的夹角β为65°(即第二倾斜段133与竖直段132之间的夹角为25°),第二倾斜段133的端口为进料口,原料混合单元4包括长为5米、直径为0.8米的圆筒混合器,圆筒混合器的一端与进料口连通,沿圆筒混合器的轴向距进料口2.5米的位置设置有分子筛入口,从该分子筛入口至进料口的这一段圆筒混合器内壁上分布有一组螺旋上升的不锈钢格栅板,格栅板的螺距为0.3米,格栅板的宽度为0.4米,由此该圆筒混合器分为两部分,第一部分作为气体混合器,第二部分设置有格栅板,从而作为气固混合器;气固分离器2的上部为直径为6米、高为14米的圆柱形,下部为具有开口锥形,锥角为45°,且开口处设置有阀,出料口位于距气固分离器顶部1米的位置,吸收塔3内盛有浓度为10摩尔/升的氢氧化钠水溶液,吸收塔3和气固分离器2之间通过导管连接,导管深入氢氧化钠水溶液中。
按照图2所示,将温度为100℃的干燥空气和温度为90℃的SiCl4气体送入原料混合单元4中的气体混合器混合均匀后,与从管道的分子筛入口进入的、来自焙烧炉的温度为350℃的含稀土的Y型分子筛(性质如表1所示)在设置有格栅的管道内即气固混合器中混合均匀后由进料口连续送入管状反应器1的管体13内,进入原料混合单元4的SiCl4的流量由质量流量计控制且SiCl4与分子筛的重量比为0.30,分子筛的进料量为800kg/小时,混合气体的流量使分子筛在管状反应器1内的停留时间为10分钟。反应进行1小时后,将气固分离器2内的分子筛从锥形底部的开口排出,之后与脱阳离子水打浆、洗涤、过滤并在120℃烘箱中烘干后,得到高硅分子筛A,其主要性质列于表1中。
实施例2
使用厚度为3毫米的工业牌号为NiCr18Ti的不锈钢制作图2所示的分子筛气相补硅设备,其中管状反应器1的管体13由第一倾斜段131、竖直段132和第二倾斜段133构成,第一倾斜段131的长度为25米,直径为0.4米,竖直段132的长度为45米,直径为0.4米,第二倾斜段133的长度为25米,直径为0.4米,竖直段132垂直于水平面,第一倾斜段131的轴线与水平面之间的夹角α为55°(即第一倾斜段131与竖直段132之间的夹角为35°),第二倾斜段133的轴线与水平面之间的夹角β为55°(即第二倾斜段133与竖直段132之间的夹角为35°),第二倾斜段133的端口为进料口,原料混合单元4包括长为5米、直径为0.8米的圆筒混合器,圆筒混合器的一端与进料口连通,沿圆筒混合器的轴向距进料口2.5米的位置设置有分子筛入口,从该分子筛入口至进料口的这一段圆筒混合器内壁上分布有一组螺旋上升的不锈钢格栅板,格栅板的螺距为0.3米,格栅板的宽度为0.4米,由此该圆筒混合器分为两部分,第一部分作为气体混合器,第二部分设置有格栅板,从而作为气固混合器;气固分离器2的上部为直径为5米、高为10米的圆柱形,下部为具有开口锥形,锥角为35°,且开口处设置有阀,出料口位于距气固分离器顶部2米的位置,吸收塔3内盛有浓度为1摩尔/升的氢氧化钠水溶液,吸收塔3和气固分离器2之间通过导管连接,导管深入氢氧化钠水溶液中。
按照图2所示,将温度为200℃的干燥空气和温度为130℃的SiCl4气体送入原料混合单元4中的气体混合器中混合均匀后,与从管道的分子筛入口进入的、来自焙烧炉的温度为350℃的含稀土的Y型分子筛(性质如表1所示)在设置有格栅的管道内即气固混合器中混合均匀后由进料口连续送入管状反应器1的管体13内,SiCl4的流量由质量流量计控制,且SiCl4与分子筛的重量比为0.55,分子筛的进料量为700kg/小时,混合气体的流量使分子筛在管状反应器内的停留时间为15分钟。反应进行2小时后,将气固分离器2内的分子筛从锥形底部的开口排出,之后与脱阳离子水打浆、洗涤、过滤并在120℃烘箱中烘干后,得到高硅分子筛B,其主要性质列于表1中。
实施例3
使用厚度为3毫米的工业牌号为NiCr18Ti的不锈钢制作图2所示的分子筛气相补硅设备,其中管状反应器1的管体13由第一倾斜段131、竖直段132和第二倾斜段133构成,第一倾斜段131的长度为15米,直径为1.2米,竖直段132的长度为35米,直径为1.2米,第二倾斜段133的长度为30米,直径为1.2米,竖直段132垂直于水平面,第一倾斜段131的轴线与水平面之间的夹角α为45°(即第一倾斜段131与竖直段132之间的夹角为45°),第二倾斜段133的轴线与水平面之间的夹角β为45°(即第二倾斜段133与竖直段132之间的夹角为45°),第二倾斜段133的端口为进料口,原料混合单元4包括长为5米、直径为0.8米的圆筒混合器,圆筒混合器的一端与进料口连通,沿圆筒混合器的轴向距进料口2.5米的位置设置有分子筛入口,从该分子筛入口至进料口的这一段圆筒混合器内壁上分布有一组螺旋上升的不锈钢格栅板,格栅板的螺距为0.3米,格栅板的宽度为0.4米,由此该圆筒混合器分为两部分,第一部分作为气体混合器,第二部分设置有格栅板,从而作为气固混合器;气固分离器2的上部为直径为9米、高为12米的圆柱形,下部为具有开口锥形,锥角为30°,且开口处设置有阀,出料口位于距气固分离器顶部4米的位置,吸收塔3内盛有浓度为1摩尔/升的氢氧化钠水溶液,吸收塔3和气固分离器2之间通过导管连接,导管深入氢氧化钠水溶液中。
按照图2所示,将温度为140℃的干燥空气和温度为80℃的SiCl4气体送入原料混合单元4中的气体混合器中混合均匀后,与从管道的分子筛入口进入的、来自焙烧炉的温度为350℃的含稀土的Y型分子筛(性质如表1所示)在设置有格栅的管道内即气固混合器中混合均匀后由进料口连续送入管状反应器1的管体13内,SiCl4的流量由质量流量剂控制,且SiCl4与分子筛的重量比为0.05,分子筛的进料量为1000kg/小时,干燥空气的流量使分子筛在管状反应器内的停留时间为1分钟。反应进行1小时后,将气固分离器2内的分子筛从锥形底部的开口排出,之后与脱阳离子水打浆、洗涤、过滤并在120℃烘箱中烘干后,得到高硅分子筛C,其主要性质列于表1中。
实施例4
按照实施例3的方法制备高硅分子筛,不同的是,管状反应器1的长度为25米,其中第一倾斜段131的长度为4.7米,直径为1.2米,竖直段132的长度为10.9米,直径为1.2米,第二倾斜段133的长度为9.4米,直径为1.2米,分子筛的进料量为1000kg/小时,干燥空气的流量使分子筛在管状反应器内的停留时间为30秒钟,得到高硅分子筛D,其主要性质列于表1中。
实施例5
按照实施例3的方法制备高硅分子筛,不同的是,混合气体的流量使分子筛在管状反应器内的停留时间为40分钟,得到高硅分子筛E,其主要性质列于表2中。
表1
  含稀土的Y型分子筛   实施例1   实施例2   实施例3
  晶胞常数,nm   2.466   2.466   2.466
  相对结晶度,%   54   52   49
  骨架硅铝比(SiO2/Al2O3摩尔比)   5.11   5.11   5.11
  晶格崩塌温度,℃   975   972   970
  比表面积,m2/g   673   665   648
  Na2O含量,重量%   4.5   4.4   4.1
  RE2O3含量,重量%   11.9   13.2   16.3
表2
Figure BSA00000313122300161
从表2的结果可以看出,与工业REY相比,采用本发明提供的设备制得的分子筛的骨架硅铝比即SiO2/A12O3摩尔比大大提高,表明脱铝补硅效果好。另外,从表2的结果可以看出,与工业REY相比,采用本发明提供的设备制得的分子筛有更好的相对结晶度,更高的晶格崩塌温度,并且比表面积明显提高,氧化钠含量大大降低,表明本发明提供的设备制得的分子筛的性能优异。
实施例6-10用于说明采用实施例1-5制得的高硅分子筛制备催化剂。
按照(物料干基)分子筛∶高岭土∶拟薄水铝石∶铝溶胶=38∶30∶22∶10的重量比例将上述物料混合、打浆,然后在450℃下喷雾干燥,得到球形催化裂化催化剂。分子筛分别选用实施例1-5制得的高硅分子筛A、B、C、D和E,分别获得催化剂C-1、C-2、C-3、C-4、和C-5,其主要性质列于表3中。
对比例1
按照上述方法采用工业REY型分子筛(主要性质列于表2中)制备催化剂,所得催化剂计为参比催化剂CC-1,其主要性质列于表3中。
催化剂的催化裂化性能测试
轻油微反活性评价:采用RIPP92-90的标准方法(见《石油化工分析方法》(RIPP试验方法)杨翠定等编,科学出版社,1990年出版)评价样品的轻油微反活性,催化剂装量为5.0g,反应温度为460℃,原料油为馏程235-337℃的大港轻柴油,产物组成由气相色谱分析,根据产物组成计算出轻油微反活性,结果在表3中。
轻油微反活性(MA)=(产物中低于216℃的汽油产量+气体产量+焦炭产量)/进料总量×100%
重油裂化性能评价条件:催化剂先在800℃,100%水蒸汽老化12小时,然后在ACE(固定流化床)装置上评价,原料油为武混三重油(性质见表4),反应温度500℃,剂油重量比为4。
其中,转化率=汽油收率+液化气收率+干气收率+焦炭收率
轻质油收率=汽油收率+柴油收率
液体收率=液化气收率+汽油收率+柴油收率
焦炭选择性=焦炭收率/转化率
按照上述方法分别评价实施例6-10及对比例1制备的催化剂的催化裂化性能,结果列于表5。
表3
  催化剂编号   C-1   C-2   C-3   C-4   C-5  CC-1
  分子筛编号   A   B   C   D   E  工业REY
  Al2O3含量/重量%   48.3   48.6   49.5   50.9   51.7  52.1
  Na2O含量/重量%   0.07   0.07   0.08   0.13   0.12  0.19
  硫酸根含量/重量%   1.1   1.2   1.1   1.2   1.2  1.3
  灼烧减量/重量%   11.8   12.2   12.1   12.2   11.9  12.1
  孔体积/(mL·g-1)   0.41   0.42   0.43   0.41   0.39  0.35
  比表面积/(m2·g-1)   279   286   295   284   276  245
  磨损指数/(%·h-1)   1.7   1.5   1.1   1.6   1.8  1.9
  表观松密度/(g·mL-1)   0.74   0.73   0.74   0.72   0.73  0.75
  微反活性(800,4h)/%   83   83   84   81   82  74
  筛分分布/重量%
  0~20μm   3   3.5   3.5   2.8   3.7  3.8
  0~40μm   18.4   18.2   17.4   16.3   18.8  18.9
  0~149μm   92.2   92.3   91.6   91.9   92.9  93.4
  平均颗粒直径(微米)   69.8   71.1   72.5   73.5   69.7  69.4
从表3的结果可以看出,采用由本发明提供的设备制得的分子筛制备催化剂时,所得催化剂的氧化钠含量显著降低,孔体积和比表面积明显增大,微反活性明显提高。
表4
表5
Figure BSA00000313122300201
从表5的结果可以看出,与参比催化剂CC-1相比,采用由本发明提供的设备制得的分子筛为活性组分制备的催化剂具有较高的转化率、较高的液体收率、较高轻质油收率和较低的焦炭选择性。

Claims (15)

1.一种制备分子筛的设备,其特征在于,该设备包括管状反应器(1)、气固分离器(2)、吸收塔(3)和原料混合单元(4),
所述管状反应器(1)包括至少一个进料口、出料口和管体(13),所述进料口和出料口分别位于所述管体(13)的两个端部;
所述气固分离器(2)通过所述出料口与所述管状反应器(1)连通,所述气固分离器(2)的上部与所述吸收塔(3)连通,所述气固分离器(2)与出料口连接的位置低于所述气固分离器(2)与所述吸收塔(3)连接的位置;
所述原料混合单元(4)用于将不同的气体混合和/或将气体与固体混合,所述原料混合单元(4)通过所述进料口中的一个与所述管状反应器(1)连通。
2.根据权利要求1所述的设备,其中,所述原料混合单元(4)包括气固混合器和/或气体混合器,所述气固混合器和/或气体混合器通过所述进料口中的一个与所述管状反应器(1)连通。
3.根据权利要求1所述的设备,其中,所述进料口为一个,所述原料混合单元(4)包括气固混合器和气体混合器,气体混合器与气固混合器连通,气固混合器通过所述进料口中的一个与所述管状反应器(1)连通。
4.根据权利要求1所述的设备,其中,所述管状反应器(1)的长度为5-100米,直径为0.01-1.5米。
5.根据权利要求1或4所述的设备,其中,所述管体(13)包括第一倾斜段(131)和竖直段(132),所述第一倾斜段(131)的一端与所述竖直段(132)的一端相接,所述出料口位于所述第一倾斜段(131)的另一端,且所述第一倾斜段(131)与所述竖直段(132)连接的位置高于所述出料口所在的位置。
6.根据权利要求5所述的设备,其中,所述第一倾斜段(131)与竖直段(132)之间的夹角为10°至90°。
7.根据权利要求6所述的设备,其中,所述第一倾斜段(131)与竖直段(132)之间的夹角为30°至80°。
8.根据权利要求5所述的设备,其中,所述第一倾斜段(131)和竖直段(132)的长度比为0.1-10:1。
9.根据权利要求5所述的设备,其中,所述管体(13)还包括第二倾斜段(133),所述第二倾斜段(133)的一端与所述竖直段(132)的另一端相接,所述进料口位于所述第二倾斜段(133)的另一端。
10.根据权利要求9所述的设备,其中,所述进料口所在的位置高于所述第二倾斜段(133)与所述竖直段(132)连接的位置。
11.根据权利要求10所述的设备,其中,所述第二倾斜段(133)与竖直段(132)之间的夹角为10°至90°。
12.根据权利要求11所述的设备,其中,所述第二倾斜段(133)与竖直段(132)之间的夹角为30°至80°。
13.根据权利要求9或10所述的设备,其中,所述第二倾斜段(133)和竖直段(132)的长度比为0.1-10:1。
14.根据权利要求1所述的设备,其中,所述气固分离器(2)的底部为端部具有开口的锥形。
15.根据权利要求14所述的设备,其中,所述气固分离器(2)与出料口连接的位置高于所述锥形的起始位置。
CN 201010515177 2010-10-22 2010-10-22 一种制备分子筛的设备 Active CN102452657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010515177 CN102452657B (zh) 2010-10-22 2010-10-22 一种制备分子筛的设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010515177 CN102452657B (zh) 2010-10-22 2010-10-22 一种制备分子筛的设备

Publications (2)

Publication Number Publication Date
CN102452657A CN102452657A (zh) 2012-05-16
CN102452657B true CN102452657B (zh) 2013-01-30

Family

ID=46036401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010515177 Active CN102452657B (zh) 2010-10-22 2010-10-22 一种制备分子筛的设备

Country Status (1)

Country Link
CN (1) CN102452657B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539146B (zh) * 2013-10-28 2015-06-24 中国海洋石油总公司 一种以离子热法连续式合成sapo-11分子筛的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374093A (en) * 1981-02-20 1983-02-15 Mobil Oil Corporation Continuous-stream upflow zeolite crystallization apparatus
CN1683245A (zh) * 2004-04-14 2005-10-19 中国石油化工股份有限公司 一种含稀土高硅y型沸石及其制备方法
CN1683244A (zh) * 2004-04-14 2005-10-19 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN201088913Y (zh) * 2007-09-18 2008-07-23 中国石油天然气股份有限公司 一种分子筛合成旋转反应釜系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3502831B2 (ja) * 2000-12-15 2004-03-02 敏雄 霜田 接触反応管・回転ディスク反応器方式によるゼオライトの連続製造方法および連続製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374093A (en) * 1981-02-20 1983-02-15 Mobil Oil Corporation Continuous-stream upflow zeolite crystallization apparatus
CN1683245A (zh) * 2004-04-14 2005-10-19 中国石油化工股份有限公司 一种含稀土高硅y型沸石及其制备方法
CN1683244A (zh) * 2004-04-14 2005-10-19 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN201088913Y (zh) * 2007-09-18 2008-07-23 中国石油天然气股份有限公司 一种分子筛合成旋转反应釜系统

Also Published As

Publication number Publication date
CN102452657A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
CN102050459B (zh) 一种制备高硅分子筛的方法
CN102050460B (zh) 一种制备分子筛的设备
CN102451736B (zh) 一种催化裂化催化剂的制备方法
CN103787352B (zh) 一种制备分子筛的方法
CN102049315B (zh) 一种催化裂化催化剂的制备方法
TWI614214B (zh) 製備分子篩和催化裂化用催化劑的方法和設備
CN103785438B (zh) 一种制备催化裂化催化剂的设备
CN103787353B (zh) 一种制备分子筛的设备
CN102452660B (zh) 一种制备分子筛的方法
CN102452657B (zh) 一种制备分子筛的设备
CN102049316B (zh) 一种制备催化裂化催化剂的设备
CN102451657B (zh) 一种制备分子筛的设备
CN102451655B (zh) 一种制备分子筛的设备
CN103785436B (zh) 一种制备催化裂化催化剂的设备
CN102452661B (zh) 一种制备分子筛的方法
CN102451658B (zh) 一种制备催化裂化催化剂的设备
CN102451656B (zh) 一种制备催化裂化催化剂的设备
CN102451730B (zh) 一种催化裂化催化剂的制备方法
CN102452658B (zh) 一种分子筛的制备方法
CN102451729B (zh) 一种催化裂化催化剂的制备方法
CN102451732B (zh) 一种制备催化裂化催化剂的设备
CN103769193B (zh) 一种制备催化裂化催化剂的方法
TWI579047B (zh) Methods and apparatus for preparing molecular sieves and catalyst for catalytic cracking
CN104549445B (zh) 一种催化裂化助剂的制备方法
CN103785437B (zh) 一种制备催化裂化催化剂的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant