CN102404973A - Heat exchanger structure - Google Patents

Heat exchanger structure Download PDF

Info

Publication number
CN102404973A
CN102404973A CN2010102782912A CN201010278291A CN102404973A CN 102404973 A CN102404973 A CN 102404973A CN 2010102782912 A CN2010102782912 A CN 2010102782912A CN 201010278291 A CN201010278291 A CN 201010278291A CN 102404973 A CN102404973 A CN 102404973A
Authority
CN
China
Prior art keywords
flow path
helical flow
heat converter
spoiler
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102782912A
Other languages
Chinese (zh)
Inventor
罗世平
张立东
阮伟诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Vital Components Co Ltd
Original Assignee
Asia Vital Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Vital Components Co Ltd filed Critical Asia Vital Components Co Ltd
Priority to CN2010102782912A priority Critical patent/CN102404973A/en
Publication of CN102404973A publication Critical patent/CN102404973A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger structure comprises a body. A first flow channel group and a second flow channel group are arranged on two sides of the body correspondingly and are in spiral shapes. A plurality of turbulent flow portions are arranged on one sides of the first flow channel group and the second flow channel group corresponding to the body. The body is further provided with a water inlet and a water outlet which are communicated with the first flow channel group and the second flow channel group. Fluid flows in the first flow channel group and the second flow channel group. The fluid can produce separation eddy through the turbulent flow portions so as to greatly improve turbulence intensity of a flow field to improve heat transfer efficiency.

Description

Heat converter structure
Technical field
The present invention refers to a kind of heat converter structure that improves hot transfer efficiency especially relevant for a kind of heat exchanger.
Background technology
Along with being showing improvement or progress day by day of electronic information science and technology, make electronic equipment (like computer, mobile computer, communication cabinet ... etc.) use popularize day by day and use more extensive; Yet; Electronic equipment electronic building brick in it when working at high speed can produce used heat; If can't in time aforementioned used heat be discharged outside the electronic equipment; As easy as rolling off a log these used heat that make are hoarded in electronic equipment, and the temperature that makes electronic equipment internal and interior electronic building brick thereof is constantly soaring, so cause electronic building brick because of overheatedly break down, situation such as damage or operational paradigm reduction.
And prior art is in order to improve above-mentioned heat dissipation problem, and generally more common all is that radiator fan of installing comes forced heat radiation in electronic equipment, but because of the throughput of its radiator fan limited; Make its radiating effect be difficult to promote; And the situation that cooling extent is also limited so the dealer just seeks another kind of settling mode, promptly uses a water-cooled power converter directly to be attached on the heat generating component; Like (central processing unit (CPU), MPU, south, north bridge chips or other are because of carrying out the electronic building brick etc. that the operation meeting produces high heat); And cooling liquid is imported in the water-cooled power converter in aqua storage tank by a pumping, after the heat that cooling liquid and this water-cooled power converter are absorbed from heat generating component was done heat exchange, cooling liquid flowed out to a radiating module by a delivery port of water-cooled power converter again; Again via sending aforementioned aqua storage tank again back to after the cooling; So help heat radiation by the cooling liquid circulation, reduce the heat generating component temperature, its heat generating component can be operated smoothly.
Yet; Though said water-cooled power converter can improve the problem of utilizing the air-flow heat radiation; But extend another problem, promptly water-cooled power converter is close to the relation that end face (being heat-absorbent surface) by this heat generating component only concentrates on same place, make cooling liquid in the water-cooled device only have a undermost fluid partly and heat-absorbent surface produce heat exchange action; And fluid does not at the middle and upper levels produce heat exchange with heat-absorbent surface; And it is also too short that said cooling liquid is trapped in time of water-cooled power converter, to cause cooling liquid cmpletely enough heats (being heat exchange) of absorption not as yet, just derived by aforementioned delivery port fast immediately; Institute causes its heat to pass poor effect so that the water-cooled function is had a greatly reduced quality, and then makes the radiating effect utmost point not show.
Because of prior art oil-to-water heat exchanger inside configuration runner is unidirectional level and smooth runner; So cooling liquid is shorter the dead time in these runners, the thermal source of then taking away is promptly less, therefore; It is obviously not good to make whole heat exchanger effectiveness and heat pass effect, and its relative radiating effect is more not desirable; So prior art has disadvantage:
1. heat exchanger effectiveness is not good;
2. radiating effect is not good.
Because above-mentionedly commonly use the drawbacks that article are derived; The creator of this case exhausts its intelligence then, innovates improvement to be engaged in the sector experience for many years, to concentrate on studies; Finally successfully this part " heat converter structure " case is accomplished in research and development, is the creation that a tool effect is promoted in fact.
Summary of the invention
For solving the shortcoming of above-mentioned prior art, the application's main purpose provides a kind of fluid that makes to produce separation eddy lifting flow field turbulence intensity, and then increases the heat converter structure that heat passes usefulness.
For reaching above-mentioned purpose, the application provides a kind of heat converter structure, comprises: a body, a first flow group, second a runner group, first lid, second lid; Said body has one first side, second side and one the 3rd side, and the mutual correspondence of this first and second side is located at this body both sides, and first and second side of the 3rd side and this is vertical to be connected and to be provided with a water inlet and a delivery port; This first flow is mounted on said first side; Have one first helical flow path and one second helical flow path; This first and second helical flow path is interconnected, and is communicated with said water inlet and this delivery port, and said first and second helical flow path side of this body relatively has plural spoiler; Said second runner is mounted on said second side; Have a triple helical runner and one the 4th helical flow path; This third and fourth helical flow path is interconnected, and is communicated with said water inlet and this delivery port, and said third and fourth helical flow path side of this body relatively has plural spoiler; This first lid correspondence covers said first side; This second lid correspondence covers said second side.
Design by the both sides spiral type runner of said heat converter structure; Must increase the heat exchanger effectiveness of heat exchanger; And the wall that sees through in these spiral type runners is provided with spoiler, and the fluid that order is passed through produces separation eddy lifting flow field turbulence intensity lifting heat and passes usefulness.
Description of drawings
Fig. 1 is the application's heat exchanger first embodiment three-dimensional exploded view;
Fig. 2 is the application's heat exchanger first embodiment three-dimensional combination figure;
Fig. 3 is the application's heat exchanger first embodiment profile;
Fig. 4 is the application's heat exchanger second embodiment three-dimensional exploded view;
Fig. 5 is the application's heat exchanger second embodiment profile;
Fig. 6 is the application's heat exchanger the 3rd embodiment profile;
Fig. 7 is please the heat exchanger illustrative view in this.
[primary clustering symbol description]
Heat exchanger 1 20 first helical flow path 121
Body 11 second helical flow paths 122
First side, 111 second runner groups 13
Second side, 112 triple helical runners 131
The 3rd side 113 the 4th helical flow path 132
Water inlet 114 25 first lids 14
Delivery port 115 second lids 15
Center 116 spoilers 16
First flow group 12 working fluids 2
Embodiment
The application provides a kind of heat converter structure; Icon is the application's preferred embodiment; See also the 1st, 2,3 figure; Be the application's the three-dimensional decomposition of heat exchanger first embodiment and combination and cutaway view, the application's heat exchanger 1 comprises: body 11, first flow group 12, one second runner group 13, first lid 14, second lid 15;
Said body 11 has one first side 111 and one second side 112 and one the 3rd side 113; These first and second side 111,112 mutual correspondences are located at this body 11 both sides, and first and second side of the 3rd side 113 and this 111,112 is vertical to be connected and to be provided with a water inlet 114 and a delivery port 115.
This first flow group 12 is located at said first side 111; Have one first helical flow path 121 and one second helical flow path 122; This first and second helical flow path 121,122 is interconnected; And being communicated with said water inlet 114 and this delivery port 115, a side of said first and second helical flow path 121,122 relative these bodies 11 has plural spoiler 16.
Said first helical flow path, 121 1 ends are connected with said water inlet 114, and the other end is connected with said second helical flow path 122, and said second helical flow path, 122 other ends are connected with said delivery port 115.
The second runner group 13 is located at said second side 112 and is had a triple helical runner 131 and one the 4th helical flow path 132; This third and fourth helical flow path 131,132 is interconnected; And being communicated with said water inlet 114 and this delivery port 115, a side of said third and fourth helical flow path 131,132 relative these bodies 11 has plural spoiler 16.
Said triple helical runner 131 1 ends are connected with said water inlet 114, and the other end is connected with said the 4th helical flow path 132, and said the 4th helical flow path 132 other ends are connected with aforementioned delivery port 115.
Said first lid, 14 correspondences cover said first side 111; These second lid, 15 correspondences cover said second side 112.
Said body 11 has more a center 116; Said first, second, third and fourth helical flow path 121,122,131,132 by this center 116 towards the outer radial at this center 116 relatively around extending institute's configuration, and the radially radius of gyration of this first, second, third and fourth helical flow path 121,122,131,132 increases toward the outsides from the center 116 of body 11 gradually.
Said spoiler 16 be one continuously or the strip projection of segmentation (also can be arranged to certainly continuously or point-like or other geometry of segmentation), and tilt or be the tangent line setting.
See also the 4th, 5 figure; Be the application's heat exchanger second embodiment three-dimensional exploded view and cutaway view; Present embodiment is identical with the said first embodiment part-structure characteristic; So repeat no more in the present embodiment; Do not cover said first side 111 for present embodiment and said first embodiment do not exist together for said first lid 14 is corresponding, these second lid, 15 correspondences cover said second side 112, and the side that 15 pairs of the side that 14 pairs of this first lids should first flow group 12 and this second lids should the second runner groups 13 is respectively equipped with plural spoiler 16.
See also the 6th figure; Be the application's heat exchanger the 3rd embodiment cutaway view; Present embodiment is identical with the said first embodiment part-structure characteristic; So repeat no more in the present embodiment, do not exist together spoiler 16 for present embodiment of present embodiment and said first embodiment is the strip groove of a continuous or segmentation, and inclination or tangent line setting.
Please consult the 6th, 7 figure again; Be the application's heat exchanger cutaway view and illustrative view; As shown in the figure; Said working fluid 2 is got in these first helical flow paths 121 and this triple helical runner 131 by the water inlet of said heat exchanger 1 114 and does circulation; And get into second helical flow paths 122 and the 4th helical flow path 132 is done circulation along this first helical flow path 121 and this triple helical runner 131, and connect this delivery port 115 places by this second, four helical flow path 122,132 and discharge this heat exchanger 1, said working fluid 2 is circulation time in said first, second, third and fourth helical flow path 121,122,131,132; Because of being provided with plural spoiler 16 in this first, second, third and fourth helical flow path 121,122,131,132; Compared to the level and smooth runner structure Design of prior art, the application's spoiler 16 can make this working fluid 2 produce separation eddy and promote the flow field turbulence intensity, and then promotes heat biography usefulness.

Claims (12)

1. heat converter structure comprises:
A body has one first side and one second side and one the 3rd side, and the mutual correspondence of this first and second side is located at this body both sides, and first and second side of the 3rd side and this is vertical to be connected and to be provided with a water inlet and a delivery port;
A first flow group; Be located at said first side, have one first helical flow path and one second helical flow path, this first and second helical flow path is interconnected; And being communicated with said water inlet and this delivery port, said first and second helical flow path side of this body relatively has plural spoiler;
One second runner group; Be located at said second side, have a triple helical runner and one the 4th helical flow path, this third and fourth helical flow path is interconnected; And being communicated with said water inlet and this delivery port, said third and fourth helical flow path side of this body relatively has plural spoiler;
One first lid, correspondence cover said first side;
One second lid, correspondence cover said second side.
2. heat converter structure as claimed in claim 1, wherein said spoiler are a strip projection.
3. heat converter structure as claimed in claim 1, wherein said spoiler are a strip groove.
4. heat converter structure as claimed in claim 1, wherein said first helical flow path, one end is connected with said water inlet, and the other end is connected with said second helical flow path, and the said second helical flow path other end is connected with said delivery port.
5. heat converter structure as claimed in claim 1, wherein said triple helical runner one end is connected with said water inlet, and the other end is connected with said the 4th helical flow path, and said the 4th helical flow path other end is connected with said delivery port.
6. heat converter structure as claimed in claim 1, wherein said first lid are provided with the corresponding first flow group of plural spoiler.
7. heat converter structure as claimed in claim 1, wherein said second lid are provided with the corresponding second runner group of plural spoiler.
8. heat converter structure as claimed in claim 1; Wherein said body has more a center; Said first, second, third and fourth helical flow path by this center towards the outer radial at this center relatively around extending institute's configuration, and the radially radius of gyration of this first, second, third and fourth helical flow path increases from the body center toward the outside gradually.
9. like claim 6 or 7 described heat converter structures, wherein said spoiler is a strip projection.
10. like claim 6 or 7 described heat converter structures, wherein said spoiler is a strip groove.
11. like claim 1,2,3,6 or 7 described heat converter structures, wherein said spoiler is to tilt or the setting of tangent line one of which.
12. like claim 1,2,3,6 or 7 described heat converter structures, wherein said spoiler is continuously or the segmentation form person of setting.
CN2010102782912A 2010-09-10 2010-09-10 Heat exchanger structure Pending CN102404973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102782912A CN102404973A (en) 2010-09-10 2010-09-10 Heat exchanger structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102782912A CN102404973A (en) 2010-09-10 2010-09-10 Heat exchanger structure

Publications (1)

Publication Number Publication Date
CN102404973A true CN102404973A (en) 2012-04-04

Family

ID=45886594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102782912A Pending CN102404973A (en) 2010-09-10 2010-09-10 Heat exchanger structure

Country Status (1)

Country Link
CN (1) CN102404973A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489008A (en) * 2014-06-05 2017-03-08 阿尔法拉瓦尔股份有限公司 Rinsing module
CN106535564A (en) * 2016-10-21 2017-03-22 华中科技大学 Liquid cooling type heat radiator
CN107658281A (en) * 2017-10-09 2018-02-02 四川大学 A kind of shunting annular microchannel heat sink
CN107835613A (en) * 2017-10-10 2018-03-23 深圳航天东方红海特卫星有限公司 A kind of inverse expansion hot plate along spirally arrangement of conduit that exchanges heat
FR3061496A1 (en) * 2017-01-05 2018-07-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives GAS OVERHEATING SYSTEM IN SOEC / SOFC TYPE SOLID OXIDE STRIP ENTRY
CN111863748A (en) * 2020-08-17 2020-10-30 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Integrated micro cooler and cooling system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614227A (en) * 1983-11-02 1986-09-30 Bbc Brown, Boveri & Company Limited Cooling body for the liquid cooling of high-power semiconductor components
JPH0193277A (en) * 1987-10-05 1989-04-12 Nippon Hoso Kyokai <Nhk> Data arrangement conversion circuit
EP0613179A1 (en) * 1993-02-26 1994-08-31 Gec Alsthom Limited Heat sink
JPH1093277A (en) * 1996-09-10 1998-04-10 Toshiba Corp Cooling medium
US20060231236A1 (en) * 2005-04-14 2006-10-19 Michael Spokoiny Heat dissipating device
CN2904592Y (en) * 2006-03-28 2007-05-23 元山科技工业股份有限公司 Water cooled radiating device
CN201096467Y (en) * 2007-08-23 2008-08-06 南通江华热动力机械有限公司 Spoiler for inner fins of radiator
CN201504382U (en) * 2009-09-10 2010-06-09 杭州祥博电气有限公司 Novel water-cooling heat radiator
JP4559251B2 (en) * 2005-02-17 2010-10-06 本田技研工業株式会社 Heat storage device
CN201766806U (en) * 2010-09-10 2011-03-16 奇鋐科技股份有限公司 Heat exchanger structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614227A (en) * 1983-11-02 1986-09-30 Bbc Brown, Boveri & Company Limited Cooling body for the liquid cooling of high-power semiconductor components
JPH0193277A (en) * 1987-10-05 1989-04-12 Nippon Hoso Kyokai <Nhk> Data arrangement conversion circuit
EP0613179A1 (en) * 1993-02-26 1994-08-31 Gec Alsthom Limited Heat sink
JPH1093277A (en) * 1996-09-10 1998-04-10 Toshiba Corp Cooling medium
JP4559251B2 (en) * 2005-02-17 2010-10-06 本田技研工業株式会社 Heat storage device
US20060231236A1 (en) * 2005-04-14 2006-10-19 Michael Spokoiny Heat dissipating device
CN2904592Y (en) * 2006-03-28 2007-05-23 元山科技工业股份有限公司 Water cooled radiating device
CN201096467Y (en) * 2007-08-23 2008-08-06 南通江华热动力机械有限公司 Spoiler for inner fins of radiator
CN201504382U (en) * 2009-09-10 2010-06-09 杭州祥博电气有限公司 Novel water-cooling heat radiator
CN201766806U (en) * 2010-09-10 2011-03-16 奇鋐科技股份有限公司 Heat exchanger structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489008A (en) * 2014-06-05 2017-03-08 阿尔法拉瓦尔股份有限公司 Rinsing module
CN106489008B (en) * 2014-06-05 2020-12-08 阿尔法拉瓦尔股份有限公司 Flushing assembly
CN106535564A (en) * 2016-10-21 2017-03-22 华中科技大学 Liquid cooling type heat radiator
CN106535564B (en) * 2016-10-21 2019-06-28 华中科技大学 A kind of liquid cooling heat radiator
FR3061496A1 (en) * 2017-01-05 2018-07-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives GAS OVERHEATING SYSTEM IN SOEC / SOFC TYPE SOLID OXIDE STRIP ENTRY
WO2018127649A1 (en) * 2017-01-05 2018-07-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for overheating gases at the inlet of a soec/sofc-type solid oxide stack
JP2020515710A (en) * 2017-01-05 2020-05-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for superheating the gas at the inlet of a SOEC/SOFC type solid oxide stack
US11228047B2 (en) 2017-01-05 2022-01-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for overheating gases at the inlet of a SOEC/SOFC-type solid oxide stack
JP7039600B2 (en) 2017-01-05 2022-03-22 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ A method for overheating the gas at the inlet of an SOEC / SOFC solid oxide stack
CN107658281A (en) * 2017-10-09 2018-02-02 四川大学 A kind of shunting annular microchannel heat sink
CN107835613A (en) * 2017-10-10 2018-03-23 深圳航天东方红海特卫星有限公司 A kind of inverse expansion hot plate along spirally arrangement of conduit that exchanges heat
CN111863748A (en) * 2020-08-17 2020-10-30 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Integrated micro cooler and cooling system

Similar Documents

Publication Publication Date Title
CN102404973A (en) Heat exchanger structure
CN201766806U (en) Heat exchanger structure
US20120152500A1 (en) Flow passage structure for water-cooling device
CN201894034U (en) Improved runner structure of water-cooling device
TWI400421B (en) Heat exchanger structure
CN106852092B (en) A kind of novel mechanical pump liquid cooling heat radiation system
CN207096911U (en) A kind of computer radiating shell
CN102469748A (en) Improved runner structure of water cooling device
CN107863330B (en) A kind of grade micro-channel liquid cooling plate
CN108827003A (en) A kind of electric stove environmental-protection cooling device
CN206525066U (en) Cooling water drainage device and its water cooling module
CN101600326B (en) Electronic apparatus cooling device
CN202520644U (en) Fan wheel structure of annular fan and annular fan thereof
CN102131367B (en) Heat exchanger structure
CN201894035U (en) Heat exchange structure with distribution function
CN202042475U (en) Liquid-cooling radiator
CN201557360U (en) Cooling fan device and electronic computing system thereof
CN106098657A (en) The small-scale liquid cooling system of a kind of electrohydraulic dynamic Micropump driving and method
CN102736711A (en) Structure improvement of condensation device and heat dissipation module of condensation device
CN104349640A (en) Micro channel enhanced heat transfer device
CN208013880U (en) It is a kind of can intelligent temperature control laptop CPU water cooling micro-channel radiators
TWI380161B (en)
CN108334179A (en) It is a kind of can intelligent temperature control laptop CPU water cooling micro-channel radiators
CN102469749B (en) The heat exchange structure of tool shunting
CN201417418Y (en) Integrated modular cooling device for server

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20120404

RJ01 Rejection of invention patent application after publication