CN102422172B - 印刷电子器件的非接触测试 - Google Patents

印刷电子器件的非接触测试 Download PDF

Info

Publication number
CN102422172B
CN102422172B CN201080020891.7A CN201080020891A CN102422172B CN 102422172 B CN102422172 B CN 102422172B CN 201080020891 A CN201080020891 A CN 201080020891A CN 102422172 B CN102422172 B CN 102422172B
Authority
CN
China
Prior art keywords
test circuit
energy
place
printing
electric energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080020891.7A
Other languages
English (en)
Other versions
CN102422172A (zh
Inventor
R·A·邦德洛
D·E·布拉克利
K·T·加哈根
G·E·莫兹
L·R·佐勒三世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN102422172A publication Critical patent/CN102422172A/zh
Application granted granted Critical
Publication of CN102422172B publication Critical patent/CN102422172B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/309Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of printed or hybrid circuits or circuit substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • G01R31/2808Holding, conveying or contacting devices, e.g. test adapters, edge connectors, extender boards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/304Contactless testing of printed or hybrid circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance

Abstract

提供了用于基板(3)上印刷的电子组件的非接触测试的装置和方法。测试电路(11)与期望的电子组件同时印刷在基板(3)上。测试电路(11)是全光学的,且包含用于为测试电路(11)提供电能的第一部分(13)和用于产生指示电子组件的至少一个电学性质的可检测光信号。实时使用测试电路并且使诸如ePaper之类的产品的印刷中无用的废料的生产最小化。

Description

印刷电子器件的非接触测试
对先前提交的美国申请的权益要求
本申请要求2009年5月8日提交的美国申请S/N12/437,779的权益。该文件以及本文提及的出版物、专利和专利文件的整个公开的内容通过引用结合于此。
技术领域
本公开涉及在例如薄玻璃基板之类的基板上印刷电子器件,且尤其涉及这些基板上的印刷电子器件的非接触测试。
背景技术
电子纸——也称为ePaper——是预期未来几年将广泛使用的新的显示种类。显示器工作在反射模式中且是双稳态的,即,它具有两个稳定状态。如此,显示器使用低功率,一般仅需要用于改变图像的功率且几乎不需要用于维持图像的功率。
由于它们与普通的印刷纸(最常见的显示形式)竞争,必须使ePaper(电子纸)显示器低成本。因此,类似于普通的印刷纸,需要通过印刷工艺制造ePaper。具体地,生产在ePaper显示器中使用的电子器件的制造工艺需要是印刷工艺,或者在单个板上或者在卷上,例如卷装进出工艺。可预期印刷速度类似于报纸和杂志生产中使用的速度,例外是与普通墨不同,电子墨将用于生产ePaper显示器中使用的电子电路。
通过印刷以高速生产显示器的主要结果是在非常短的时间内形成大量显示器。因此,需要一种获悉显示器是否良好且工艺是否在控制之中的方式。否则,将会非常快地产生大量废料。因此关键是在制造显示器时知晓印刷机上的印刷电子器件的质量。本公开解决该关键需要,以便在广泛的工业规模上成功采用ePaper显示器。
发明内容
根据第一方面,公开了一种用于测试基板(3)上电子组件的印刷的非接触方法,包括:
(A)在基板(3)上印刷(i)电子组件和(ii)测试电路(11),其中测试电路(11)包括:
(a)用于为测试电路(11)提供电能的第一部分(13);
(b)用于产生可检测的光信号的第二部分(15),所述信号指示电子组件的至少一个电学性质;以及
(c)连接第一(13)和第二(15)部分的电路;以及
(B)在第一部分(13)提供电能;以及
(C)检测第二部分(15)的可检测光学信号。
根据第二方面,公开用于印刷电子组件的装置,包括:
(a)用于在基板(3)上印刷(i)电子组件和(ii)测试电路(11)的装置;以及
(b)用于检测来自基板(3)的区域(15)的光的光检测器(25),所述光指示所述电子组件的至少一个电学性质。
根据第三方面,公开一种基板(3),包括(i)印刷电子组件和(ii)印刷测试电路(11),其中测试电路(11)包括:
(a)用于为测试电路(11)提供电能的第一部分(13);
(b)用于产生可检测的光信号的第二部分(15),所述信号指示电子组件的至少一个电学性质;以及
(c)连接第一(13)和第二(15)部分的电路。
在以上本公开的各方面的概要中使用的附图标记仅仅用于方便读者,而不打算且不应该解释为限制本发明的范围。更一般而言,可以理解,以上的一般描述和以下的详细描述两者仅仅是对本发明的示例性说明,并且它们旨在提供用于理解本发明的本质和特性的概观或框架。
在之后的详细描述中阐述本发明的其它特征和优点,且本领域的技术人员根据该描述将容易地理解部分特征和优点,或者通过实施本文所述的发明而意识到部分特征和优点。所包括的附图用于提供对本发明的进一步理解,且被结合到本说明书中并构成其一部分。要理解,在说明书和附图中揭示的本发明的各个特征可以任何和全部组合形式使用。
附图说明
图1是示出在传输辊上传送的印刷柔性卷的示意图。该卷具有印刷对准标记、印刷对准网格线和印刷测试电路,且该系统包括对准传感器、测试电路能量源和用于与卷上印刷的控制和测试组件交互的测试电路传感器。
图2是其中可采用本文公开的测试方法和装置的多站印刷工艺的示意图。
图3是示出利用CDD相机扫描卷的示意图。
图4是示出利用接触传感器扫描卷的示意图。
图5是示出利用接触传感器的传感器系统的示意框图。
优选实施方式的详细描述
如上所述,本公开提供用于测试印刷电子组件的非接触方法和装置。这些方法和装置可用于测试单个组件、多个组件和/或整个电路。组件可像导体那样简单或像例如整个操作装置那样复杂。
为表示方便,以下的讨论和权利要求涉及“电子组件”的测试,应理解该术语一般用于指代单个电子组件、多个组件或由组件构成的一个或多个电路的测试,视在本文公开的测试方法和装置的任何具体应用中的情况而定。而且,以下讨论中的一些根据测试印刷显示装置(例如,ePaper)来进行,应理解这些方法和装置可用于测试设计成用于其它应用的印刷电子组件。
如以下详细描述的,一般而言,提供全光学系统用于探测和测量印刷在与期望电子组件相同的基板上的测试电路,测试电路确实可包括所有或部分电子组件。光功率和/或现场电池用于对测试电路供电,且来自测试电路的光发射和/或电路的光学性质的变化被检测,以确定印刷工艺是否适当操作。
测试电路与电子组件同时印刷,因此它们经历相同的印刷条件。通常使用多个测试电路,并且以提供确信已经适当地印刷例如ePaper之类的电子产品的采样率的密度在战略上进行定位。测试电路定位在基板的良性区域中,在该区域中它们将不会干扰电子组件的操作和产品的整体功能。
因为这些方法和装置不涉及与显示器的物理接触,所以它们具有不可能导致对电子组件的机械损坏的重要优点。与使用射频(RF)测试相比,光学测试具有测试区域的空间范围可以更小的优点。基于无线电波的测试电路需要相对大的天线结构,以响应于无线电波能量的长波长,并且所导致的较大测试面积减小了剩余的用作最终产品的面积量。与接触方法相比,本文公开的非接触测试方法避免有关污染以及印刷电子产品的表面磨损的问题,污染可伴随液滴发生,而表面磨损可伴随机械探针发生。
其上印刷显示器的基板可以是连续卷或单个板的形式。在组成方面,它可由玻璃、塑料、玻璃-塑料层叠或适于支承电子组件的其它材料组成。优选地,基板具有可与常规印刷品相比的柔性。在卷的情况下,印刷可采用卷装进出印刷机,诸如用于以高速照相凹版、苯胺凸版、转筒筛或胶印工艺印刷报纸或杂志的印刷机。类似地,在基板为单个板的情况下,可利用先前在印刷工业中使用的类型的高容量技术来印刷板。在任一情况下,实时、高速测试是避免或减少产生昂贵的废料所至关重要的。工业规模印刷(无论是卷还是板)能以低成本和最少工作生产大量产品。然而,如果在生产产品时没有进行实时测试,则这种工艺总是冒在大约片刻就生产大量废料的风险。
图1示出在基于卷的系统中测试电子印刷的一组代表性组件。基于板的实施例将使用类似的组件,这些组件被部署成测试各个印刷板上而非连续卷上的电子组件。如图1所示,印刷卷3被携带在传输辊5上(也称为传送辊)。如箭头17所指示的,在该图中辊5以及卷3由此逆时针旋转。
除用于向用户显示图像的电路(出于清楚的目的在图1中未示出)外,在卷3上印刷各种测试和控制组件。测试和控制组件之间是对准标记7、对准网格线9和测试电路11,该测试电路11包括为测试电路提供电能的第一部分13和生成指示测试电路的至少一个电学性质并由此指示测试电路附近的卷上印刷的电子组件的电学性质的可检测光学信号的第二部分。第一部分13例如可以是印刷光学传感器,诸如光电二极管,而第二部分15例如可以是诸如LED之类的印刷能量发射器。
在辊5附近安排用于与卷3上印刷的测试和控制组件交互的各种组件。因此,对准传感器19与对准标记7对齐,且对准传感器21与对准网格线9对齐。为了对测试电路11供电,外部能量源23(例如,LED)与第一部分对齐,并且为了读取测试电路生成的测试信息,外部传感器25(例如,光电二极管)与第二部分15对齐。如下所述,在某些实施例中,测试电路在内部生成其自身的功率,从而不使用外部能量源。而且,并非在第二部分15处发射光能,测试电路可产生该部分的光学性质(例如颜色)的变化。在这一情形下,第二部分15通常不会产生光能,因此除外部传感器外,可能期望使光源与第二部分15对齐以帮助检测光学性质,例如用于产生由外部传感器25检测的反射光。
除上述组件外,图1还示出分别通过导线29至35连接至对准传感器19、外部能量源23、外部传感器25、对准传感器21的计算机和信号处理器27的使用。计算机和信号处理器控制这些组件的操作,并接收和分析指示电子印刷工艺的状态的数据。
一般而言,如图1所示,测试电路包括利用来自外部光源的光生成电能以运行测试电路的第一区(例如,光伏部分)和测试电路产生由检测器读取的可检测光信号的第二区(读出部分)。尽管已经示出各种可印刷的有机光伏系统且可将其结合本公开使用,但在某些实施例中,可能期望使用常见的材料集和装置结构以产生光伏电源和发射光信号。
例如,已经示出包含诸如m-MTDATA和TBADN之类的组合的电荷输运/发射层的装置作为有机发光二极管(OLED)在偏压下发射光,但也作为有机光伏电压(OPV)表现出对UV光的光伏响应。参见HanzhiWei、WenlianLi、MingtaoLi、WenmingSu、QiXin、JinghuaNiu、ZhiqiangZhang、ZhizhiHu的Whiteorganicelectroluminescentdevicewithphotovoltaicperformances(具有光伏性能的白色有机电致发光装置),应用表面科学、第252卷、第6期,2006年1月15日,第2204-2208页。在文献中已经描述了具有类似性能的其它系统。利用这些类型的系统,可构造例如ePaper显示器之类的电子组件以及用于该组件的一个或多个测试电路,而无需引入昂贵的附加工艺步骤或附加材料层。
如上所指出的,并非使用发射读出,在一些实施例中,读出的可以是测试电路的区域的光学性质的变化。例如,读出可基于电致变色显示器的颜色。对于发射读出,有可能使基于测试电路的光学性质的变化的读出对附加工艺步骤或附加材料层的需求最小化。例如,在染料敏化太阳能电池装置和电致变色显示器装置中已经采用常见的装置结构,其中装置之间的主要差别是用于光伏吸收或电致变色特性的染料选择。将这种常见的结构连同单个附加印刷步骤(即,用于光伏染料的附加印刷步骤)一起使用能够形成具有光伏电池的印刷基板,该光伏电池可用于制造诊断并且用于为最终装置供电。
为了操作图1的测试电路,沿卷在一个点处将能量注入电路,且在卷的第二点处检测电路对该输入能量的响应。取决于测试电路的结构,可执行各种测试,包括但不限于:(1)确保测试电路正在工作的校准测试;(2)确保电极未开路或短路的连续性测试;(3)测量电极的有效导电能力的线电阻测试;和/或(4)测量电路中的电介质的有效性的电容测试。
具体地,可独立于要测试的电子组件执行校准测试以确保对测试电路的测量的供电和读取是令人满意的。因为通常期望测试电路仅占据基板表面的一小部分,所以接收和发送功能通常需要彼此相邻,且它们之间的实际间隔最小。
因此,在利用外部光源和发射读出的实施例中,光将被发送至基板上的印刷接收器区(第一部分),且读出区(第二部分)被印刷在附近。当被激活时,接收区将产生操作读出区所必需的能量。如果读出区是OLED装置,则测试通常能够非常快速地完成。如果读出区是电致变色,则输出可能不会完全形成,但是可能存在可被检测到的颜色变化的开始。
供电和读取头的位置和大小一般根据所使用的读出系统的类型而不同。对于OLED系统,读出和供电可同时完成。对于电致变色系统,可能需要更长时间地施加输入功率,需要照明基板上的光电检测器部分一段时间,然后进一步沿卷在读出区轮询数据,以允许电致变色材料改变颜色的时间。在任一情况下,如果OLED装置照明或电致变色装置变色,则校准成功。
连续测试用于确保在典型的印刷线上没有开路。对于该测试,光电检测器供电部分和OLED读出或电致变色读出可与以上关于校准描述的相同,例外是它们现在将由导体的跨度分离。如果导体中有开路,则读出失败。如果响应与校准期间产生的响应相同或基本相同,则导体连续性是可接受的。可沿不同方向放置用于测试连续性的测试电路,且这些测试电路可测试不同的线。所测试的线可以是电子组件的一部分,但通常将是表示电子组件的测试线,而非电子组件的实际部分。
通常完成线电阻测试,以确保透明导体电阻不太大。在这种情况下,测试电路包括与连续线串联印刷的电容器。利用光电检测器部分对电路供电,且随后对OLED或电致变色装置供电所需的时间量提供线中电阻量的测量。由于OLED的快速响应时间(其允许系统的激活和去激活被用作与电容器串联的电阻的估计),该测试对于OLED读出是最有效的。
可通过确定对基板上印刷的电容器的充电和/或放电所需的时间来执行电容测试。如以上的连续性测试那样执行该测试,例外是存在增加的印刷电容器。为了确定电容,可将两种不同长度的导体连接到电容器。OLED的闪烁(充电和放电)频率(或者更精确地,关于闪烁频率)提供对测试电路产品的电阻和电容的估计。确定两种不同线长度的闪烁频率允许获得电容的值。可通过例如在基板上印刷两个光电检测器(一个用于供电一根线而另一个用于供电另一根线)可单独激活两种线长度。
一旦已知电容,有可能利用等式K=Cd/A确定电容器的电介质材料的介电常数K的值,其中C是电容,d是电介质的厚度,且A是电容器板之一的面积。可利用例如X射线荧光传感器或假设材料的折射率已知则通过光学厚度测量,来确定电介质的厚度。可在不接触基板的情况下利用商业上可购买到的设备执行两种厚度测量。电容测量还可提供有关电介质完整性的信息,即测量可反映电介质中是否存在诸如短路或其它损失源之类的缺陷。
在图1中,外部LED用于向印刷电路提供激活能量,且内部印刷LED(例如OLED)用于将能量发射回连接到计算机27的外部光电二极管。取代LED,外部能量源可以是半导体激光器。然而,LED通常将是更适合的,因为它们一般比半导体激光器更稳健且更廉价。作为另一替换,可用低能光源替换外部能量源,且将化学能转换成电能的板上电池可被印刷在基板上并用于在测试电路被来自低能源的光激活时对测试电路供电。或者,可构造电池,以便或者在延迟之后或者在被印刷到基板上之后立即自启动。关于外部感测器件,系统的该组件可以是如图1所示的光电二极管、行扫描CCD相机(参见以下)或能够检测光能的另一个电子组件。
因为非接触测试需要以印刷速度执行且因为一般每个测试需要大量数据,所以系统的检测器部分需要相当快的响应时间。而且,成本总是一个问题,因此在某些实施例中,检测器和信号处理器采用商业上可购买的而非定制的设备。
可用于读取来自测试电路的光响应的检测器(传感器)的类型取决于电路的RC特性。输入到测试电路的能量可具有各种时间波形,其示例包括脉冲函数、一系列定时的开/关脉冲(脉冲串)和正弦波。作为另一替换,可通过输入印刷电路的自然谐振频率的脉冲串并检测谐振输出的幅度来确定电路质量。在这种情况下,外部传感器和相关联的电路可简单地对低幅响应输出0,对可接受的响应输出1。
外部感测电路测量电路对前述类型输入的响应。具体地,为了提供对印刷电路能力的有效测量,外部传感器必须响应于测试电路的输出发射器的AC组件。一些印刷电路可具有千赫范围的自然谐振,而其它为兆赫范围。为了利用A/D转换器有效地表征这种响应频率,应以高于信号频率两倍的速率量化信号。
例如,如果电路具有1KHz的自然频率,则约4KHz的数字化速率将适用于精确描绘电路的能力。附连到A/D转换器的光电传感器可利用廉价电子器件容易地在此速率下提供数据。如果使用具有一千个元件的诸如行扫描CCD或接触传感器之类的扫描装置,则设备需要每秒扫描4000次,这将产生总共4MHz的数字化速率。尽管这可利用可获得的设备容易地实现,但将更昂贵。然而,当测试电路的密度高时,这种行扫描是有优势的。
如果测试电路的频率响应约为1MHz而非1KHz,且使用连接至A/D转换器的单个传感器,则可利用商业上可购买的设备再次处理数据。然而,对于一千个元件CCD或接触传感器,数字化速率上升到4GHz,尽管这可实现,但需要昂贵的设备。为了避免这种成本,可使用具有10至50个元件的传感器,以将数据率降低到10至50MHz。利用当前可用的成像系统可容易地管理这种数据率。
因为测试电路的能量发射器在移动的卷上,所以存在发射器可与外部传感器通信的短的时间窗,并且该窗的长度与移动卷的速度成反比。该时间通信窗指示电路的RC时间测量的另一个极限。
考虑发射器与距离为1mm的外部传感器通信且卷以75mm/秒(3英寸/秒)移动的情况。在这些条件下的通信窗是13毫秒。如果利用1毫秒开和1毫秒关的输入脉冲串激发受测试的电路且这碰巧是电路测量的最优频率,则时间测量窗将仅允许对约6个脉冲的响应的测量。然而,如果利用0.5MHz速率的输入脉冲串激活受测试的电路并且这再次碰巧是电路测试的最优频率,则通信窗将允许来自6000个脉冲的响应的测量。因此能够得出结论:对可进行的测量存在一个较低的频率极限。
这对于低速移动的卷不成问题,因为RC时间常数相对较低,且测试电路的自然谐振频率将大大高于KHz速率。然而,当卷速率增加时,时间通信窗减小,因此需要考虑该限制来设计测试电路。
图2示出其中可采用本文公开的测试方法和装置的典型多站印刷工艺。在该图中,箭头201指示被印刷的卷203的传送方向,且附图标记205、207和209分别表示第一、第二和第三印刷站,其中的每一个包括电子墨盘211、印刷圆柱213、刮墨刀215和压印辊217和干燥器219。
图2的装置可按各种方式操作,包括例如如下。在第一(主)印刷站205中,分立的对准标记(例如,图1中的附图标记7)在印刷圆柱213的每次旋转时被印刷在卷的边缘上一次。该标记充当用于精确检测卷上的第一印刷图案的刻度。在随后的印刷站上的对准传感器(未示出)可检测该标记并向压力控制系统提供第一印刷图案的位置的信息。压力控制系统可使用该信息来相对于第一(主)印刷圆柱调节随后的印刷圆柱的旋转相角。由此,每个随后印刷的层可与第一(主)印刷层精确对准。还可针对每个后续层印刷对准标记(再次参见例如图1中的附图标记)。如果例如层与层对准比与第一(主)层的对准更关键,则这些附加的标记可用于相对于彼此调节后续印刷层。
除分立的对准标记外,连续的对准网格图案(例如,图1中的附图标记9)也可在第一(主)印刷站处被印刷在卷上。这种网格图案例如可在测试位置处用于检测每个印刷的测试电路的开始。对准传感器(例如,图1中的附图标记21)可向计算机和信号处理器(例如图1中的附图标记27)提供信号,以在印刷的传感器(例如图1中的附图标记13)在其下通过时使外部能量源(例如图1中的附图标记23)通电,由此向测试电路(例如图1中的附图标记11)提供电能。连续的对准网格还可向计算机和信号处理器提供第二信号,以指示它何时利用外部传感器(例如图1中的附图标记25)查找来自印刷能量发射器(例如图1中的附图标记15)的输出信号。此外,该网格图案可用于标记每个测试图案的位置,使得由计算机收集和分析的数据可与沿卷的测试电路的位置相关联。因此可生成“好”和“坏”结果的图,使得与“坏”结果相关联的印刷电子器件随后被丢弃。
除图1所示的电子测试外,还可针对几何印刷缺陷测试印刷电子电路。例如,可以适当的分辨率光学扫描电子组件,且一系列图像分析规则应用于扫描图像,以查看是否在规定的容限内印刷组件的方位特征,且不包含开路和短路。图3示出利用照明源301和一个或多个相机303(例如,一个或多个CCD相机)进行这种检查的系统,其中当卷305横向穿过传输辊307时所述一个或多个相机303聚焦在卷的一部分上。相机必须通过透镜聚焦在卷的表面上,该透镜的工作距离一般在从6英寸至2或3英尺的范围内,以便从6”至12”视场内收集数据。对于一些应用,在传输(或印刷)辊附近,这种工作距离可能难以适应。
图4示出解决传输(或印刷)辊附近有限可用空间的问题的系统。该系统使用接触光学传感器401,如图所示其定位成在传输辊403上与卷405邻近。(尽管在商业生产中,该传感器被称为“接触”传感器,如本文所使用的,然而该传感器实际上不接触传输(或印刷)辊。)接触传感器广泛用于桌上扫描仪和传真机,且因此易于以低成本获取。而且它们具有小的覆盖面积,使其能够直接置于辊之上无需消耗大量空间。
接触传感器401可由以下构成:(i)传感器线和(ii)将卷的表面聚焦到传感器线上的小梯度指数透镜(GIL)线。接触传感器还可包含光源,例如,一行LED,以照明卷的表面。在尺寸方面,接触传感器可具有小于1英寸×1英寸的横截面,且可放置成距离卷的表面约0.05”。商业上可购买到的装置具有4英寸至10英寸的扫描宽度,且定制设备可覆盖高达20英寸。商业的接触传感器具有200像素/英寸至2400像素/英寸的分辨率。
图5示出集成系统的框图,用于执行(i)用于检测几何印刷缺陷的图像分析和(ii)用于检测电缺陷的测试电路分析。通过使用编码器501、编码器接口502和计算机503,系统首先确定卷速和印刷电路位置。利用该信息、传感器控制器505和照明控制器506来控制接触传感器507的扫描速率,进而控制接触传感器所提供的照明,以维持卷508在传输辊509上的恒定曝光。以此方式产生的卷图像由计算机503处理并解释,且结果被存储在存储介质504中。
为了执行电测试,当卷508上的印刷传感器在照明器下通过时,计算机激活接触传感器的照明器。然后在接触传感器的光电二极管处读取来自卷的发射输出,且所得的数据被发送至计算机503用于分析。应注意到,在该实施例和其它实施例中,可通过将不同波长用于外部激发源(例如接触传感器的LED)和印刷测试电路的能量发射器来实现信噪比的大量增加。具体地,可通过将滤波器置于外部传感器之前实现S/N比的这种增加,该滤波器透射具有由测试电路的能量发射器生成的波长的光并阻挡由外部激发源生成的光。
表1概括可用于从物理完整性和电学观点上测试印刷电路的各种检测方法。该表按照测试ePaper显示器,应理解,可在用于其它目的的卷和板上印刷的电路上进行本文描述的测试。类似地,表1中列出的传感器、能量源和发射器表示示例性、非限制实施例。
更一般地,本领域的技术人员根据上述公开将清楚不背离本发明的范围和精神的各种修改。以下的权利要求旨在覆盖本文阐述的特定实施例以及这些实施例的修改、变型和等价方案。
表1
注意:词“外部”指示在ePaper外部的任何装置。
词“内部”指示可在ePaper上印刷的任何装置。

Claims (20)

1.一种用于测试基板上电子组件的印刷的非接触方法,包括:
(A)在基板上印刷(i)电子组件和(ii)测试电路,其中测试电路包括:
(a)用于产生给所述测试电路供电的电能的第一部分;
(b)用于产生可检测光信号的第二部分,所述信号指示电子组件的至少一个电学性质;以及
(c)连接第一和第二部分的电路;以及
(B)在第一部分处产生电能;以及
(C)检测第二部分的可检测光信号。
2.如权利要求1所述的非接触方法,其特征在于,所述基板为卷形式,且步骤(A)的印刷包括将至少一个电子墨传送到所述卷。
3.如权利要求1所述的非接触方法,其特征在于,所述基板为板形式,且步骤(A)的印刷包括将至少一个电子墨传送到所述板。
4.如权利要求1所述的非接触方法,其特征在于,步骤(B)包括用光能照射所述第一部分,所述光能在第一部分处转换成电能。
5.如权利要求1所述的非接触方法,其特征在于,步骤(B)包括将第一部分处存储的化学能转换成电能。
6.如权利要求1所述的非接触方法,其特征在于,步骤(C)包括在第二部分处发射光能。
7.如权利要求1所述的非接触方法,其特征在于,步骤(C)包括在第二部分处光吸收性质的变化。
8.一种用于印刷电子组件的装置,包括:
(a)用于在基板上印刷(i)电子组件和(ii)测试电路的装置,所述测试电路产生电能以给所述测试电路供电;以及
(b)用于检测来自基板区域的光的光检测器,所述光指示所述电子组件的至少一个电学性质。
9.如权利要求8所述的装置,其特征在于,所述光检测器检测来自所述基板区域的光,并且,其中,所述来自基板区域的光是由测试电路从作为测试电路的一部分且位于所述基板上的能量源处产生,所述能量源产生用于给所述测试电路供电的电能。
10.如权利要求8所述的装置,其特征在于:
(a)所述装置还包括照明所述基板区域的光源;以及
(b)所述光检测器检测来自所述光源的已经从所述区域反射或透射穿过所述区域的光。
11.如权利要求8所述的装置,其特征在于,所述装置还包括用光照明基板的一部分的光源,所述光用于产生给所述测试电路供电的电能。
12.一种基板,包括(i)印刷电子组件和(ii)印刷测试电路,其中测试电路包括:
(a)用于产生给所述测试电路供电的电能的第一部分;
(b)用于产生可检测光信号的第二部分,所述信号指示电子组件的至少一个电学性质;以及
(c)连接第一和第二部分的电路。
13.如权利要求12所述的基板,其特征在于,所述基板是卷形式。
14.如权利要求12所述的基板,其特征在于,所述测试电路在第二部分处发射光能。
15.如权利要求12所述的基板,其特征在于,所述测试电路在第二部分处产生光吸收性质的变化。
16.如权利要求12所述的基板,其特征在于,所述测试电路在第一部分处将光能转换成电能。
17.如权利要求12所述的基板,其特征在于,所述测试电路在第一部分处将化学能转换成电能。
18.如权利要求12所述的基板,其特征在于,所述测试电路包括(i)在第一部分处将光能转换成电能并在第二部分处产生光能或(ii)在第一部分处将化学能转换成电能并在第二部分处产生光吸收性质的变化的常见材料。
19.如权利要求12所述的基板,其特征在于,所述电路选自以下元件组成的组:纵向导体、横向导体、含晶体管的电路、电容器、电阻器、电感器及其组合。
20.如权利要求12所述的基板,其特征在于,所述测试电路包括电子组件的至少一部分。
CN201080020891.7A 2009-05-08 2010-05-05 印刷电子器件的非接触测试 Expired - Fee Related CN102422172B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/437,779 2009-05-08
US12/437,779 US8378702B2 (en) 2009-05-08 2009-05-08 Non-contact testing of printed electronics
PCT/US2010/033650 WO2010129627A2 (en) 2009-05-08 2010-05-05 Non-contact testing of printed electronics

Publications (2)

Publication Number Publication Date
CN102422172A CN102422172A (zh) 2012-04-18
CN102422172B true CN102422172B (zh) 2015-11-25

Family

ID=43050834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080020891.7A Expired - Fee Related CN102422172B (zh) 2009-05-08 2010-05-05 印刷电子器件的非接触测试

Country Status (6)

Country Link
US (2) US8378702B2 (zh)
JP (1) JP5374639B2 (zh)
KR (1) KR101579640B1 (zh)
CN (1) CN102422172B (zh)
TW (1) TWI428619B (zh)
WO (1) WO2010129627A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507322B1 (de) * 2008-10-07 2011-07-15 Nanoident Technologies Ag Schaltvorrichtung zur elektrischen kontaktprüfung
US8742782B2 (en) * 2011-07-27 2014-06-03 International Business Machines Corporation Noncontact electrical testing with optical techniques
WO2016018408A1 (en) 2014-07-31 2016-02-04 Hewlett-Packard Development Company, L.P. Ion writing calibration
US9523735B2 (en) * 2014-10-08 2016-12-20 Eastman Kodak Company Electrical test system with vision-guided alignment
TWM534337U (en) * 2015-11-18 2016-12-21 Oriental Inst Technology Electrical test equipment for flexible material
US9806828B2 (en) 2016-02-24 2017-10-31 Frontier Engineering, Llc Radio frequency generator automated test system
CN109375085A (zh) * 2018-09-03 2019-02-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 非接触式板级电路中功率器件健康监测及预警系统与方法
CN111337079A (zh) * 2020-03-20 2020-06-26 深圳市同创鑫电子有限公司 一种印刷电路板生产用测试检查方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147662A (en) * 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
US6771807B2 (en) * 2000-01-18 2004-08-03 Solvision Inc. Method and system for detecting defects on a printed circuit board
US6815973B1 (en) * 2003-06-13 2004-11-09 Xilinx, Inc. Optical testing port and wafer level testing without probe cards
US6855378B1 (en) * 1998-08-21 2005-02-15 Sri International Printing of electronic circuits and components
US20070048948A1 (en) * 2005-08-25 2007-03-01 Accent Optical Technologies, Inc. Apparatus and method for non-contact assessment of a constituent in semiconductor substrates
US20070234918A1 (en) * 2006-03-31 2007-10-11 Edward Hirahara System and method for making printed electronic circuits using electrophotography
US7301458B2 (en) * 2005-05-11 2007-11-27 Alien Technology Corporation Method and apparatus for testing RFID devices

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956698A (en) * 1974-02-12 1976-05-11 Westinghouse Electric Corporation Contactless test method for integrated circuits
US4820916A (en) * 1987-05-05 1989-04-11 Simmonds Precision Products Optically powered sensor system
JP2588565B2 (ja) * 1988-02-16 1997-03-05 富士通株式会社 印刷配線板の導通検査装置
JPH02262071A (ja) * 1989-03-31 1990-10-24 Sekisui Chem Co Ltd 導通検査方法
US6156450A (en) * 1997-07-24 2000-12-05 Eveready Battery Company, Inc. Battery tester having printed electronic components
US6300785B1 (en) * 1998-10-20 2001-10-09 International Business Machines Corporation Contact-less probe of semiconductor wafers
US6448802B1 (en) * 1998-12-21 2002-09-10 Intel Corporation Photosensors for testing an integrated circuit
TW501293B (en) * 2001-01-06 2002-09-01 Acer Inc Method and device to raise the battery efficiency of portable electronic device
US6603302B2 (en) * 2001-08-01 2003-08-05 Frank Joseph Prineppi Circuit testers
US6859031B2 (en) * 2002-02-01 2005-02-22 Credence Systems Corporation Apparatus and method for dynamic diagnostic testing of integrated circuits
JP2004341216A (ja) * 2003-05-15 2004-12-02 Seiko Epson Corp 電気光学装置用基板及びその製造方法、並びに該電気光学装置用基板を備えた電気光学装置及び電子機器
US7057409B2 (en) * 2003-12-16 2006-06-06 Texas Instruments Incorporated Method and apparatus for non-invasively testing integrated circuits
US7215133B2 (en) * 2004-01-30 2007-05-08 International Business Machines Corporation Contactless circuit testing for adaptive wafer processing
DK1779222T3 (da) * 2004-07-06 2016-08-15 Maricare Oy Sensor product for electric field sensing
US20060139041A1 (en) * 2004-12-23 2006-06-29 Nystrom Michael J System and method of testing and utilizing a fluid stream
US7202691B2 (en) * 2005-05-31 2007-04-10 Semiconductor Diagnostics, Inc. Non-contact method for acquiring charge-voltage data on miniature test areas of semiconductor product wafers
US20060279297A1 (en) * 2005-06-10 2006-12-14 Nystrom Michael J Contactless area testing apparatus and method utilizing device switching
US20070130490A1 (en) * 2005-12-02 2007-06-07 Shmuel Silverman Information protection using properties of a printed electronic circuit
DE102006033713A1 (de) * 2006-05-30 2007-12-06 Osram Opto Semiconductors Gmbh Organisches lichtemittierendes Bauelement, Vorrichtung mit einem organischen lichtemittierenden Bauelement und Beleuchtungseinrichtung sowie Verfahren zur Herstellung eines organischen lichtemittierenden Bauelements
KR100844861B1 (ko) * 2006-08-03 2008-07-09 (주) 파루 전자잉크 제조용 조성물 및 그 제조방법
JP2008052168A (ja) * 2006-08-28 2008-03-06 Toppan Printing Co Ltd 液晶表示装置の製造方法
US20080084678A1 (en) * 2006-10-10 2008-04-10 Motorola, Inc. Printed circuit board and a method for imbedding a battery in a printed circuit board
JP2008149311A (ja) * 2006-11-21 2008-07-03 Ricoh Co Ltd 電子部品製造装置、パターン配線シート、電子デバイスシートおよびシート
JP2010506196A (ja) 2007-04-17 2010-02-25 オーキンス エレクトロニクス カンパニー,リミテッド 電気光学的ディテクタ
JP2009080262A (ja) * 2007-09-26 2009-04-16 Toppan Printing Co Ltd 電気泳動表示方式記録メディアおよびそのレコーダー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855378B1 (en) * 1998-08-21 2005-02-15 Sri International Printing of electronic circuits and components
US6147662A (en) * 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
US6771807B2 (en) * 2000-01-18 2004-08-03 Solvision Inc. Method and system for detecting defects on a printed circuit board
US6815973B1 (en) * 2003-06-13 2004-11-09 Xilinx, Inc. Optical testing port and wafer level testing without probe cards
US7301458B2 (en) * 2005-05-11 2007-11-27 Alien Technology Corporation Method and apparatus for testing RFID devices
US20070048948A1 (en) * 2005-08-25 2007-03-01 Accent Optical Technologies, Inc. Apparatus and method for non-contact assessment of a constituent in semiconductor substrates
US20070234918A1 (en) * 2006-03-31 2007-10-11 Edward Hirahara System and method for making printed electronic circuits using electrophotography

Also Published As

Publication number Publication date
TW201042274A (en) 2010-12-01
CN102422172A (zh) 2012-04-18
JP5374639B2 (ja) 2013-12-25
US20130127487A1 (en) 2013-05-23
WO2010129627A2 (en) 2010-11-11
WO2010129627A3 (en) 2011-02-24
US20100283499A1 (en) 2010-11-11
US9360519B2 (en) 2016-06-07
US8378702B2 (en) 2013-02-19
KR101579640B1 (ko) 2015-12-22
KR20120027319A (ko) 2012-03-21
JP2012526284A (ja) 2012-10-25
TWI428619B (zh) 2014-03-01

Similar Documents

Publication Publication Date Title
CN102422172B (zh) 印刷电子器件的非接触测试
CN101699844B (zh) 全光谱识别图像传感器
CN104570647B (zh) 光学传感器及其图像形成装置
CN103930280A (zh) 热转印打印机
JP2010509577A (ja) 薄膜光センサを備えるタイタプレート
CN108535990A (zh) 图像形成装置以及图像形成方法
CN109074018A (zh) 图像形成装置及图像形成方法
CN109870887A (zh) 纸张传感器装置及图像形成装置
CN103929562A (zh) 图像传感器、图像扫描和厚度检测方法
CN104950347B (zh) 薄片体检测装置的检查方法、薄片体检测装置和检查装置
CN102486702A (zh) 反射式光学侦测装置及电子设备
CN203800995U (zh) 图像传感器
CN208350673U (zh) 缺陷检测系统
CN207397373U (zh) 多功能图像传感器
CN103853005B (zh) 成像装置及其彩色配准方法
CN102658728B (zh) 搭载热敏打印头的印刷控制方法及装置
KR101121680B1 (ko) 선형 엔코더를 이용한 정밀 인쇄 방법 및 장치
Bergqvist et al. LED array scanner for inline characterization of thin film photovoltaic modules
CN103196837A (zh) 一种图像式红外反射率和透射率定量检测的装置及方法
TWI426286B (zh) 基板電性的量測設備
CN103487235A (zh) 发光装置的光量均衡检测方法
CN107610315A (zh) 多功能图像传感器
EP0257747A2 (en) Photoelectric array for scanning large-area non-planar image-bearing surfaces
KR101294358B1 (ko) 선형 엔코더를 이용한 정밀 인쇄 방법 및 장치
CN101895661B (zh) 耗材芯片、耗材容器、成像装置及其成像控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20170505