CN102412125A - 一种制造高拉应力氮化硅薄膜的方法 - Google Patents

一种制造高拉应力氮化硅薄膜的方法 Download PDF

Info

Publication number
CN102412125A
CN102412125A CN2011101103675A CN201110110367A CN102412125A CN 102412125 A CN102412125 A CN 102412125A CN 2011101103675 A CN2011101103675 A CN 2011101103675A CN 201110110367 A CN201110110367 A CN 201110110367A CN 102412125 A CN102412125 A CN 102412125A
Authority
CN
China
Prior art keywords
silicon nitride
nitride film
high tensile
tensile stress
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101103675A
Other languages
English (en)
Other versions
CN102412125B (zh
Inventor
徐强
张文广
郑春生
陈玉文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN2011101103675A priority Critical patent/CN102412125B/zh
Publication of CN102412125A publication Critical patent/CN102412125A/zh
Application granted granted Critical
Publication of CN102412125B publication Critical patent/CN102412125B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开一种制造高拉应力氮化硅薄膜的方法,先在硅基板上沉积一层第一氮化硅薄膜层,利用等离子体对第一氮化硅薄膜进行处理;在第一氮化硅薄膜层之上沉积一层第二氮化硅薄膜层,并再次用等离子体对第二氮化硅薄膜进行处理;对多层氮化硅薄膜层进行紫外光照射。本发明提供制造方法可以在较低的制造成本下制造出应力最少为1.8GPa的氮化硅薄膜,将应用NMOS器件上将极大的增加的电迁移率且生产工艺也相当简单。

Description

一种制造高拉应力氮化硅薄膜的方法
技术领域
本发明涉及一种制造氮化硅薄膜的方法,尤其涉及一种制造具有高拉应力氮化硅薄膜的方法。
背景技术
在现代CMOS器件的制造中,尤其是针对90纳米(nm)以下薄膜技术工艺,人们引入了很多方法用于提高载流子的电迁移率。其中在对于NMOS器件制造工艺中,通常采用高拉应力的氮化硅作为通孔刻蚀停止层(Contact Etch Stop Layer,简称CESL),通过其高拉应力来改变NMOS沟道中的应力状况,从而提高其电迁移率。
为了能够得到更高拉应力的氮化硅薄膜,目前通常采用含氮的环境下的等离子体处理或者紫外光照射的方法来去除薄膜中的一定含量的氢,使薄膜收缩来增加薄膜的应力。根据现在行业中的规定,目前65纳米工艺对于氮化硅薄膜来说至少需要大于1.5GPa,而对于45纳米工艺对于氮化硅薄膜来说至少需要1.8GPa。
公开号为CN1819121A的中国专利申请披露了一种制造超高伸张应力膜以及应变硅晶体的方法,其中首先进行等离子体增强化学气相沉积工艺,于衬底的表面上沉积一过渡氮化硅膜,之后对过渡氮化硅膜进行UV照射工艺,将该过渡氮化硅膜的第一氢原子浓度降低至第二氢原子浓度。使用该方法制造出的氮化硅薄膜的应力最大不超过1.8GPa,无法满足高应力的要求。
此外,目前制作高应力氮化硅薄膜的成本还是相对高的,且制造工艺也比较复杂,如能在较低的制造成本下制造出高拉应力的氮化硅薄膜,则NMOS器件的电迁移率将会得到很大程度的提高。
发明内容
本发明提供一种制造高拉应力氮化硅薄膜的方法,可以在不增加多余设备的前提下,制备出更高应力的氮化硅薄膜,将其应用于CMOS中的CESL层,提高NMOS器件的性能。
为了实现上述的目的提供一种制造高拉应力氮化硅薄膜的方法,其特征在于包括以下顺序步骤:
步骤1,先在硅基板上沉积一层第一氮化硅薄膜层,利用等离子体对第一氮化硅薄膜进行处理;
步骤2,在第一氮化硅薄膜层之上沉积第二氮化硅薄膜,并利用等离子体处理该第二氮化硅薄膜层;
步骤3,重复步骤1和2,直至自下而上的多层氮化硅薄膜层的总厚度达到工艺所需要求;
步骤4,对所述多层氮化硅薄膜层进行紫外光照射。
在上述的制造高拉应力氮化硅薄膜的方法中,还有重复步骤1和步骤2的过程,循环沉积氮化硅薄膜层并利用等离子体轰击该氮化硅薄膜层的过程,直至自下而上的多层氮化硅薄膜层的总厚度达到工艺所需要求。沉积和轰击过程在同一个反应腔室内进行。优选重复步骤1和2的次数为5~30次,每次沉积薄膜的厚度为15~50A。
本发明制造高拉应力氮化硅薄膜的方法中,等离子体选用含有氢元素的等离子体,用于提高氮化硅薄膜层的含氢量。在淀积氮化硅薄膜过程中,用含有氢元素的等离子体对薄膜进行处理以增加薄膜的含氢量。薄膜在生长过程中进行若干次的等离子体处理,最终生成一种富含氢的氮化硅薄膜。优选含有氢元素的等离子体为氢气等离子体、和/或氨气等离子体。
本发明制造高拉应力氮化硅薄膜的方法中,氮化硅薄膜层覆盖在硅基板中所制备的CMOS器件中所包含的NMOS器件上。在富含氢的氮化硅经过紫外光照射后,其最终薄膜的应力则会得到大量增加。将该薄膜制备方法应用于CMOS制造中CESL层中,可以提高NMOS器件的性能。
本发明制造高拉应力氮化硅薄膜的方法中,利用紫外光照射氮化硅薄膜层之后,以增大氮化硅薄膜层中净含氢量的损失度,用于提高多层氮化硅薄膜层的拉应力。
本发明提供的制造高拉应力氮化硅薄膜的方法,可以在较低的制造成本下制造出应力最少为1.8GPa的氮化硅薄膜,将应用NMOS器件上将极大的增加的电迁移率且生产工艺也相当简单。
附图说明
图1是本发明氮化硅薄膜应力与净损失量关系图。
图2是本发明高拉应力应用在NMOS器件上的结构示意图。图中1为栅极,2为氮化硅薄膜。
具体实施方式
本发明提出了一种制造高拉应力氮化硅薄膜的方法。利用薄膜中氢含量的损失量与薄膜最终的应力成正比的关系,来增加薄膜内氢含量的净损失量,以达到具有高拉应力的薄膜。
主要制造方法如下:先在硅基板上沉积一层第一氮化硅薄膜层,利用等离子体对第一氮化硅薄膜进行处理。在第一氮化硅薄膜层之上沉积一层第二氮化硅薄膜层,并再次用等离子体对第二氮化硅薄膜进行轰击。之后,对多层氮化硅薄膜层进行紫外光照射。
在沉积氮化硅薄膜过程中,用含有氢元素的等离子体(如H2、NH3等)对薄膜进行处理以提高氮化硅薄膜层的含氢量。含有氢元素的等离子体优选氢气等离子体、和/或氨气等离子体。薄膜在生长过程中进行若干次的等离子体处理,最终生成一种富含氢的氮化硅薄膜。
图1是将在550℃的温度下,在不同百分比含量氩气的环境下沉积的氮化硅薄膜,并测定其中净氢损失量和薄膜内部拉应力的关系图。从图上可以得出,薄膜中氢含量的损失量正比于薄膜最终的拉应力(即氢的含量越低拉应力相对应越高)。在一种降低含氢量的实施方式中,含有富含氢的氮化硅薄膜经过紫外光照射后,可以使得薄膜中的氢元素大量的被去除,从而增加了氮化硅薄膜的应力。图1所示的数据表明,与一般含氢量的薄膜在紫外光下照射相比,富含氢的氮化硅薄膜在紫外光下照射后其氢元素的净去除量更高,因此得到的氮化硅具有更高拉应力。
实施例1
在500℃温度下,先在硅基板上沉积一层第一氮化硅薄膜层。利用氢气等离子体对第一氮化硅薄膜进行处理。在第一氮化硅薄膜层之上沉积一层第二氮化硅薄膜层,并再次用氢气等离子体对第二氮化硅薄膜进行处理。之后,在第二氮化硅薄膜层之上沉积一层第三氮化硅薄膜层,并再次用氢气等离子体对第三氮化硅薄膜进行处理。整个沉积和处理在同一个腔室完成。最后,对多层氮化硅薄膜层进行紫外光照射,得到的氮化硅薄膜层则具有高拉应力。
实施例2
在400℃温度下,先在硅基板上沉积一层第一氮化硅薄膜层。利用氨气等离子体对第一氮化硅薄膜进行处理。在第一氮化硅薄膜层之上沉积一层第二氮化硅薄膜层,并再次用氨气等离子体对第二氮化硅薄膜进行处理。之后,在第二氮化硅薄膜层之上沉积一层第三氮化硅薄膜层,并再次用氨气等离子体对第三氮化硅薄膜进行处理。随之,在第三氮化硅薄膜层之上沉积一层第四氮化硅薄膜层,并再次用氨气等离子体对第四氮化硅薄膜进行处理。整个沉积和处理在同一个腔室完成。在氮化硅薄膜的厚度达到所需要厚度前,不断重复沉积和处理过程。最后,将的到的多层氮化硅薄膜层进行紫外光照射,得到的氮化硅薄膜层则具有高拉应力。
图2是将氮化硅薄膜沉积在位于基板和基板中的晶体管结构的凸起的栅极上。图中1是栅极,2是氮化硅薄膜。将具有高拉应力的CESL应用在NMOS中,可以使得NMOS具有高电迁移率。
在本发明整个制造过程中,采用多次重复沉积和处理可以使得氮化硅具有更高的拉应力。可以在较低的制造成本下制造出应力最少为1.8GPa的氮化硅薄膜,将其应用于NMOS器件上将极大的增加电迁移率且生产工艺也相当简单。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (7)

1.一种如权利要求1所述的制造高拉应力氮化硅薄膜的方法,其特征在于:其特征在于包括以下顺序步骤:
步骤1,先在硅基板上沉积一层第一氮化硅薄膜层,利用等离子体对第一氮化硅薄膜进行处理;
步骤2,在第一氮化硅薄膜层之上沉积第二氮化硅薄膜,并利用等离子体处理该第二氮化硅薄膜层;
步骤3,重复步骤1和2,直至自下而上的多层氮化硅薄膜层的总厚度达到工艺所需要求;
步骤4,对所述多层氮化硅薄膜层进行紫外光照射。
2.根据权利要求1所述的制造高拉应力氮化硅薄膜的方法,其特征在于:所述等离子体为含有氢元素的等离子体,用于提高氮化硅薄膜层的含氢量。
3.根据权利要求2所述的制造高拉应力氮化硅薄膜的方法,其特征在于:所述含有氢元素的等离子体为氢气等离子体、和/或氨气等离子体。
4.根据权利要求1所述的制造高拉应力氮化硅薄膜的方法,其特征在于:所述氮化硅薄膜层覆盖在硅基板中所制备的CMOS器件中所包含的NMOS器件上。
5.根据权利要求1所述的制造高拉应力氮化硅薄膜的方法,其特征在于:所述沉积和处理过程在同一个反应腔室内进行。
6.根据权利要求1所述的制造高拉应力氮化硅薄膜的方法,其特征在于:重复所述步骤1和2的次数为5~30次,每次沉积薄膜的厚度为15~50A。
7.根据权利要求1所述的制造高拉应力氮化硅薄膜的方法,其特征在于:利用紫外光照射氮化硅薄膜层之后,以增大氮化硅薄膜层中净含氢量的损失度,用于提高多层氮化硅薄膜层的拉应力。
CN2011101103675A 2011-04-29 2011-04-29 一种制造高拉应力氮化硅薄膜的方法 Active CN102412125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101103675A CN102412125B (zh) 2011-04-29 2011-04-29 一种制造高拉应力氮化硅薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101103675A CN102412125B (zh) 2011-04-29 2011-04-29 一种制造高拉应力氮化硅薄膜的方法

Publications (2)

Publication Number Publication Date
CN102412125A true CN102412125A (zh) 2012-04-11
CN102412125B CN102412125B (zh) 2013-12-04

Family

ID=45914145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101103675A Active CN102412125B (zh) 2011-04-29 2011-04-29 一种制造高拉应力氮化硅薄膜的方法

Country Status (1)

Country Link
CN (1) CN102412125B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751197A (zh) * 2012-06-21 2012-10-24 上海华力微电子有限公司 Nmos器件制作方法
CN102818664A (zh) * 2012-05-04 2012-12-12 上海华力微电子有限公司 薄膜应力分布的检测方法
CN103871867A (zh) * 2014-03-19 2014-06-18 武汉新芯集成电路制造有限公司 一种低应力氮化硅薄膜的形成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735710A (zh) * 2002-12-20 2006-02-15 应用材料有限公司 形成高质量的低温氮化硅膜的方法和设备
CN101208783A (zh) * 2005-05-26 2008-06-25 应用材料股份有限公司 通过后pecvd沉积uv处理增加氮化硅膜的拉伸应力的方法
CN101496145A (zh) * 2006-06-20 2009-07-29 应用材料股份有限公司 利用原位氮等离子体处理及非原位紫外光固化来增加氮化硅拉伸应力的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735710A (zh) * 2002-12-20 2006-02-15 应用材料有限公司 形成高质量的低温氮化硅膜的方法和设备
CN101208783A (zh) * 2005-05-26 2008-06-25 应用材料股份有限公司 通过后pecvd沉积uv处理增加氮化硅膜的拉伸应力的方法
CN101496145A (zh) * 2006-06-20 2009-07-29 应用材料股份有限公司 利用原位氮等离子体处理及非原位紫外光固化来增加氮化硅拉伸应力的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王晓泉: "《太阳电池用氮化硅薄膜及氢钝化研究-浙江大学研究生硕士论文》", 31 December 2003 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818664A (zh) * 2012-05-04 2012-12-12 上海华力微电子有限公司 薄膜应力分布的检测方法
CN102751197A (zh) * 2012-06-21 2012-10-24 上海华力微电子有限公司 Nmos器件制作方法
CN102751197B (zh) * 2012-06-21 2015-05-20 上海华力微电子有限公司 Nmos器件制作方法
CN103871867A (zh) * 2014-03-19 2014-06-18 武汉新芯集成电路制造有限公司 一种低应力氮化硅薄膜的形成方法

Also Published As

Publication number Publication date
CN102412125B (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2011028349A3 (en) Remote hydrogen plasma source of silicon containing film deposition
WO2011115997A3 (en) Silicon nitride passivation layer for covering high aspect ratio features
TW200624360A (en) Substrate treatment method, substrate treatment system, and substrate treatment program
CN102134703B (zh) 一种具有多带特征的硅量子点薄膜的制备方法
TW200614560A (en) Method for producing a layer of a doped semiconductor material, and apparatus
CN102412125B (zh) 一种制造高拉应力氮化硅薄膜的方法
WO2013124394A3 (de) Verfahren zum herstellen einer solarzelle
US20190259905A1 (en) Method For Passivating A Surface Of A Semiconductor Material And Semiconductor Substrate
CN102337523A (zh) 选择性原子层沉积成膜方法
US20150140696A1 (en) Combinatorial Method for Solid Source Doping Process Development
WO2011163037A3 (en) Plasma-enhanced chemical vapor deposition of crystalline germanium
CN103839800A (zh) 氮化硅制造方法
CN103794658B (zh) 复合膜高效晶体硅太阳能电池及其制造方法
NO20082555L (no) Antireflekslag pa solceller og produksjonsmetode for denne
CN105977342A (zh) 一种多晶硅背钝化电池背面原子层沉积制备氧化铝薄膜退火合成工艺
Yang et al. High-quality cBN thin films prepared by plasma chemical vapor deposition with time-dependent biasing technique
EP1911102B8 (en) Method for passivating a substrate surface
Lamers et al. The interface of a-SiNx: H and Si: Linking the nano-scale structure to passivation quality
CN104078478B (zh) 背照式cmos影像传感器及其制造方法
KR101851171B1 (ko) 그래핀계 배리어 필름의 제조 방법
US20080305646A1 (en) Atomic layer deposition
US8569137B1 (en) Method of improving PMOS performance in a contact etch stop layer process
WO2005081789A3 (en) Formation of CIGS Absorber Layer by Atomic Layer Deposition
CN102820219A (zh) 低温二氧化硅薄膜的形成方法
CN103184438A (zh) 薄膜的热处理方法及热处理装置、化学气相沉积装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant