CN102449191A - 含有用于能量辐射的吸收颗粒的层的制造方法 - Google Patents

含有用于能量辐射的吸收颗粒的层的制造方法 Download PDF

Info

Publication number
CN102449191A
CN102449191A CN2010800226953A CN201080022695A CN102449191A CN 102449191 A CN102449191 A CN 102449191A CN 2010800226953 A CN2010800226953 A CN 2010800226953A CN 201080022695 A CN201080022695 A CN 201080022695A CN 102449191 A CN102449191 A CN 102449191A
Authority
CN
China
Prior art keywords
layer
absorbing particles
coated material
substrate
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800226953A
Other languages
English (en)
Other versions
CN102449191B (zh
Inventor
J.D.詹森
U.克鲁格
G.温克勒
C.多伊
K.库纳特
R.乌尔里克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN102449191A publication Critical patent/CN102449191A/zh
Application granted granted Critical
Publication of CN102449191B publication Critical patent/CN102449191B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及在衬底(11)上制造陶瓷层(15)的方法。为此,使用含有化学前驱体的涂层材料。该前驱体通过热处理转化成要制造的陶瓷。本发明提供了用于向各个层中输入热的不同方法。这通过吸收颗粒(16)实现,吸收颗粒(16)可以不同浓度或不同化学组成使用。由此,即使在较低的层区域中也可以针对性地输入热,例如除了传统的热输入(19)之外通过微波激发(16)或UV或IR光输入。因此有利地,较厚的层特别可以通过单个热处理层制备。

Description

含有用于能量辐射的吸收颗粒的层的制造方法
本发明涉及在衬底上制造层的方法。根据该方法,向衬底上涂覆涂层材料,该涂层材料包含溶剂或分散剂、陶瓷的化学前驱体和用于能量辐射的吸收颗粒。然后,对该提供有涂层材料的衬底进行热处理,其中蒸发溶剂或分散剂并且所述化学前驱体在形成层的情况下转化成陶瓷,其中所述热处理包括引入电磁能量辐射,该电磁能量辐射由所述吸收颗粒转化成热。因此,所述吸收颗粒由能够吸收能量辐射的材料构成。该能量辐射必须提供可由一定吸收剂材料吸收的能量,并且以合适的方式选择适于使用的吸收颗粒。作为能量辐射可以特别使用电磁辐射,由此对于吸收颗粒的材料选择提供了大量选项(对此将在下文详述),从而取决于应用情况,可以选择与所制造的层体系适配的材料。
由陶瓷的化学前驱体制造陶瓷层的方法是已知的。例如,一种这种方法记载于WO 00/00660 A中。陶瓷的化学前驱体包括本身不属于陶瓷物质种类但是可以溶于溶剂或分散于分散剂中的材料。以这种方式得到了可以涂覆于待涂覆的衬底上的液体或糊料。后续的热处理的作用在于,首先蒸发溶剂或分散剂,由此硬化该层。接着的烧结处理导致前驱体交联成所期望的陶瓷(热解)。通过用不同的组合物涂覆更多的层,借助该方法也可以制造所谓的多层或梯度层,在层中层组成连续变化或跳跃变化。
在热处理时的热输入通常在烘箱中进行,在烘箱中将具有涂覆层的衬底加热至所需的温度。根据DE 10 2007 026 626 B3的记载,热输入还可以有针对性的实施,通过例如将UV-光吸收剂颗粒如氧化钛或氧化锌的颗粒引入层中。热处理可以通过UV-光辐射进行,或至少得到促进。
本发明的目的在于提供一种通过热处理陶瓷的化学前驱体在衬底上制造层的方法,该方法对所需的应用情形提供了层适配的更大空间,并因此可以经济地使用。
该目的通过本文开头所述的方法实现,其中对于层的仅一部分体积,使用含有吸收颗粒的涂层材料作为第一涂层材料,并且对于层的其余体积使用至少另一种涂层材料,其含有溶剂或分散剂和陶瓷的化学前驱体。换句话说,对于本发明方法使用更多的涂层材料,其至少在吸收颗粒的选择方面彼此不同。在各情况中,第一涂层材料含有一定种类的吸收颗粒,而(一种或多种)其他涂层材料不含吸收颗粒或含有不同于第一涂层材料所含吸收颗粒的吸收颗粒。本发明应用吸收颗粒的优点在于,其可以针对一定的应用情形的方法需要进行适配。
例如,以所述方式制备较厚的层,其中邻近衬底的较低的层可以设置吸收颗粒。如果接着对这些层进行传统的烘箱中的热处理,那么首先加热层的表面附近,而层的衬底附近对此需要更长的时间。然而,在该区域中,热输入通过向要使用的吸收颗粒中引入适合的能量辐射进行加速,由此可以确保将层中化学前驱体均匀加热并转化成要制造的陶瓷。由此,有利的是减少对衬底的热负荷,缩短热处理的处理时间并且对抗在层中形成内应力。此外,避免在层厚较大时交替引入层材料和实施热处理。这既可以制造品质较高的层,也可以节省制造消耗和并由此节约成本。
通过仅向层的一定部分体积中引入吸收颗粒也可以有利地制造如下的层,在该层中使用了热处理时要求不同温度的陶瓷。温度较高的陶瓷可以设置具有吸收颗粒,或者设置具有较高浓度的吸收颗粒,从而在热处理时在该区域产生更高的温度。
含有不同涂层材料的层体积的部分优选为多层-层的单个层。层的不同分体积通过依次涂覆不同的涂层材料而形成。以这种途径也可制造分散层,如果在后续热处理层时层组成发生分散并导致在各层之间的浓度平衡。由此形成了构成梯度层特征的浓度梯度。
但是要制造的层的分体积也可以不以层形式分布。例如,在衬底上可以形成具有不同功能的层区域。因此,可以例如想到,制备具有特别性能如导电性或耐磨性的层的分区域。
根据本发明方法一个有利的实施方案,也可在其他涂层材料或至少一种其他涂层材料中使用吸收颗粒,其中该使用在吸收颗粒在涂层材料中的浓度和/或吸收颗粒的化学组成和/或不同种类吸收颗粒的混合比方面有不同。对此,可以有利地使用吸收颗粒的组合,可以使用不同种类的能量辐射在热处理时同时或依次工作。然后各能量辐射可以用于在一定层体积中针对性地影响温度。还可以借助不同组成的吸收颗粒使用如下的能量辐射,该能量辐射具有不同的向层中的特异性穿透深度(下文将详细解释)。吸收颗粒在涂层材料中的浓度确定了通过辐射层可以向相关层中转化的热能。由此,可以特别地影响加热速率。通过调节特定层中的不同种类吸收颗粒之间的不同混合比,还可以使用不同种类的能量辐射。
特别有利的是,涂覆由含有用于微波的吸收颗粒的涂层材料形成的层和在其上涂覆由含有用于IR和/或UV光的吸收颗粒的涂层材料形成的层。在此,可以利用如下条件,微波作为电磁辐射具有比IR-或UV-光更大的进入层中的穿透深度。在所给方式形成的层中,还可以通过同时用IR-光或UV-光和用微波辐射进行加热,其中在所选的吸收颗粒在层中的浓度情况下可以均匀地加热层,并且可以在加热处理时避免在层内形成温度梯度。
有利的是,也可以使用不同的能量辐射以所需顺序先后对层中的层进行加热。对此,先后使用一定顺序的能量辐射,并且可以例如如下实现:首先将衬底上的层转化成陶瓷,然后接着转化位于其上的层。这对层的粘合或者对层中的内应力的形成有正面影响。
有利的是还可以如下设置,将涂层材料涂覆在具有不同厚度的区域的衬底上,并且在较厚的区域使用较多的吸收颗粒。对此可以有利地实现,在衬底上具有局部不同厚度的层也可以在热处理步骤中硬化。在传统烘箱加热中需求较长处理时间的层厚较大的区域以此方式设置有吸收颗粒,该吸收颗粒向该区域中输入额外热能从而引起快速加热。吸收颗粒的浓度可以如下调节,使得厚度更大的层区域的处理时间适配厚度更薄的区域的处理时间。
特别有利的是,在大平面工件中也引入吸收颗粒,因为在热处理时通过吸收颗粒引入热可以实现更大的均匀性。如下也有利于均匀的层结构,例如将微波仅局部地引入大表面工件的层表面的一定区域,并且同时通过IR-或UV-敏感的吸收颗粒促进能量引入。
涂覆衬底可以根据常见的方法进行,例如溅射、用橡皮刷(Rakeln)、涂敷、辊压或浸没(Tauchen)。作为陶瓷可以优选制备金属氧化物或金属氮化物或金属氧氮化物(Metalloxinitride)。此外,可以制备金属硫化物或金属氧硫化物作为涂层材料(例如二硫化钼或二硫化钨)。常见的前驱体为硫代羧酸、烷硫醇和羧酸,其与相应的金属盐混合。对于吸收颗粒可以考虑以下材料。
通过光源(IR-或UV-辐射源)输入能量,由此一般可以考虑所有的吸收剂材料,其中确定能量的光子激发吸收剂的原子和分子。根据热处理(热解)所需的温度和吸光颗粒最终需要的分解,使用有机和/或无机性质的吸收颗粒。无机吸收剂的实例有金属氧化物二氧化钛;氧化锌、二氧化硅、二氧化锡或氧化铜。作为有机IR-吸收剂,可以提及各种酞菁、萘酞菁(Naphthalocyanine)和羰花青、聚甲炔以及二氯甲烷。
为了耦合微波,选用具有分子偶极矩并且在电磁交变场上反应的吸收剂(例如TiN、CuCr、ZrO、SiO、BO、AgCr、AuCr、CrCu、铁氧体Fe2O3或Fe3O4,其通过添加镍、锌或锰化合物而磁化)。
所使用的吸收颗粒具有特征激发频率,这在配置激发-能量源时必须考虑。用于微波辐射的一些吸收剂的典型激发频率列于下表中。
Figure BDA0000111844860000041
同样可以使用其原子或分子通过光子和电磁交变场激发的吸收剂(例如合成的铁锰混合氧化物(Fe,Mn)2O3,由Lanxess Deutschland GmbH公司以Bayferrox303 T得到)。
在涂层材料中,基本组成成分可以同时具有微波-吸收剂(例如乙酸在5GHz或丙酸在2.5GHz作为溶剂或稀释剂)或者作为IR-吸收剂(金属有机化合物作为其羧化物、醇盐或其混合物加入,例如钛-2-乙基己酸酯、锌-2-乙基己酸酯,其在热解分解时“原位”形成相应的金属氧化物)的功能,并且加快向陶瓷涂层材料的化学转化。在氧化锆的情况中提供了一种微波-吸收剂,在热解时其由锆-2-乙基己酸酯和丙酸生成,并且然后加速整个反应,并同时形成了涂层工件的一部分。起IR-吸收剂和微波-吸收剂作用的铁氧化物,同样可以从铁-2-乙基己酸酯和丙酸在热处理期间在热解分解条件下制备。
该吸收剂既可以作为微米颗粒也可以是纳米颗粒用于前驱体溶液中。同样可以合适吸收剂的溶液、悬浮液和分散液的形式实现促进目的。
根据涂层结构,将该吸光颗粒加入整个层或单个层中。
首先,大平面涂覆的工件目前可以不使用光场(IR,UV)的具体技术进行辐射。通过借助吸收颗粒发生的能量耦合,在前驱体层产生了必需的反应能量。由此发生了必需的前驱体化学转化成陶瓷层。作为在较高温度(>350℃)热解的吸收剂可以主要使用无机物质,例如未掺杂或掺杂形式的氧化锌、氧化铝、二氧化钛、二氧化硅、氧化铜、合成铁氧化物Fe3O4、合成铁-锰-混合氧化物(Fe,Mn)2O3、二氧化锡。例如锑掺杂的二氧化锡作为IR-吸收剂可以产品名称Minatec230 A-IR从Merck公司购买获得。合成的铁氧化物可以产品名Bayferrox
Figure BDA0000111844860000052
306和Bayoxide
Figure BDA0000111844860000053
E 8611以及合成的铁锰-混合氧化物可以名称Bayferrox303 T从Lanxess Deutschland GmbH获得。
能够在<300℃热解的涂层材料(前驱体)也可以混合有机性质的IR吸收剂。作为有机吸收剂可以有各种酞菁和萘酞菁、羰花青、聚甲炔以及二氯甲烷。
酞菁的实例有:
锌2,9,16,23-四叔丁基-29H,31H-酞菁
硅2,9,16,23-四叔丁基-29H,31H-二氯酞菁
铜(II)2,9,16,23-四叔丁基-29H,31H-酞菁
硅(IV)酞菁二(三己基甲硅烷基氧化物)
所述化合物从Aldrich公司购买获得。
同样属于酞菁类的其他产品有:Fujifilm公司的PRO-JETTM 800NP、PRO-JETTM 830NP和PRO-JETTM 900NP。
萘酞菁的实例:
氧钒(Vanadyl)2,11,20,29-四叔丁基-2,3-萘酞菁
镍(II)2,11,20,29-四叔丁基-2,3-萘酞菁
锌2,11,20,29-四叔丁基-2,3-萘酞菁
2,11,20,29-四叔丁基-2,3萘酞菁
所述化合物从Aldrich公司购买获得。
羰花青的实例:
Aldrich公司的产品有IR-780 iodide、IR-786 iodide、IR-780 Perchlorate、IR-786 Perchlorate、IR-792 Perchlorate和IR-768 Perchlorate。
在产品PRO-JETTM 830LDI中含有聚甲炔类,该产品可以从Fujifilm公司购买获得。
Excition公司的IRA 980含有上述二氯甲烷。
吸收剂既可以作为微米颗粒也可以作为纳米颗粒加入前驱体溶液中。
同样可以合适吸收剂的溶液、悬浮液和分散液的形式进行添加。
同样可以少量加入上述金属的金属有机化合物(醇盐、羧化物或这两者的混合物)起IR-吸收剂作用,所述金属有机化合物然后可以原位在热解分解时形成相应的吸收IR的金属氧化物,由此加速整个反应。
根据吸收剂的浓度可以调节化学转化前驱体的所需温度。
由前驱体(Precursor),由无机和/或有机溶液、分散液和悬浮液形成的金属氧化物和金属氮化物的制备是公知的。下面解释根据本发明方法的层结构的实施例:
实施例1:
为包括三层a、b和c的多层-层准备涂层材料。在此,用于衬底上的第一层a的部分前驱体含有吸收微波辐射的颗粒。向用于第二层b的部分前驱体中加入吸光颗粒(吸收颗粒)。通过同时使用光场(UV-或IR-辐射源)和微波实施向中间层中输入能量,这是因为从内层开始向外层加热前驱体。通过针对性的形成吸收剂-颗粒的结构以及为了强化IR或UV辐射和微波的耦合,在化学转化时可以从内(邻近衬底)向外(邻近表面)直到em区域的层厚加热该涂层材料(前驱体)。
实施例2:
为包括三层a、b和c的多层-层准备涂层材料(前驱体)。在此,用于衬底上的第一层a的部分前驱体含有吸光颗粒(吸收颗粒)。通过用光场进行辐射向中间层b中输入能量,这是因为从内层开始向外层加热前驱体。通过针对性的形成吸收剂-颗粒的结构,可以在化学转化时从内向外均匀地加热前驱体。
实施例3:
向用于层的涂层材料(前驱体)中混入吸光颗粒(吸收颗粒),但是仅在层厚大的区域。使用该前驱体涂覆管的内侧。层厚大的区域位于管摩擦大的管段(例如弯管)。接着,通过红外-和热-探测器(Infrarot-und Heiz-sonde)进行辐射。由此将前驱体化学转化成陶瓷保护层,其中由于额外的吸光颗粒的活化作用,层厚较大区域的处理持续时间可以与较薄区域的处理时间一样长。因此,探测器(Sonde)可以不用考虑各个区域而以恒定的速度穿过管。
下面参考附图描述本发明的进一步细节。用相同的附图标记表示相同或相应的附图元素,并且仅在各图之间存在差异时进行详细解释。在各附图中:
图1显示了根据本发明方法的一个实施例所制造的多层-层的截面图,
图2显示了根据本发明方法的另一实施例所制造的具有不同层厚的层的截面图,和
图3显示了根据本发明方法的再一实施例所制造的具有不同层区域的构件的三维视图。
图1显示了衬底11,在该衬底11上将涂层材料涂覆成层12的形式。该层具有位于衬底上的(内)层13、中间层14和上(外)层15。在层13中含有吸收颗粒16,该吸收颗粒16可以被微波17激发。在层14中设置有吸收颗粒16,该吸收颗粒16可被IR辐射18激发。层15不具有吸收颗粒。
在后续热处理时,向层15中引入热辐射19,该热辐射从层的表面逐渐向整个层中扩散。但是热输入也可以IR-辐射18和微波辐射17促进,其通过吸收进入吸收颗粒16而参与直接加热层14和13。在此考虑到,吸收颗粒16位于相关辐射的最大穿透深度内。
在图2中显示了衬底11,其具有凹部20。该凹部20被层12填充,其中在凹部20的区域中将吸收颗粒16加入涂层材料中,使得在该区域中通过后续的热处理而加速热输入。
在图3中显示了复杂的构件,其形成了衬底11。该构件基本上为圆筒形设计,并且在外套面区域涂覆有两个层13,14。在层14的断开区域可以看见的层13具有体积部分21,其设计为电路(Leiterbahn)。对此,在该体积部分中选择涂层材料,该涂层材料除了陶瓷材料的前驱体之外还含有金属颗粒,该金属颗粒保证了实施热处理后该体积部分的导电性。
层14在衬底11的前端具有区域22,该区域22具有不同于层14其余部分的层组成。该区域由耐磨性更高的陶瓷构成,从而该区域例如可以用作滑动轴承。

Claims (6)

1.在衬底(11)上制造层(12)的方法,其中
-向衬底(11)上涂覆涂层材料,该涂层材料包含溶剂或分散剂、陶瓷的化学前驱体和用于电磁能量辐射的吸收颗粒(16),和
-对该提供有涂层材料的衬底(11)进行热处理,其中蒸发溶剂或分散剂并且所述化学前驱体在形成层(12)的情况下转化成陶瓷,其中所述热处理包括引入电磁能量辐射,该电磁能量辐射由所述吸收颗粒转化成热,
其特征在于,
-对于层(12)的仅一部分体积,使用含有吸收颗粒的涂层材料作为第一涂层材料,
-对于层(12)的其余体积使用至少另一种涂层材料,其含有溶剂或分散剂和陶瓷的化学前驱体,和
-在至少一种其他涂层材料中使用吸收颗粒(16),其中所述使用在吸收颗粒在涂层材料中的浓度和/或吸收颗粒的化学组成和/或不同类型的吸收颗粒的混合比方面有不同。
2.根据权利要求1所述的方法,其特征在于,所述第一涂层材料和至少另一种涂层材料以至少两层(13,14,15)方式涂覆。
3.根据权利要求2所述的方法,其特征在于,对于最上层(15)使用不含吸收颗粒的涂层材料。
4.根据权利要求2或3所述的方法,其特征在于,涂覆由含有用于微波的吸收颗粒的涂层材料形成的层(13)和在其上涂覆由含有用于IR和/或UV光的吸收颗粒的涂层材料形成的层(14)。
5.根据前述权利要求中任一项所述的方法,其特征在于,先后使用一定顺序的能量辐射,通过该能量辐射各个层中的吸收颗粒(16)先后被加热。
6.根据前述权利要求中任一项所述的方法,其特征在于,在具有不同厚度区域的衬底(11)上涂覆涂层材料,并且在较厚的区域使用较多的吸收颗粒。
CN2010800226953A 2009-05-27 2010-05-12 含有用于能量辐射的吸收颗粒的层的制造方法 Expired - Fee Related CN102449191B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009023628.7 2009-05-27
DE102009023628A DE102009023628A1 (de) 2009-05-27 2009-05-27 Verfahren zum Erzeugen einer Schicht mit Absorberpartikeln für eine Energiestrahlung
PCT/EP2010/056546 WO2010136338A2 (de) 2009-05-27 2010-05-12 Verfahren zum erzeugen einer schicht mit absorberpartikeln für eine energiestrahlung

Publications (2)

Publication Number Publication Date
CN102449191A true CN102449191A (zh) 2012-05-09
CN102449191B CN102449191B (zh) 2013-09-18

Family

ID=43027500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800226953A Expired - Fee Related CN102449191B (zh) 2009-05-27 2010-05-12 含有用于能量辐射的吸收颗粒的层的制造方法

Country Status (5)

Country Link
US (1) US9200370B2 (zh)
EP (1) EP2435599B1 (zh)
CN (1) CN102449191B (zh)
DE (1) DE102009023628A1 (zh)
WO (1) WO2010136338A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2942788B1 (en) * 2014-03-19 2018-07-04 NGK Insulators, Ltd. Voltage nonlinear resistive element and method for manufacturing the same
CN104934173A (zh) * 2014-03-19 2015-09-23 日本碍子株式会社 电压非线性电阻元件及其制法
IT201800002349A1 (it) * 2018-02-02 2019-08-02 Univ Degli Studi Di Milano Bicocca Metodo per la produzione di film sottili di dicalcogenuri di metalli di transizione
US11453618B2 (en) * 2018-11-06 2022-09-27 Utility Global, Inc. Ceramic sintering
US11539053B2 (en) * 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210701A (zh) * 2006-12-29 2008-07-02 乐金电子(天津)电器有限公司 微波炉烤盘及其制作方法
CN101323529A (zh) * 2008-07-11 2008-12-17 中国科学院上海硅酸盐研究所 微波烧结中的梯度透波结构及其用于制备陶瓷材料的方法
WO2009000676A2 (de) * 2007-06-27 2008-12-31 Siemens Aktiengesellschaft Verfahren zum erzeugen einer keramischen schicht auf einem bauteil
WO2009000657A2 (de) * 2007-06-27 2008-12-31 Siemens Aktiengesellschaft Bauteil mit einer einen farbstoff enthaltenden keramischen schicht und verfahren zu deren herstellung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585136A (en) 1995-03-22 1996-12-17 Queen's University At Kingston Method for producing thick ceramic films by a sol gel coating process
EP0850203B2 (fr) * 1995-09-15 2012-01-04 Rhodia Chimie Substrat a revetement photocatalytique a base de dioxyde de titane et dispersions organiques a base de dioxyde de titane
US6447848B1 (en) 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
US20060280955A1 (en) * 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for EBC of silicon-containing substrate and processes for preparing same
DE102007026626B3 (de) 2007-06-07 2008-09-11 Siemens Ag Verfahren zum Erzeugen einer Trockenschmierstoff-Schicht
US20090274850A1 (en) * 2008-05-01 2009-11-05 United Technologies Corporation Low cost non-line-of -sight protective coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210701A (zh) * 2006-12-29 2008-07-02 乐金电子(天津)电器有限公司 微波炉烤盘及其制作方法
WO2009000676A2 (de) * 2007-06-27 2008-12-31 Siemens Aktiengesellschaft Verfahren zum erzeugen einer keramischen schicht auf einem bauteil
WO2009000657A2 (de) * 2007-06-27 2008-12-31 Siemens Aktiengesellschaft Bauteil mit einer einen farbstoff enthaltenden keramischen schicht und verfahren zu deren herstellung
CN101323529A (zh) * 2008-07-11 2008-12-17 中国科学院上海硅酸盐研究所 微波烧结中的梯度透波结构及其用于制备陶瓷材料的方法

Also Published As

Publication number Publication date
WO2010136338A3 (de) 2011-01-27
CN102449191B (zh) 2013-09-18
WO2010136338A2 (de) 2010-12-02
EP2435599B1 (de) 2013-07-03
US20120128872A1 (en) 2012-05-24
US9200370B2 (en) 2015-12-01
DE102009023628A1 (de) 2010-12-02
EP2435599A2 (de) 2012-04-04

Similar Documents

Publication Publication Date Title
CN102449191B (zh) 含有用于能量辐射的吸收颗粒的层的制造方法
Gerber et al. Electronic effects of metal hexacyanoferrates: An XPS and FTIR study
Shukla et al. Study of mechanism of electroless copper coating of fly-ash cenosphere particles
Joseph et al. Structural, spectral and antimicrobial studies of copper (II) complexes of 2-benzoylpyridine N (4)-cyclohexyl thiosemicarbazone
Richetta et al. Surface spectroscopy and structural analysis of nanostructured multifunctional (Zn, Al) layered double hydroxides
Adams et al. Decomposition reactions in CaCu3Ti4O12 ceramics
CN103665995B (zh) 多功能涂覆液组合物
Srivastava Chemical bonding and crystal field splitting of the Eu3+ 7F1 level in the pyrochlores Ln2B2O7 (Ln= La3+, Gd3+, Y3+, Lu3+; B= Sn4+, Ti4+)
Lykhach et al. Interplay between the metal-support interaction and stability in Pt/Co 3 O 4 (111) model catalysts
Gupta et al. Copper coating on austenitic stainless steel using microwave hybrid heating
Aquilanti et al. Cation distribution in Zn doped cobalt nanoferrites determined by X-ray absorption spectroscopy
Kabátová et al. The effect of calcination on morphology of phosphate coating and microstructure of sintered iron phosphated powder
Dodd et al. Minimal biomass deposition in banded iron formations inferred from organic matter and clay relationships
Dave et al. Effects of Barium‐Copper‐Cobalt oxide composites supported on reduced graphene oxide in the thermolysis of ammonium perchlorate and 3‐nitro‐1, 2, 4‐triazol‐5‐one
Shi et al. Atomic structures and electronic properties of Ni or N modified Cu/diamond interface
Meng et al. ZnSe nanodisks: Ti3C2 MXenes-modified electrode for nucleic acid liquid biopsy with photoelectrochemical strategy
Safdar et al. Effect of carbon backbone on luminescence properties of Eu-organic hybrid thin films prepared by ALD/MLD
Zhu et al. Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth
Mansour et al. Humidity sensing using Zn (1.6− x) Na0. 4CuxTiO4 spinel nanostructures
Kelzenberg et al. Chemical Kinetics of the Oxidation of Manganese and of the Decomposition of MnO2 by XRD and TG Measurements
Anandan et al. Growth, characterization and interfacial reaction of magnetron sputtered Pt/CeO2 thin films on Si and Si3N4 substrates
Wang et al. Electroless plating of copper on fly ash cenospheres using polyaniline‐Pd activation
Zhan et al. Extremely low catalyst loading for electroless deposition on a non-conductive surface by a treatment for reduced graphene oxide
Ishizaki et al. Fine‐Tunable Electronic Energy Levels of Mixed‐Metal Prussian‐Blue Alloy Nanoparticles
Wang et al. The size effect to O2−–Ce4+ charge transfer emission and band gap structure of Sr2CeO4

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130918

Termination date: 20160512