CN102430765A - 大型回转体零件车削加工误差检测自适应补偿方法 - Google Patents

大型回转体零件车削加工误差检测自适应补偿方法 Download PDF

Info

Publication number
CN102430765A
CN102430765A CN2011103349237A CN201110334923A CN102430765A CN 102430765 A CN102430765 A CN 102430765A CN 2011103349237 A CN2011103349237 A CN 2011103349237A CN 201110334923 A CN201110334923 A CN 201110334923A CN 102430765 A CN102430765 A CN 102430765A
Authority
CN
China
Prior art keywords
semifinishing
point
radius
error
intersection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103349237A
Other languages
English (en)
Other versions
CN102430765B (zh
Inventor
王晓兵
胡大明
赵凯
白永雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUBEI SANJIANG SPACE XIANFENG ELECTRONIC INFORMATION CO Ltd
Original Assignee
HUBEI SANJIANG SPACE XIANFENG ELECTRONIC INFORMATION CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUBEI SANJIANG SPACE XIANFENG ELECTRONIC INFORMATION CO Ltd filed Critical HUBEI SANJIANG SPACE XIANFENG ELECTRONIC INFORMATION CO Ltd
Priority to CN201110334923.7A priority Critical patent/CN102430765B/zh
Publication of CN102430765A publication Critical patent/CN102430765A/zh
Application granted granted Critical
Publication of CN102430765B publication Critical patent/CN102430765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)
  • Turning (AREA)

Abstract

本发明公开了一种大型回转体零件车削加工误差检测自适应补偿方法,该方法为对回转体零件进行粗加工;用探针测量回转体零件内孔轴向截面上两相邻轮廓线段的交点的半径,及两端点的半径的误差量δ1,粗加工后的回转体零件进行半精加工半精加工车刀刀具用理论加工半径为X11/2的加工轨迹交点及两端点进行半精加工,测量半精加工后步骤2)中交点(A),及两端点(A1)的实际半径,并得到半精加工的误差量δ1′;进行精加工,所述精加工车刀刀具、及刀具的主轴转速、进给速度与半精加工相同,精加工的过程中车床数控系统对半精加工的误差量δ1′进行补偿,本发明解决加工过程中刀具磨损所带来的加工误差,大幅提高了大型回转体零件的加工精度。

Description

大型回转体零件车削加工误差检测自适应补偿方法
技术领域
本发明涉及机械加工技术领域,具体涉及一种大型回转体零件车削加工误差检测自适应补偿方法。
技术背景
大型回转类零件在车床上加工时,其零件在每一转进给下,刀具切削长度为一圈,零件的截面轮廓加工后,零件所切削的长度为πDL/s(D为回转直径,L为切削截面长度,s为每转进给),从公式中可以看出零件直径越大,所需的切削长度越长,另一方面,从工厂的加工经验中可以看出,切削刀具磨损问题在大型零件加工中尤为突出,以工厂承制的某大型回转体零件为例,加工直径为450mm,长2000mm的某零件外形,其起点和终点的直径差在0.5mm以上,其产生原因为在大型回转体零件在加工过程中,刀具会随着切削长度增加逐渐磨损,该问题完全不能用手工检测调整刀具参数来解决,常常因此而影响产品的质量和生产进度。
发明内容
本发明的目的是针对上述技术问题,提供一种大型回转体零件车削加工误差检测自适应补偿方法,该方法能解决加工过程中刀具磨损所带来的加工误差。
为实现此目的,本发明所设计的一种大型回转体零件车削加工误差检测自适应补偿方法,其特征在于,它包括如下步骤:
步骤1)对回转体零件进行粗加工;
步骤2)用探针测量回转体零件内孔轴向截面上两相邻轮廓线段的交点的半径,及两端点的半径,该半径与上述轮廓交点,及两端点的最终理论半径X1相比较得到误差量δ1,将所述误差量δ1存储到车床数控系统的存储器中;
步骤3)对经过步骤1)粗加工后的回转体零件采用半精加工车刀刀具,进行半精加工;半精加工中通过控制半精加工刀具的主轴转速和进给速度,以及走刀轨迹,实现将步骤2)中交点及两端点的半精加工的理论加工半径设置为X11/2,即半精加工车刀刀具用理论加工半径为X11/2的加工轨迹对步骤2)中交点及两端点进行半精加工,X1为所述交点及两端点的最终理论半径,δ1为所述交点及两端点的粗加工误差量;
步骤4)用探针测量半精加工后步骤2)中交点,及两端点的实际半径,将半精加工后步骤2)中交点,及两端点的实际半径与步骤3)中交点,及两端点的半精加工理论半径比较后得到半精加工的误差量δ1′,并将所述半精加工的误差量δ1′储存到车床数控系统的存储器中;
步骤5)对经过步骤3)半精加工后的回转体零件采用精加工车刀刀具,进行精加工,所述精加工车刀刀具、及刀具的主轴转速、进给速度与半精加工相同,精加工的过程中车床数控系统对半精加工的误差量δ1′进行补偿,即在车床数控系统中将经过步骤3)半精加工后的交点,及两端点的半径的精加工轨迹设置为X11′,用改变后的加工轨迹加工后即得到内孔误差补偿后的回转体零件,X1为该交点,及两端点的最终理论半径,δ1′为该交点,及两端点的半精加工的误差量。
它还包括如下步骤:
步骤2.1)用探针测量回转体零件外壁轴向截面上两相邻轮廓线段的交点的半径,及两端点的半径,该半径与上述轮廓交点,及两端点的最终理论半径X2相比较得到误差量δ2,将所述误差量δ2存储到车床数控系统的存储器中;
步骤3.1)对经过步骤1)粗加工后的回转体零件采用半精加工车刀刀具,进行半精加工;半精加工中通过控制半精加工刀具的主轴转速和进给速度,以及走刀轨迹,实现将步骤2.1)中交点及两端点的半精加工的理论加工半径设置为X22/2,即半精加工车刀刀具用理论加工半径为X22/2的加工轨迹对步骤2)中交点及两端点进行半精加工,X2为所述交点及两端点的最终理论半径,δ2为所述交点及两端点粗加工误差量;
步骤4.1)用探针测量半精加工后步骤2.1)中交点,及两端点的实际半径,将半精加工后步骤2.1)中交点,及两端点的实际半径与步骤3.1)中交点,及两端点的半精加工理论半径比较后得到半精加工的误差量δ2′,并将所述半精加工的误差量δ2′储存到车床数控系统的存储器中;
步骤5.1)对经过步骤3.1)半精加工后的回转体零件采用精加工车刀刀具,进行精加工,所述精加工车刀刀具、及刀具的主轴转速、进给速度与半精加工相同,精加工的过程中车床数控系统对半精加工的误差量δ2′进行补偿,即在车床数控系统中将经过步骤3.1)半精加工后的交点,及两端点的半径的精加工轨迹设置为X22′,用改变后的加工轨迹加工后即得到内孔和外壁误差补偿后的回转体零件,X2为该交点,及两端点的最终理论半径,δ2′为该交点,及两端点的半精加工的误差量。
所述步骤3)中半精加工中控制半精加工刀具的主轴转速和进给速度为恒定值。
所述步骤3.1)中半精加工中控制半精加工刀具的主轴转速和进给速度为恒定值。
下面介绍本发明的原理机有益效果为:
为寻找回转体零件车削加工中刀具磨损造成零件加工尺寸变化规律,发明人进行了大量的加工试验。从试验结果来看,回转体零件加工过程较复杂,加工误差牵涉到刀具磨损、机床刚性、刀具磨损后让刀加剧等多个方面,这些问题都会反映到零件的加工误差上。本发明用两把相同规格、相同品牌的刀具组成一组,每组刀具中的两把刀具分别进行零件的半精加工和精加工,半精加工的加工参数和精加工的初始加工参数完全一致,在半精加工后,增加检测工序,检测每一段轨迹交点的误差值,精加工时,将每一点的误差值代入精加工轨迹进行补正,解决了传统方法的精加工中刀具磨损产生的误差,由于半精加工和精加工材料只相差一个精加工厚度,其硬度非常接近,因此可以消除材料硬度不同对加工补偿精度的影响。本发明解决加工过程中刀具磨损所带来的加工误差,大幅提高了大型回转体零件的加工精度。
附图说明
图1为被加工回转体零件外壁轴向截面的轮廓线示意图。
图2为被加工回转体零件内孔轴向截面的轮廓线示意图。
图3为利用本发明对被加工回转体零件外壁进行加工的加工轨迹图。
图4为利用本发明对被加工回转体零件内孔进行加工的加工轨迹图。
其中,A-回转体零件内孔轴向截面上两相邻轮廓线段的交点,A1-回转体零件内孔轴向截面上两端点,B-回转体零件外圆轴向截面上两相邻轮廓线段的交点的半径,B1-回转体零件外圆轴向截面两端点。
具体实施方式
以下结合附图和实施例对本发明作进一步的详细说明:
如图所示的一种大型回转体零件车削加工误差检测自适应补偿方法,它包括如下步骤:
步骤1)对回转体零件进行粗加工;
步骤2)用探针测量回转体零件内孔轴向截面上两相邻轮廓线段的交点A的半径,及两端点A1的半径,该半径与上述轮廓线段交点A,及两端点A1的最终理论半径X1相比较得到误差量δ1,将所述误差量δ1存储到车床数控系统的存储器中地址位连续的地址段;
步骤3)对经过步骤1)粗加工后的回转体零件采用半精加工车刀刀具,进行半精加工;半精加工中通过控制半精加工刀具的主轴转速和进给速度,以及走刀轨迹,实现将步骤2)中交点A及两端点A1的半精加工的理论加工半径设置为X11/2,即半精加工车刀刀具用理论加工半径为X11/2的加工轨迹对步骤2)中交点A及两端点A1进行半精加工,(车床数控系统读取上述车床数控系统的存储器中地址位连续的地址段中存储的信息),X1为所述交点A及两端点A1的最终理论半径,δ1为所述交点A及两端点A1的粗加工误差量,目的是将半精加工切削量控制到粗加工余量的一半;
步骤4)用探针测量半精加工后步骤2)中交点A,及两端点A1的实际半径,将半精加工后步骤2)中交点A,及两端点A1的实际半径与步骤3)中交点A,及两端点A1的半精加工理论半径比较后得到半精加工的误差量δ1′,并将所述半精加工的误差量δ1′储存到车床数控系统的存储器中地址位连续的地址段;
步骤5)对经过步骤3)半精加工后的回转体零件采用精加工车刀刀具,进行精加工,所述精加工车刀刀具、及刀具的主轴转速、进给速度与半精加工相同,精加工的过程中车床数控系统对半精加工的误差量δ1′进行补偿,(车床数控系统读取上述车床数控系统的存储器中地址位连续的地址段中存储的信息)即在车床数控系统中将经过步骤3)半精加工后的交点A,及两端点A1的半径的精加工轨迹设置为X11′,用改变后的加工轨迹加工后即得到内孔误差补偿后的回转体零件,X1为该交点A,及两端点A1的最终理论半径,δ1′为该交点A,及两端点A1的半精加工的误差量。
上述技术方案还包括如下步骤:
步骤2.1)用探针测量回转体零件外壁轴向截面上两相邻轮廓线段的交点B的半径,及两端点B1的半径,该半径与上述轮廓线段交点B,及两端点B1的最终理论半径X2相比较得到误差量δ2,将所述误差量δ2存储到车床数控系统的存储器中地址位连续的地址段;
步骤3.1)对经过步骤1)粗加工后的回转体零件采用半精加工车刀刀具,进行半精加工;半精加工中通过控制半精加工刀具的主轴转速和进给速度,以及走刀轨迹,(加工中不要调整加工倍率),实现将步骤2.1)中交点B及两端点B1的半精加工的理论加工半径设置为X22/2,即半精加工车刀刀具用理论加工半径为X22/2的加工轨迹对步骤2)中交点B及两端点B1进行半精加工(车床数控系统读取上述车床数控系统的存储器中地址位连续的地址段中存储的信息),X2为所述交点B及两端点B1的最终理论半径,δ2为所述交点B及两端点B1的粗加工误差量,目的是将半精加工切削量控制到粗加工余量的一半;
步骤4.1)用探针测量半精加工后步骤2.1)中交点B,及两端点B1的实际半径,将半精加工后步骤2.1)中交点B,及两端点B1的实际半径与步骤3.1)中交点B,及两端点B1的半精加工理论半径比较后得到半精加工的误差量δ2′,并将所述半精加工的误差量δ2′储存到车床数控系统的存储器中地址位连续的地址段;
步骤5.1)对经过步骤3.1)半精加工后的回转体零件采用精加工车刀刀具,进行精加工,所述精加工车刀刀具、及刀具的主轴转速、进给速度与半精加工相同,精加工的过程中车床数控系统对半精加工的误差量δ2′进行补偿,(车床数控系统读取上述车床数控系统的存储器中地址位连续的地址段中存储的信息)即在车床数控系统中将经过步骤3.1)半精加工后的交点(B),及两端点(B1)的半径的精加工轨迹设置为X22′,用改变后的加工轨迹加工后即得到内孔和外壁误差补偿后的回转体零件,X2为该交点(B),及两端点(B1)的最终理论半径,δ2′为该交点(B),及两端点(B1)的半精加工的误差量。
上述技术方案中,精加工车刀刀具和半精加工车刀刀具为相同刀具。所述步骤3)和步骤3.1)中半精加工中控制半精加工刀具的主轴转速和进给速度为恒定值。该恒定值根据被加工零件的半径和材料决定。
本发明采取了车削加工过程中的精加工误差根据半精加工误差补偿的工艺方法,解决了大型回转体零件加工过程中刀具磨损无法补偿的难题。
本发明在机床上进行了多轮零件试加工,精车加工每点误差控制可以提高1倍以上。零件加工准备时间短,精加工中误差补偿完全靠机床自动获取并自适应调整精加工误差,自动化程度高,被加工的回转体零件表面质量好、尺寸精度高。
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (4)

1.一种大型回转体零件车削加工误差检测自适应补偿方法,其特征在于,它包括如下步骤:
步骤1)对回转体零件进行粗加工;
步骤2)用探针测量回转体零件内孔轴向截面上两相邻轮廓线段的交点(A)的半径,及两端点(A1)的半径,该半径与上述轮廓交点(A),及两端点(A1)的最终理论半径X1相比较得到误差量δ1,将所述误差量δ1存储到车床数控系统的存储器中;
步骤3)对经过步骤1)粗加工后的回转体零件采用半精加工车刀刀具,进行半精加工;半精加工中通过控制半精加工刀具的主轴转速和进给速度,以及走刀轨迹,实现将步骤2)中交点(A)及两端点(A1)的半精加工的理论加工半径设置为X11/2,即半精加工车刀刀具用理论加工半径为X11/2的加工轨迹对步骤2)中交点(A)及两端点(A1)进行半精加工,X1为所述交点(A)及两端点(A1)的最终理论半径,δ1为所述交点(A)及两端点(A1)的粗加工误差量;
步骤4)用探针测量半精加工后步骤2)中交点(A),及两端点(A1)的实际半径,将半精加工后步骤2)中交点(A),及两端点(A1)的实际半径与步骤3)中交点(A),及两端点(A1)的半精加工理论半径比较后得到半精加工的误差量δ1′,并将所述半精加工的误差量δ1′储存到车床数控系统的存储器中;
步骤5)对经过步骤3)半精加工后的回转体零件采用精加工车刀刀具,进行精加工,所述精加工车刀刀具、及刀具的主轴转速、进给速度与半精加工相同,精加工的过程中车床数控系统对半精加工的误差量δ1′进行补偿,即在车床数控系统中将经过步骤3)半精加工后的交点(A),及两端点(A1)的半径的精加工轨迹设置为X11′,用改变后的加工轨迹加工后即得到内孔误差补偿后的回转体零件,X1为该交点(A),及两端点(A1)的最终理论半径,δ1′为该交点(A),及两端点(A1)的半精加工的误差量。
2.根据权利要求1所述的大型回转体零件车削加工误差检测自适应补偿方法,其特征在于,它还包括如下步骤:
步骤2.1)用探针测量回转体零件外壁轴向截面上两相邻轮廓线段的交点(B)的半径,及两端点(B1)的半径,该半径与上述轮廓交点(B),及两端点(B1)的最终理论半径X2相比较得到误差量δ2,将所述误差量δ2存储到车床数控系统的存储器中;
步骤3.1)对经过步骤1)粗加工后的回转体零件采用半精加工车刀刀具,进行半精加工;半精加工中通过控制半精加工刀具的主轴转速和进给速度,以及走刀轨迹,实现将步骤2.1)中交点(B)及两端点(B 1)的半精加工的理论加工半径设置为X22/2,即半精加工车刀刀具用理论加工半径为X22/2的加工轨迹对步骤2)中交点(B)及两端点(B1)进行半精加工,X2为所述交点(B)及两端点(B1)的最终理论半径,δ2为所述交点(B)及两端点(B1)粗加工误差量;
步骤4.1)用探针测量半精加工后步骤2.1)中交点(B),及两端点(B1)的实际半径,将半精加工后步骤2.1)中交点(B),及两端点(B1)的实际半径与步骤3.1)中交点(B),及两端点(B1)的半精加工理论半径比较后得到半精加工的误差量δ2′,并将所述半精加工的误差量δ2′储存到车床数控系统的存储器中;
步骤5.1)对经过步骤3.1)半精加工后的回转体零件采用精加工车刀刀具,进行精加工,所述精加工车刀刀具、及刀具的主轴转速、进给速度与半精加工相同,精加工的过程中车床数控系统对半精加工的误差量δ2′进行补偿,即在车床数控系统中将经过步骤3.1)半精加工后的交点(B),及两端点(B1)的半径的精加工轨迹设置为X22′,用改变后的加工轨迹加工后即得到内孔和外壁误差补偿后的回转体零件,X2为该交点(B),及两端点(B1)的最终理论半径,δ2′为该交点(B),及两端点(B1)的半精加工的误差量。
3.根据权利要求1或2所述的大型回转体零件车削加工误差检测自适应补偿方法,其特征在于:所述步骤3)中半精加工中控制半精加工刀具的主轴转速和进给速度为恒定值。
4.根据权利要求1或2所述的大型回转体零件车削加工误差检测自适应补偿方法,其特征在于:所述步骤3.1)中半精加工中控制半精加工刀具的主轴转速和进给速度为恒定值。
CN201110334923.7A 2011-10-28 2011-10-28 大型回转体零件车削加工误差检测自适应补偿方法 Active CN102430765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110334923.7A CN102430765B (zh) 2011-10-28 2011-10-28 大型回转体零件车削加工误差检测自适应补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110334923.7A CN102430765B (zh) 2011-10-28 2011-10-28 大型回转体零件车削加工误差检测自适应补偿方法

Publications (2)

Publication Number Publication Date
CN102430765A true CN102430765A (zh) 2012-05-02
CN102430765B CN102430765B (zh) 2014-01-08

Family

ID=45979315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110334923.7A Active CN102430765B (zh) 2011-10-28 2011-10-28 大型回转体零件车削加工误差检测自适应补偿方法

Country Status (1)

Country Link
CN (1) CN102430765B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873587A (zh) * 2012-09-20 2013-01-16 湖北三江航天险峰电子信息有限公司 一种回转体零件的截面尺寸测量方法
CN103624271A (zh) * 2012-07-31 2014-03-12 南车青岛四方机车车辆股份有限公司 空心轴加工自动纠偏方法及装置
CN104400092A (zh) * 2014-11-28 2015-03-11 湖北三江航天险峰电子信息有限公司 一种轮廓具有复合斜面的立体型面的铣削精加工方法
CN104759942A (zh) * 2015-04-22 2015-07-08 华中科技大学 一种薄壁零件的铣削变形在线测量与补偿加工方法
CN105094052A (zh) * 2014-05-05 2015-11-25 上海铼钠克数控科技有限公司 数控机床及自动修正精度方法
CN105171521A (zh) * 2015-10-13 2015-12-23 北京卫星制造厂 一种基于多次检测和补偿的高精度轴类零件加工方法
CN105522484A (zh) * 2016-02-24 2016-04-27 苏州瑞格思创光电科技有限公司 一种玻璃雕铣机的控制加工方法
CN106392100A (zh) * 2016-11-08 2017-02-15 湖北三江航天险峰电子信息有限公司 一种可补偿形状误差的回转体零件车削加工方法
CN106475611A (zh) * 2016-11-22 2017-03-08 沈阳黎明航空发动机(集团)有限责任公司 一种环形辐板类铸件的自动补偿加工方法
CN106563817A (zh) * 2016-11-08 2017-04-19 湖北三江航天险峰电子信息有限公司 适用于批量生产零件的可补偿形状误差的车削加工方法
CN108000234A (zh) * 2017-11-30 2018-05-08 江阴振宏重型锻造有限公司 一种车削加工系统及车削方法
CN109787063A (zh) * 2018-12-10 2019-05-21 上海航天设备制造总厂有限公司 导电滑环异种材料压力浇注件数控车削加工方法
CN111843618A (zh) * 2020-08-03 2020-10-30 四川航天长征装备制造有限公司 大型结构件窗口口框厚度加工误差补偿方法
CN112504209A (zh) * 2020-11-18 2021-03-16 大连理工大学 一种高精度刀具磨损2d在线检测方法
CN115562161A (zh) * 2022-10-17 2023-01-03 南京航空航天大学 一种基于在线监测的刀具切削路径加工误差补偿方法
CN115993804A (zh) * 2023-03-24 2023-04-21 中科航迈数控软件(深圳)有限公司 一种基于数控机床的刀具参数调整方法及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87100136A (zh) * 1987-01-06 1988-07-20 西安交通大学 一种数控机床自适应控制仪与控制方法
JP2002066875A (ja) * 2000-08-25 2002-03-05 Canon Inc 加工装置および加工方法
US20040061869A1 (en) * 2002-07-29 2004-04-01 Hill Henry A. Compensation for errors in off-axis interferometric measurements
CN1835822A (zh) * 2003-08-14 2006-09-20 P&L两合有限公司 刀具磨损纠正方法
CN101791770A (zh) * 2009-12-25 2010-08-04 大连理工大学 一种自由轮廓曲面铣削加工的让刀误差补偿方法
CN102059583A (zh) * 2010-11-10 2011-05-18 国营险峰机器厂 大型难切削零件的精加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87100136A (zh) * 1987-01-06 1988-07-20 西安交通大学 一种数控机床自适应控制仪与控制方法
JP2002066875A (ja) * 2000-08-25 2002-03-05 Canon Inc 加工装置および加工方法
US20040061869A1 (en) * 2002-07-29 2004-04-01 Hill Henry A. Compensation for errors in off-axis interferometric measurements
CN1835822A (zh) * 2003-08-14 2006-09-20 P&L两合有限公司 刀具磨损纠正方法
CN101791770A (zh) * 2009-12-25 2010-08-04 大连理工大学 一种自由轮廓曲面铣削加工的让刀误差补偿方法
CN102059583A (zh) * 2010-11-10 2011-05-18 国营险峰机器厂 大型难切削零件的精加工方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MYEONG-WOO CHO ET AL.: "Integrated machining error compensation method using OMM data and modified PNN algorithm", 《INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE》, vol. 46, no. 1213, 31 October 2006 (2006-10-31), pages 1417 - 1426 *
迟永刚等: "W-Mo合金车削型面误差控制技术研究", 《机械工程师》, no. 05, 31 May 2006 (2006-05-31), pages 26 - 27 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624271A (zh) * 2012-07-31 2014-03-12 南车青岛四方机车车辆股份有限公司 空心轴加工自动纠偏方法及装置
CN102873587A (zh) * 2012-09-20 2013-01-16 湖北三江航天险峰电子信息有限公司 一种回转体零件的截面尺寸测量方法
CN102873587B (zh) * 2012-09-20 2015-10-28 湖北三江航天险峰电子信息有限公司 一种回转体零件的截面尺寸测量方法
CN105094052A (zh) * 2014-05-05 2015-11-25 上海铼钠克数控科技有限公司 数控机床及自动修正精度方法
CN104400092A (zh) * 2014-11-28 2015-03-11 湖北三江航天险峰电子信息有限公司 一种轮廓具有复合斜面的立体型面的铣削精加工方法
CN104759942A (zh) * 2015-04-22 2015-07-08 华中科技大学 一种薄壁零件的铣削变形在线测量与补偿加工方法
CN105171521A (zh) * 2015-10-13 2015-12-23 北京卫星制造厂 一种基于多次检测和补偿的高精度轴类零件加工方法
CN105171521B (zh) * 2015-10-13 2017-06-27 北京卫星制造厂 一种基于多次检测和补偿的高精度轴类零件加工方法
CN105522484A (zh) * 2016-02-24 2016-04-27 苏州瑞格思创光电科技有限公司 一种玻璃雕铣机的控制加工方法
CN106563817A (zh) * 2016-11-08 2017-04-19 湖北三江航天险峰电子信息有限公司 适用于批量生产零件的可补偿形状误差的车削加工方法
CN106392100A (zh) * 2016-11-08 2017-02-15 湖北三江航天险峰电子信息有限公司 一种可补偿形状误差的回转体零件车削加工方法
CN106475611B (zh) * 2016-11-22 2018-09-18 沈阳黎明航空发动机(集团)有限责任公司 一种环形辐板类铸件的自动补偿加工方法
CN106475611A (zh) * 2016-11-22 2017-03-08 沈阳黎明航空发动机(集团)有限责任公司 一种环形辐板类铸件的自动补偿加工方法
CN108000234A (zh) * 2017-11-30 2018-05-08 江阴振宏重型锻造有限公司 一种车削加工系统及车削方法
CN108000234B (zh) * 2017-11-30 2024-05-17 振宏重工(江苏)股份有限公司 一种车削加工系统及车削方法
CN109787063A (zh) * 2018-12-10 2019-05-21 上海航天设备制造总厂有限公司 导电滑环异种材料压力浇注件数控车削加工方法
CN111843618B (zh) * 2020-08-03 2022-01-21 四川航天长征装备制造有限公司 大型结构件窗口口框厚度加工误差补偿方法
CN111843618A (zh) * 2020-08-03 2020-10-30 四川航天长征装备制造有限公司 大型结构件窗口口框厚度加工误差补偿方法
CN112504209A (zh) * 2020-11-18 2021-03-16 大连理工大学 一种高精度刀具磨损2d在线检测方法
CN112504209B (zh) * 2020-11-18 2021-10-08 大连理工大学 一种高精度刀具磨损2d在线检测方法
CN115562161A (zh) * 2022-10-17 2023-01-03 南京航空航天大学 一种基于在线监测的刀具切削路径加工误差补偿方法
CN115562161B (zh) * 2022-10-17 2024-02-02 南京航空航天大学 一种基于在线监测的刀具切削路径加工误差补偿方法
CN115993804A (zh) * 2023-03-24 2023-04-21 中科航迈数控软件(深圳)有限公司 一种基于数控机床的刀具参数调整方法及相关设备

Also Published As

Publication number Publication date
CN102430765B (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
CN102430765B (zh) 大型回转体零件车削加工误差检测自适应补偿方法
KR102616616B1 (ko) 기어 블랭크를 디버링하는 방법
CN102825515B (zh) 圆盘剪高精度刀轴的加工方法
CN102248380B (zh) 发动机整体机匣加工方法
CN102990304B (zh) 一种球面加工方法
CN102059583B (zh) 大型难切削零件的精加工方法
CN101357404A (zh) 内仿形径向浮动刀座与刀具的调整方法
EP2760630A1 (en) In-process compensation of machining operation and machine arrangement
CN113547156B (zh) 三维异形变径涡轮轴锥面体车铣复合精密镜面加工方法
CN104001958A (zh) 一种深孔变径内腔的加工方法
CN105392586B (zh) 圆形孔加工方法和圆形孔加工装置
CN105642932B (zh) 一种镗铣复合加工工艺及装置
CN104536385A (zh) 一种数控机床加工程序的修正方法
CN105583581A (zh) 一种轴承水准块的加工方法及装置
CN205438045U (zh) 一种内表面磨削装置
CN114619210A (zh) 一种小壁厚差深盲孔筒类零件加工方法
CN103394774A (zh) 在线生产油套管外螺纹时紧密距偏小的修复方法
CN104475766B (zh) 一种钛合金薄壁盘环件环形ω槽的数控精车加工方法
CN107962187B (zh) 适用于回转类薄壁零件的切削加工方法
CN205816834U (zh) 一种复合刀具
CN106392100B (zh) 一种可补偿形状误差的回转体零件车削加工方法
CN111331203A (zh) 一种单刀尖蜗轮加工方法
CN104690491A (zh) 易变形结构铝制燕尾槽精加工方法
CN104625642A (zh) 气门摇臂座的制作方法
CN105642918B (zh) 一种大型升船机卷筒螺旋绳槽加工方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant