CN102397079B - X射线计算机断层摄影系统和方法 - Google Patents

X射线计算机断层摄影系统和方法 Download PDF

Info

Publication number
CN102397079B
CN102397079B CN 201010286358 CN201010286358A CN102397079B CN 102397079 B CN102397079 B CN 102397079B CN 201010286358 CN201010286358 CN 201010286358 CN 201010286358 A CN201010286358 A CN 201010286358A CN 102397079 B CN102397079 B CN 102397079B
Authority
CN
China
Prior art keywords
collimator
projection value
oval cross
section
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010286358
Other languages
English (en)
Other versions
CN102397079A (zh
Inventor
田毅
陈马昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Shanghai Medical Equipment Ltd
Original Assignee
Siemens Shanghai Medical Equipment Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Shanghai Medical Equipment Ltd filed Critical Siemens Shanghai Medical Equipment Ltd
Priority to CN 201010286358 priority Critical patent/CN102397079B/zh
Publication of CN102397079A publication Critical patent/CN102397079A/zh
Application granted granted Critical
Publication of CN102397079B publication Critical patent/CN102397079B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明公开了一种X射线计算机断层摄影系统,其包括X射线管、准直器和探测器,用于对待检对象在扫描方向上的复数个椭圆截面进行摄影,所述探测器包括复数个探测器通道,所述X射线管、准直器和探测器围绕待检对象同步旋转,所述准直器为一开口可调的准直器,所述系统还包括计算组件和调整组件,所述计算组件用于计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度,并将所述开口宽度传送给所述调整组件;所述调整组件用于根据所述开口宽度来调整所述准直器的开口。本发明还公开了一种X射线计算机断层摄影方法。采用本发明的系统和方法,能减少对待检对象周围区域的额外曝光,并减少病人接受的X射线剂量。

Description

X射线计算机断层摄影系统和方法
技术领域
本发明涉及医学成像领域,尤其涉及一种X射线计算机断层摄影系统和方法。
背景技术
在X射线计算机断层成像(CT)系统中,剂量特性是一项非常重要的性能指标。使扫描剂量尽可能低已经成为当前CT系统发展的一个通用规则。在CT系统中,测量域(field of measurement,FOM)定义为在单次旋转扫描中,X射线管旋转360度的过程中待检对象得到全辐射的横截面区域,其决定了直接对待检对象施加的扫描剂量和X射线照射区域的大小。
由于人体大多数器官或组织的横截面有近似椭圆形的外轮廓,对单次旋转扫描而言,当X射线管在不同投影角度照射待检对象时,目前大多数CT系统采用的固定圆形FOM和不变开口的phi准直器(即,扇束准直器)将会带来对待检对象周围区域的额外曝光,其中phi平面为机架中人体横截面所在的平面。如图1所示,为待检对象为脊柱时,采用固定圆形FOM和不变开口的phi准直器进行CT扫描,对脊柱周围区域带来额外曝光的示意图。图中,当X射线管1发出的X射线对一脊柱横截面13进行扫描时,由于采用固定圆形FOM(如图中圆形区域3所示,其直径为50cm)和不变开口的phi准直器2,从而带来额外的曝光区域41和42。尽管用这种方法对待检对象进行CT扫描时,人体接受的X射线仍在安全剂量范围内,但是我们总是希望在不影响成像质量的前提下,进一步减少待检对象周围区域接受到的X射线剂量。另一方面,由于脊柱横截面13在X射线管不同投影角度下所需曝光的区域大小不等,所以在所述不同投影角度下带来的额外曝光区域大小也不同,图中区域42明显多于区域41。如果准直器的开口能根据待检对象各横截面的不同大小对X射线管发出的X射线进行调整,同时还能根据X射线管的不同投影角度下同一横截面曝光区域的变化来调整X射线,则FOM就能与准直器的开口宽度进行同步调整,这样就可以进一步减少待检对象周围区域接受到的额外曝光。
基于动态准直器预先定义感兴趣区(Region of Interest,ROI)来确定FOM的大小方法是一种现有技术,其中ROI通常是指病变部位所在的人体区域,相当于本发明的待检对象。但是这种方法仅对单次旋转扫描用固定FOM提出了解决方案,而没有考虑ROI在扫描方向上的大小变化和形状变化,其中扫描方向为CT系统中检查床进出机架的水平方向,与phi平面垂直,通常为z轴方向。
公开号为CN 1446517A的专利申请公开了一种X射线数据采集系统,其采用椭圆形截面或圆形截面,根据图像的标准偏差的目标值、图像的标准偏差的预计值和厚度因子计算出透过待检对象体轴方向的预定角度范围内的X射线的剂量值,并通过改变X射线管的管电流大小得以实现,但却没有改变准直器的开口,也没有根据待检对象在扫描方向的大小变化来相应地调整待检对象的曝光区域。
发明内容
有鉴于此,本发明提出一种X射线计算机断层摄影系统和方法,以减少对待检对象周围区域的额外曝光,同时减少病人接受的X射线剂量。
本发明提供一种包括X射线管、准直器和探测器的X射线计算机断层摄影系统,用于对待检对象在扫描方向上的复数个椭圆截面进行摄影,所述探测器包括复数个探测器通道,所述X射线管、准直器和探测器围绕待检对象同步旋转,其特征在于,所述准直器为一开口可调的准直器,所述系统还包括计算组件和调整组件,其中所述计算组件,用于计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度,并将所述开口宽度传送给所述调整组件;所述调整组件,用于根据所述开口宽度来调整所述准直器的开口。
优选地,所述计算组件包括椭圆截面计算模块和开口宽度计算模块,其中所述椭圆截面计算模块,用于分别计算每一椭圆截面的长轴和短轴在探测器上的投影值,并将所述投影值传送给所述开口宽度计算模块;所述开口宽度计算模块,用于根据所述长轴和短轴的投影值,计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度,并将所述开口宽度传送给所述调整组件。
优选地,所述椭圆截面计算模块包括通道数目计算单元和比较单元,其中所述通道数目计算单元,用于根据待检对象的前后位定位像和侧位定位像,计算每一椭圆截面在两幅定位像上分别覆盖的探测器通道数目,并作为宽度投影值和厚度投影值传送给所述比较单元;所述比较单元,用于比较所述每一椭圆截面的宽度投影值和厚度投影值,取二者中的较大者作为所述长轴的投影值,较小者作为所述短轴的投影值,并将所述长轴和短轴的投影值传送给所述开口宽度计算模块。
进一步,所述椭圆截面计算模块还包括:外包络生成单元,用于为待检对象的前后位定位像和侧位定位像分别生成一个关于扫描中心线对称的外包络,并将前后位定位像的外包络作为所述前后位定位像、侧位定位像的外包络作为所述侧位定位像传送给所述通道数目计算单元。
进一步,所述椭圆截面计算模块还包括:修正单元,用于在所述宽度投影值和/或所述厚度投影值上加一经验值,并传送给比较单元。
优选地,所述开口宽度计算模块包括弦投影值计算单元和开口宽度计算单元,其中所述弦投影值计算单元,用于根据所述椭圆截面计算模块的长轴和短轴的投影值来分别计算每一椭圆截面在X射线管不同投影角度下在探测器上所覆盖的通道数目,并作为弦投影值传送给所述开口宽度计算单元;所述开口宽度计算单元,用于根据所述弦投影值计算单元的弦投影值来计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度。
优选地,所述准直器包括复数个叶片,所述叶片的间距通过调整组件来调整。
优选地,所述准直器包括遮光板,所述遮光板通过调整组件来调整。
本发明还提供一种X射线计算机断层摄影方法,所述方法对待检对象在扫描方向上的复数个椭圆截面进行摄影,包括如下步骤:计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度;根据所述开口宽度来调整所述准直器的开口。
优选地,所述计算开口宽度包括:计算每一椭圆截面的长轴和短轴在探测器上的投影值;根据所述长轴和短轴的投影值,计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度。
优选地,所述计算长轴和短轴的投影值包括:根据待检对象的前后位定位像,分别计算每一椭圆截面所覆盖的探测器通道数目,得到复数个宽度投影值,根据待检对象的侧位定位像,分别计算每一椭圆截面所覆盖的探测器通道数目,得到复数个厚度投影值;比较每一椭圆截面的宽度投影值和厚度投影值,取二者中的较大者作为所述长轴的投影值,较小者作为所述短轴的投影值。
优选地,所述计算长轴和短轴的投影值进一步包括:为待检对象的前后位定位像和侧位定位像分别生成一个关于扫描中心线对称的外包络,将前后位定位像的外包络作为所述前后位定位像、侧位定位像的外包络作为所述侧位定位像。
优选地,所述计算长轴和短轴的投影值进一步包括:在所述宽度投影值和/或所述厚度投影值上加一经验值。
优选地,所述计算准直器的开口宽度包括:根据所述长轴和短轴的投影值,分别计算每一椭圆截面在X射线管不同投影角度下在探测器上所覆盖的通道数目,得到复数个弦投影值;根据所述弦投影值来计算所述准直器的开口宽度。
优选地,根据下述公式来计算所述准直器的开口宽度,其中,α为X射线管投影角度,Wopen(α)为所述准直器的开口宽度,W(α)为当X射线管投影角度为α时,一椭圆截面的弦投影值,N为探测器的通道总数,β为覆盖N个探测器通道的X射线扇形束角度,Dfc为X射线管焦点到所述准直器的距离。
优选地,所述调整包括:通过改变所述准直器的叶片间距或加在所述叶片上的遮光板来调整所述开口。
从上述方案中可以看出,由于本发明根据待检对象在扫描方向上复数个椭圆截面的不同大小以及同一椭圆截面在X射线管不同投影角度下的弦投影值来调整准直器的开口宽度,形成覆盖待检对象的复数个椭圆形FOM(即椭圆截面),从而对待检对象进行X射线断层摄影,这就极大地减小了对待检对象周围区域的额外曝光,同时减少了病人接受的X射线剂量。同时,本发明的椭圆截面与基于轮廓识别技术的定位像相结合,从而能依据不同的待检对象得到减少X射线剂量的最佳设置,即设置准直器的开口宽度和椭圆截面的大小。另外,由于本发明可采用遮光板来调整准直器的开口,基于现有的CT系统容易实现。
附图说明
图1为在常规CT扫描中用固定圆形FOM和不变开口的phi准直器对脊柱进行CT扫描,对脊柱周围区域带来额外曝光的示意图。
图2为模拟人体平躺时脊柱的定位像及其外轮廓示意图,其中图2A是脊柱的前后位定位像及其外轮廓的示意图,图2B是脊柱的侧位定位像及其外轮廓的示意图。
图3为分别为图2的前后位定位像和侧位定位像生成的关于扫描中心线对称的外包络示意图,其中图3A是为图2A的前后位定位像生成的关于扫描中心线对称的外包络示意图,图3B是为图2B的侧位定位像生成的关于扫描中心线对称的外包络示意图。
图4是一脊柱椭圆截面的长轴和短轴的投影值的示意图。
图5是根据X射线管不同投影角度下的弦投影值来计算phi准直器的开口宽度的几何关系示意图。
图6是本发明CT系统的组件示意图。
图7是本发明CT系统的计算组件第一实施例的组成示意图。
图8是本发明CT系统的计算组件第二实施例的组成示意图。
图9是本发明CT系统的计算组件第二实施例的组成示意图。
图10是本发明CT摄影方法第一实施例的流程图。
图11是本发明CT摄影方法第二实施例的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下举实施例对本发明进一步详细说明。
由于人体大多数器官或组织的横截面有近似椭圆形的外轮廓,所以本发明中待检对象的横截面为椭圆截面,通过分别计算待检对象在扫描方向上复数个椭圆截面的长轴和短轴在探测器处的投影值,利用相似三角形的性质可以反推出这复数个椭圆截面各自的长轴和短轴的大小,也就确定了每一个椭圆截面的压扁程度和大小。
本发明根据待检对象在扫描方向上复数个椭圆截面的不同大小以及同一椭圆截面在X射线管不同投影角度下的弦投影值来计算准直器的开口宽度,并根据所述开口宽度来调整准直器的开口,从而对待检对象进行CT扫描,以减少对待检对象周围区域的额外曝光,同时减少病人接受的X射线剂量。
在本发明中,待检对象可以是人体的某个区域,也可以是人体的某个器官或组织。本发明的实施例中待检对象为脊柱,扫描方向(即检查床进出机架的水平方向)为z轴方向。由于目前CT系统中通常采用phi准直器,因此本发明的所有实施例中,以phi准直器为例进行说明。
本发明的CT系统用于对脊柱在扫描方向上的复数个椭圆截面进行摄影,如图6所示是本发明CT系统的组件示意图,包括计算组件30、调整组件31、准直器32和图6中未示出的X射线管和探测器,其中X射线管、准直器和探测器围绕脊柱同步旋转,探测器包括复数个探测器通道,准直器32为一开口可调的准直器,计算组件30用于计算分别照射每一椭圆截面所需扇束准直器在X射线管不同投影角度下的开口宽度,并将所述开口宽度传送给调整组件31,调整组件31用于根据所述开口宽度来调整准直器32的开口。这里的准直器32也就是实施例中开口可调的phi准直器。
图7是本发明CT系统的计算组件第一实施例的组成示意图。本实施例中计算组件30包括椭圆截面计算模块301和开口宽度计算模块302。其中椭圆截面计算模块301用于分别计算每一椭圆截面的长轴和短轴在探测器上的投影值,并将所述投影值传送给开口宽度计算模块302,开口宽度计算模块302用于根据所述长轴和短轴的投影值,计算分别照射每一椭圆截面所需扇束准直器在X射线管不同投影角度下的开口宽度,并将所述开口宽度传送给调整组件31。
图8是本发明CT系统的计算组件第二实施例的组成示意图。本实施例中,计算组件30包括椭圆截面计算模块40和开口宽度计算模块41;具体地,椭圆截面计算模块40又包括通道数目计算单元401和比较单元402,开口宽度计算模块41又包括弦投影值计算单元411和开口宽度计算单元412。其中:
通道数目计算单元401,用于根据脊柱的前后位定位像和侧位定位像,计算每一椭圆截面在两幅定位像上分别覆盖的探测器通道数目,并作为宽度投影值和厚度投影值传送给所述比较单元402。
图2示意了待检对象为脊柱时,模拟了人体平躺时脊柱的前后位定位像及其外轮廓和侧位定位像及其外轮廓。其中图2A为人体平躺时,X射线管在90度或270度(即竖直方向)对脊柱进行照射,得到脊柱的前后位(A.P)定位像的示意图。图2B为人体平躺时,X射线管在0度或180度(即水平方向)对脊柱进行照射,得到脊柱的侧位(Lat)定位像的示意图。这两幅图的横坐标都是沿z轴方向的扫描位置,单位是mm,纵坐标为在探测器处覆盖的通道数目,单位为通道个数。这两幅图中的区域16为脊柱,区域18为胸腔。另外,图2A中脊柱16的A.P定位像的外轮廓19和图2B中脊柱16的Lat定位像的外轮廓17都是由CT系统基于轮廓识别技术得到的,相比医生根据A.P定位像和Lat定位像来粗略估计脊柱轮廓的方法,CT系统的轮廓识别技术能得到更为精确的脊柱轮廓,从而使对脊柱进行CT扫描时能较佳地减少X射线对脊柱周围区域的额外曝光。
在得到脊柱16的A.P定位像的外轮廓19和Lat定位像的外轮廓17后,就可以按照下式(1)来计算在z轴方向上脊柱16的每一椭圆截面在两幅定位像上分别覆盖的探测器通道数目。
V(90)=nU(90)-nL(90)+1
V(0)=nU(0)-nL(0)+1                (1)
其中V(90)是宽度投影值,V(0)是厚度投影值。如图4所示,为一脊柱椭圆截面的长轴和短轴的投影值的示意图,区域13即图1所示的脊柱横截面13,该脊柱横截面13所在的椭圆FOM即椭圆截面15。宽度投影值V(90)是根据A.P定位像的外轮廓19得到在z轴方向上脊柱16的一椭圆截面15在探测器处覆盖的通道数目,nU(90)和nL(90)分别是该椭圆截面15所覆盖的探测器通道的上端通道编号51和下端通道编号52,厚度投影值V(0)是根据Lat定位像的外轮廓17得到该椭圆截面15在探测器处覆盖的通道数目,nU(0)和nL(0)分别是该椭圆截面15所覆盖的探测器通道的上端通道编号53和下端通道编号54。
比较单元402,用于比较所述每一椭圆截面的宽度投影值和厚度投影值,取二者中的较大者作为所述长轴的投影值WLong,较小者作为所述短轴的投影值Wshort,并将所述长轴和短轴的投影值传送给弦投影值计算单元411。
如图4所示,由于图中该椭圆截面15的宽度投影值V(90)>厚度投影值V(0),所以V(90)为长轴的投影值WLong,即通道编号51和通道编号52之间所包括的通道,如附图标记6所示,V(0)为短轴的投影值Wshor,即通道编号53和通道编号54之间所包括的通道,如附图标记7所示。于是根据WLong和Wshort并利用相似三角形的性质就可以反推出该椭圆截面15的长轴和短轴的大小,也就确定了椭圆截面15的压扁程度和大小。
进一步,椭圆截面计算模块40又包括修正单元403,用于在所述宽度投影值和/或所述厚度投影值上加一经验值,并传送给比较单元402。
根据扫描对象的特点和医生的经验在V(90)和/或V(0)上加一经验值,以得到待检对象所覆盖通道数目的更精确值,如下式(2)所示。
V′(90)=V(90)+ΔLong
V′(0)=V(0)+ΔShort    (2)
其中,V′(90)为修正后的宽度投影值,V′(0)为修正后的厚度投影值,ΔLong和ΔShort都为经验值,可根据扫描对象的特点和医生的经验设置为正值,负值,或者0,为了简化计算,在本发明的所有实施例中将这两个经验值都设为0,于是在本发明的所有实施例中都是直接比较宽度投影值和厚度投影值的大小。
弦投影值计算单元411,用于根据所述椭圆截面计算模块的长轴的投影值WLongt和短轴的投影值Wshort来分别计算每一椭圆截面在X射线管不同投影角度下在探测器上所覆盖的通道数目,并作为弦投影值传送给开口宽度计算单元412。
根据椭圆形的弦长计算公式,按下式(3)来计算该椭圆截面在X射线管不同投影角度下在探测器处的弦投影值。
W ( α ) = W Long · W Short W Long 2 · ( sin α ) 2 + W Short 2 · ( cos α ) 2 - - - ( 3 )
其中α是X射线管的投影角度,如图5中的角度10所示,W(α)为弦投影值14,即在投影角度为α时椭圆截面15在探测器处覆盖的通道数目。
开口宽度计算单元412,用于根据弦投影值计算单元411的弦投影值来计算分别照射每一椭圆截面所需扇束准直器在X射线管不同投影角度下的开口宽度。在图5中示意了根据在X射线管不同投影角度下的弦投影值来计算phi准直器开口宽度的几何关系。
开口宽度计算单元412首先根据弦投影值计算单元411的弦投影值W(α)按下式(4)来计算X射线扇形束角度βopen(α)。
β open ( α ) = β · W ( α ) N - - - ( 4 )
其中,N是探测器5的所有通道数目,β是X射线扇形束的最大角度,如图5中的角度8所示,其覆盖了探测器的N个通道,βopen(α)是弦投影值为W(α)时的X射线扇形束角度,如图5中的角度9所示。
接着,开口宽度计算单元412再根据βopen(α)按下式(5)来计算phi准直器21在X射线管投影角度为α时的开口宽度Wopen(α)。
Wopen(α)=βopen(α)·Dfc              (5)
其中,Dfc是X射线管1的焦点到phi准直器21的距离,如图5中距离12所示,Wopen(α)是phi准直器21在投影角度为α时的开口宽度,如图5中开口宽度11所示。图5中的phi准直器21不同于图1中的phi准直器2,这里的phi准直器21是可调开口的。
图9是本发明CT系统的计算组件第三实施例的组成示意图。本实施例中,计算组件30包括椭圆截面计算模块50和开口宽度计算模块51;具体地,椭圆截面计算模块50又包括外包络生成单元501、通道数目计算单元502和比较单元503,开口宽度计算模块51又包括弦投影值计算单元511和开口宽度计算单元512。其中:
外包络生成单元501,用于为脊柱的前后位定位像和侧位定位像分别生成一个关于扫描中心线对称的外包络,并将前后位定位像的外包络作为所述前后位定位像、侧位定位像的外包络作为所述侧位定位像传送给通道数目计算单元502。
如图2所示,为脊柱的前后位定位像及其外轮廓和侧位定位像及其外轮廓的示意图。由于前后位定位像外轮廓和侧位定位像外轮廓不一定关于扫描中心线对称,如图2B所示,脊柱的侧位定位像的外轮廓17关于扫描中心线(如图2B中的点划线所示)并不是对称的,图2A中脊柱的前后位定位像的外轮廓19关于扫描中心线(如图2A中的点划线所示)大致是对称的,而通常X射线管发出的X射线束关于扫描中心线是对称的,于是当关于扫描中心线对称的X射线束对如图2B所示的待检对象进行扫描时,就会导致一部分待检对象的周围区域接受了X射线的额外曝光,而另一部分待检对象则仍有一小部分没有接受到X射线的曝光。因此有必要为前后位定位像和侧位定位像分别生成一个关于扫描中心线对称的外包络。这种对称外包络可通过CT系统的一个外包络函数或程序来实现,以能更完整地包含待检对象。
如3所示,是分别为图2的前后位定位像和侧位定位像生成的关于扫描中心线对称的外包络示意图,其中图3A是为图2A的前后位定位像生成的关于扫描中心线对称的外包络示意图,图3B是为图2B的侧位定位像生成的关于扫描中心线对称的外包络示意图。图3A和3B的横坐标都是沿z轴方向的扫描位置,单位是mm,纵坐标都是在探测器处覆盖的通道数目,单位是通道个数。图3A的虚线是CT系统为脊柱的前后位定位像生成的关于扫描中心线对称的外包络W(90),图3B的点线是CT系统为脊柱的侧位定位像生成的关于扫描中心线对称的外包络W(0)。
接着外包络生成单元501将图3的前后位定位像的外包络W(90)作为所述前后位定位像、侧位定位像的外包络W(0)作为所述侧位定位像传送给通道数目计算单元502。
通道数目计算单元502,同通道数目计算单元401。
比较单元503,同比较单元402。
进一步,椭圆截面计算模块50又包括修正单元504,同修正单元403。
弦投影值计算单元511,同弦投影值计算单元411。
开口宽度计算单元512,同开口宽度计算单元412。
在本发明CT系统的计算组件的三个实施例中,经过计算得到phi准直器在X射线管投影角度为α时的开口宽度Wopen(α),接下来图6中的调整组件31就根据来自计算组件的开口宽度Wopen(α)来调整准直器32的开口。优选地,准直器32包括复数个叶片,所述叶片的间距是可调整的,这样就可根据Wopen(α)由调整组件来直接调整phi准直器的叶片的间距。不过这种设计改变了phi准直器的原有设计,在实现方式上比较复杂。
可替代地,本发明的发明人提出一种在准直器上增加遮光板的设计,根据Wopen(α)由调整组件来调整遮光板从而达到调整准直器开口的目的。由于现有技术中phi准直器是不变开口的,本发明只需用遮光板遮住其部分开口,即能达到改变其开口宽度的目的。这种设计相比准直器叶片可调整的设计,由于不需要改变准直器的原有设计在实现方式上更加简单,也节省了成本。
调整组件根据Wopen(α)按照如下方式来调整遮光板:对某一椭圆截面进行扫描时,可以选择常规CT系统中phi准直器的一个大开口,其能对该椭圆截面进行完全曝光,接着调整组件根据接收到的Wopen(α)来调整遮光板,使遮光板遮住phi准直器的部分开口从而达到改变phi准直器开口宽度的目的,随着CT系统的检查床向机架方向移动和X射线管投影角度的变化,调整组件接收到下一个开口宽度Wopen(δ)(δ为X射线管投影角度),再根据Wopen(δ)来调整遮光板,若Wopen(δ)<Wopen(α),则使遮光板朝向使phi准直器开口宽度变小的方向移动,若Wopen(δ)>Wopen(α),则使遮光板朝向使phi准直器开口宽度变大的方向移动,这样就实现了调整组件根据来自计算组件的开口宽度来调整准直器的开口的目的。
本发明还提供一种X射线计算机断层摄影方法,所述方法对脊柱在扫描方向上的复数个椭圆截面进行摄影,如图10所示为本发明CT摄影方法第一实施例的流程图,包括步骤601-605。
步骤601,根据脊柱的前后位定位像,分别计算在z轴方向上脊柱每一椭圆截面所覆盖的探测器通道数目,得到复数个宽度投影值,根据脊柱的侧位定位像,分别计算在z轴方向上脊柱每一椭圆截面所覆盖的探测器通道数目,得到复数个厚度投影值。
本步骤中,如在通道数目计算单元401中所述,在得到脊柱的A.P定位像的外轮廓和Lat定位像的外轮廓后,按照式(1)来计算在z轴方向上脊柱的每一椭圆横截在两幅定位像的外轮廓上分别覆盖的探测器通道数目,得到宽度投影值V(90)和厚度投影值V(0)。
步骤602,比较每一椭圆截面的宽度投影值V(90)和厚度投影值V(0),取二者中的较大者作为该椭圆截面长轴的投影值WLong,较小者作为该椭圆截面短轴的投影值Wshort
步骤603,根据每一椭圆截面的长轴的投影值WLong和短轴的投影值Wshort,分别计算每一椭圆截面在X射线管不同投影角度下在探测器上所覆盖的通道数目,得到复数个弦投影值。
本步骤中,可按式(3)来计算每一椭圆截面在X射线管不同投影角度α下在探测器处的弦投影值W(α)。
步骤604,根据弦投影值W(α)来计算phi准直器的开口宽度。
本步骤中,可根据式(4)-(5)来计算phi准直器的开口宽度。
步骤605,根据所述开口宽度来调整phi准直器的开口。
所述调整包括:通过改变所述准直器的叶片的间距或加在所述准直器上的遮光板来调整所述开口。在本发明CT系统的调整组件中已具体说明了这两种调整方式,这里不再赘述。
进一步,本发明CT摄影方法还包括步骤606,在所述宽度投影值和/或所述厚度投影值上加一经验值。
可根据扫描对象的特点和医生的经验按式(2)在V(90)和/或V(0)上加一经验值,以得到待检对象所覆盖通道数目的更精确值,正如在通道数目计算单元401中所述,将这两个经验值都设为0以简化计算。
图11是本发明CT摄影方法第二实施例的流程图,包括步骤701-706。
步骤701,为脊柱的前后位定位像和侧位定位像分别生成一个关于扫描中心线对称的外包络,如图3所示,并将前后位定位像的外包络作为所述前后位定位像、侧位定位像的外包络作为所述侧位定位像。
在本发明CT系统的计算组件第三实施例中的外包络生成单元501已说明了为脊柱的两幅定位像生成关于扫描中心线对称的外包络的原因和作用,这里不再赘述。在本步骤中,CT系统通过一个外包络函数或程序为脊柱的前后位定位像生成一个关于扫描中心线对称的外包络,为脊柱侧位定位像也生成关一个于扫描中心线对称的外包络。
步骤702,同步骤601。
步骤703,同步骤602。
步骤704,同步骤603。
步骤705,同步骤604。
步骤706,同步骤605。
进一步,本发明CT摄影方法还包括步骤707,同步骤606。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

1.一种包括X射线管、准直器和探测器的X射线计算机断层摄影系统,用于对待检对象在扫描方向上的复数个椭圆截面进行摄影,所述探测器包括复数个探测器通道,所述X射线管、准直器和探测器围绕待检对象同步旋转,其特征在于,所述准直器为一开口可调的准直器,所述系统还包括计算组件和调整组件,其中
所述计算组件,用于计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度,并将所述开口宽度传送给所述调整组件;
所述调整组件,用于根据所述开口宽度来调整所述准直器的开口;
所述计算组件包括椭圆截面计算模块和开口宽度计算模块,其中
所述椭圆截面计算模块,用于分别计算每一椭圆截面的长轴和短轴在探测器上的投影值,并将所述投影值传送给所述开口宽度计算模块;
所述开口宽度计算模块,用于根据所述长轴和短轴的投影值,计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度,并将所述开口宽度传送给所述调整组件。
2.根据权利要求1所述的系统,其特征在于,所述椭圆截面计算模块包括通道数目计算单元和比较单元,其中
所述通道数目计算单元,用于根据待检对象的前后位定位像和侧位定位像,计算每一椭圆截面在两幅定位像上分别覆盖的探测器通道数目,并作为宽度投影值和厚度投影值传送给所述比较单元;
所述比较单元,用于比较所述每一椭圆截面的宽度投影值和厚度投影值,取二者中的较大者作为所述长轴的投影值,较小者作为所述短轴的投影值,并将所述长轴和短轴的投影值传送给所述开口宽度计算模块。
3.根据权利要求2所述的系统,其特征在于,所述椭圆截面计算模块进一步包括:
外包络生成单元,用于为待检对象的前后位定位像和侧位定位像分别生成一个关于扫描中心线对称的外包络,并将前后位定位像的外包络作为所述前后位定位像、侧位定位像的外包络作为所述侧位定位像传送给所述通道数目计算单元。
4.根据权利要求2的系统,其特征在于,所述椭圆截面计算模块进一步包括:
修正单元,用于在所述宽度投影值和/或所述厚度投影值上加一经验值,并传送给所述比较单元。
5.根据权利要求1所述的系统,其特征在于,所述开口宽度计算模块包括弦投影值计算单元和开口宽度计算单元,其中
所述弦投影值计算单元,用于根据所述椭圆截面计算模块的长轴和短轴的投影值来分别计算每一椭圆截面在X射线管不同投影角度下在探测器上所覆盖的通道数目,并作为弦投影值传送给所述开口宽度计算单元;
所述开口宽度计算单元,用于根据所述弦投影值计算单元的弦投影值来计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度。
6.根据权利要求1所述的系统,其特征在于,所述准直器包括复数个叶片,所述叶片的间距通过调整组件来调整。
7.根据权利要求1所述的系统,其特征在于,所述准直器包括遮光板,所述遮光板通过调整组件来调整。
8.一种X射线计算机断层摄影方法,所述方法对待检对象在扫描方向上的复数个椭圆截面进行摄影,包括如下步骤:
计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度;
根据所述开口宽度来调整所述准直器的开口;
所述计算开口宽度包括:
计算每一椭圆截面的长轴和短轴在探测器上的投影值;
根据所述长轴和短轴的投影值,计算分别照射每一椭圆截面所需准直器在X射线管不同投影角度下的开口宽度。
9.根据权利要求8所述的方法,其特征在于,所述计算长轴和短轴的投影值包括:
根据待检对象的前后位定位像,分别计算每一椭圆截面所覆盖的探测器通道数目,得到复数个宽度投影值,根据待检对象的侧位定位像,分别计算每一椭圆截面所覆盖的探测器通道数目,得到复数个厚度投影值;
比较每一椭圆截面的宽度投影值和厚度投影值,取二者中的较大者作为所述长轴的投影值,较小者作为所述短轴的投影值。
10.根据权利要求9所述的方法,其特征在于,所述计算长轴和短轴的投影值进一步包括:
为待检对象的前后位定位像和侧位定位像分别生成一个关于扫描中心线对称的外包络,将前后位定位像的外包络作为所述前后位定位像、侧位定位像的外包络作为所述侧位定位像。
11.根据权利要求9所述的方法,其特征在于,所述计算长轴和短轴的投影值进一步包括:
在所述宽度投影值和/或所述厚度投影值上加一经验值。
12.根据权利要求8所述的方法,其特征在于,所述计算准直器的开口宽度包括:
根据所述长轴和短轴的投影值,分别计算每一椭圆截面在X射线管不同投影角度下在探测器上所覆盖的通道数目,得到复数个弦投影值;
根据所述弦投影值来计算所述准直器的开口宽度。
13.根据权利要求12所述的方法,其特征在于,根据下述公式来计算所述准直器的开口宽度,
W open ( α ) = β · W ( α ) N · D fc ,
其中,α为X射线管投影角度,Wopen(α)为所述准直器的开口宽度,W(α)为当X射线管投影角度为α时,一椭圆截面的弦投影值,N为探测器的通道总数,β为覆盖N个探测器通道的X射线扇形束角度,Dfc为X射线管焦点到所述准直器的距离。
14.根据权利要求8所述的方法,其特征在于,所述调整包括:通过改变所述准直器的叶片的间距或加在所述准直器上的遮光板来调整所述开口。
CN 201010286358 2010-09-19 2010-09-19 X射线计算机断层摄影系统和方法 Active CN102397079B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010286358 CN102397079B (zh) 2010-09-19 2010-09-19 X射线计算机断层摄影系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010286358 CN102397079B (zh) 2010-09-19 2010-09-19 X射线计算机断层摄影系统和方法

Publications (2)

Publication Number Publication Date
CN102397079A CN102397079A (zh) 2012-04-04
CN102397079B true CN102397079B (zh) 2013-11-06

Family

ID=45879990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010286358 Active CN102397079B (zh) 2010-09-19 2010-09-19 X射线计算机断层摄影系统和方法

Country Status (1)

Country Link
CN (1) CN102397079B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102783960A (zh) * 2012-08-24 2012-11-21 北京东方惠尔图像技术有限公司 射线的限束调节装置、限束调节方法与成像装置
DE102013202491B4 (de) * 2012-11-08 2021-11-04 Siemens Healthcare Gmbh Computertomograph und Verfahren zur Aufnahme eines Bildes des Herzens
CN104207797B (zh) * 2013-06-03 2018-06-19 上海联影医疗科技有限公司 基于ct定位片确定病人尺寸、位置及x射线经过病人衰减的方法
CN104436450B (zh) * 2013-09-25 2018-07-31 苏州雷泰医疗科技有限公司 放射治疗装置用限光装置及放射治疗装置
DE102014203492A1 (de) * 2014-02-26 2015-09-10 Siemens Aktiengesellschaft Einstellen einer Röntgenstrahlungseinheit
EP3618925A1 (en) * 2017-05-03 2020-03-11 Koninklijke Philips N.V. Visualization of volumetric modulated arc therapy (vmat) plans
CN108937998A (zh) * 2017-05-23 2018-12-07 上海西门子医疗器械有限公司 X光曝光区域的调节方法、装置、x光设备及存储介质
CN110058405A (zh) * 2019-04-04 2019-07-26 中国电子科技集团公司第三十八研究所 一种高速旋转偏心光波反射机构
CN111493916A (zh) * 2020-04-23 2020-08-07 南京安科医疗科技有限公司 一种ct准直器x射线束无级高速调节装置及其工作方法
CN113440154B (zh) * 2021-07-16 2024-01-16 上海交通大学 一种针对roi扫描的ct系统装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289074B1 (en) * 1998-09-02 2001-09-11 J. Morita Manufacturing Corporation X-ray computed tomography method and system
CN1352537A (zh) * 1999-12-27 2002-06-05 Ge医疗系统环球技术有限公司 多一片层x一射线计算机断层成像装置及其控制方法
CN1736335A (zh) * 2001-10-18 2006-02-22 株式会社东芝 X射线计算断层摄影设备
CN101011258A (zh) * 2005-11-15 2007-08-08 Ge医疗系统环球技术有限公司 X射线ct设备和x射线ct透视设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017715A (ja) * 2000-06-27 2002-01-22 Ge Medical Systems Global Technology Co Llc X線ctシステムおよびその制御方法および記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289074B1 (en) * 1998-09-02 2001-09-11 J. Morita Manufacturing Corporation X-ray computed tomography method and system
CN1352537A (zh) * 1999-12-27 2002-06-05 Ge医疗系统环球技术有限公司 多一片层x一射线计算机断层成像装置及其控制方法
CN1736335A (zh) * 2001-10-18 2006-02-22 株式会社东芝 X射线计算断层摄影设备
CN101011258A (zh) * 2005-11-15 2007-08-08 Ge医疗系统环球技术有限公司 X射线ct设备和x射线ct透视设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2002-17715A 2002.01.22

Also Published As

Publication number Publication date
CN102397079A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
CN102397079B (zh) X射线计算机断层摄影系统和方法
US8483363B2 (en) Movable wedge for improved image quality in 3D X-ray imaging
JP3864106B2 (ja) 透過x線データ獲得装置およびx線断層像撮影装置
US6385278B1 (en) Method and apparatus for region of interest multislice CT scan
JP5171215B2 (ja) X線ct装置
US8396184B2 (en) X-ray CT system and control method for same
EP2892432B1 (en) Apparatus for partial ct imaging
EP2727535B1 (en) Radiation imaging apparatus and control method thereof
CN105832355B (zh) 小视场x射线成像的系统和方法
JP2006297095A (ja) 患者のコンピュータ断層撮影画像データセットの作成および照射システム
JP4159188B2 (ja) 管電流調節方法および装置並びにx線ct装置
CN102397080B (zh) X射线计算机断层摄影系统和方法
JP4729519B2 (ja) 器官に基づく放射線プロファイル設定を設けた放射線撮像の方法及びシステム
CN102397078A (zh) 一种x射线计算机断层扫描系统和方法
JP2008272347A (ja) 放射線撮像装置及び断層像生成方法
WO2023093748A1 (zh) 口腔锥形束x射线成像系统及其快速定位方法
JP6201235B2 (ja) 散乱線補正装置、散乱線補正方法、及びx線撮影装置
US11723610B2 (en) Method and device for creating a cephalometric image
JP2015150220A (ja) X線ct装置及び撮影方法
CN103505231B (zh) 调整计算机断层扫描系统的半扇形束角度的方法及其系统
JP2007130278A (ja) X線ct装置
JP4758747B2 (ja) X線計測装置、x線計測方法およびx線計測プログラム
CN102846332B (zh) 一种x射线计算机断层扫描系统和方法
US11903748B2 (en) Method and device for creating a cephalometric image
JP4648355B2 (ja) 管電流調節方法および装置並びにx線ct装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant