CN102388513B - 混合垂直腔激光器 - Google Patents

混合垂直腔激光器 Download PDF

Info

Publication number
CN102388513B
CN102388513B CN201080016327.8A CN201080016327A CN102388513B CN 102388513 B CN102388513 B CN 102388513B CN 201080016327 A CN201080016327 A CN 201080016327A CN 102388513 B CN102388513 B CN 102388513B
Authority
CN
China
Prior art keywords
grating
silicon layer
grating region
refractive index
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080016327.8A
Other languages
English (en)
Other versions
CN102388513A (zh
Inventor
郑一淑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNICAL UNIVERSITY OF DENMAR
Danmarks Tekniskie Universitet
Original Assignee
TECHNICAL UNIVERSITY OF DENMAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNICAL UNIVERSITY OF DENMAR filed Critical TECHNICAL UNIVERSITY OF DENMAR
Publication of CN102388513A publication Critical patent/CN102388513A/zh
Application granted granted Critical
Publication of CN102388513B publication Critical patent/CN102388513B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18363Structure of the reflectors, e.g. hybrid mirrors comprising air layers
    • H01S5/18366Membrane DBR, i.e. a movable DBR on top of the VCSEL
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/1838Reflector bonded by wafer fusion or by an intermediate compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明为硅平台(3)上的光回路提供光源(2)。垂直激光腔由布置在顶部镜(4)与衬底上硅层(10)中光栅区(11)内的底部光栅镜(12)之间的增益区(101)形成。用于接受来自光栅区(11)的光的波导(18,19)在光栅区内部形成或与之连接,并且作为VCL的输出耦合器发挥作用。因此,垂直激射模(16)耦合于该硅层中所形成的面内波导的横向面内模(17,20),并且光可以提供至例如硅中的SOI或CMOS衬底上的光子回路。

Description

混合垂直腔激光器
发明领域
本发明涉及提供光至与成熟硅加工技术相容的硅平台(silicon platform)上的光子回路(Photonic Circuit)。尤其,本发明涉及通过使用光栅镜(Grating-Mirror)垂直腔激光器(Vertical-Cavity Laser)提供光至此种回路。
背景技术
在硅基光子回路中集成微小且高效电泵浦(electrically pumped)光源的挑战是熟知的。
Gunn(Photonics Spectra,2006年3月,第62-67页)描述了这种挑战并提出一种解决方案,其中光由非集成的外部激光源提供。经一条光纤,将光引导至集成的全息透镜并且因而与一集成的波导耦合。这种方法具有需要繁琐校准和后续封装的缺点。
Fang等人(Optics Express,14,第9203页(2006))描述了边发射电泵浦AlGaInAs-硅迅衰激光器(evanescent laser)架构。该架构是与绝缘体(SOI)衬底上的硅键合的晶片以及完全被下方SOI衬底中的硅波导所限定的激光腔。WO2008/068209中公开了也与硅波导耦合的边发射性分布式布拉格反射镜(DBR)激光器。尽管基于边发射激光器的解决方案提供与光子回路的容易的耦合,但是它们具有相对高的电力消耗和非本征(non-intrinsic)单模(single mode)控制的缺点。
如US 2007/0201526中公开的垂直腔表面发射激光器(VCSEL)具有低电力消耗和优异单模控制的优点。然而,其缺点在于因它们的表面发射设计,这些激光器难以与硅中集成的波导耦合。
Ferrier L.等人:″Vertical microcavities based on photonic crystal mirrors forIII-V/Si integrated microlasers(用于III-V/Si集成微激光器的基于光子晶体镜的垂直微腔)″;Proc.of the SPIE,第6989卷,2008年,第69890W-1-69890W-12页讨论了与使用光子晶体(PhC)镜并且与横向波导耦合的垂直微腔相关的许多设置。
因此,在硅平台上集成光源的改良方式将是有利的,并且尤其,提供光至光子回路的更高效和/或更可靠方式将是有利的。
发明内容
本发明的一个目的是提供现有技术的一种替代方案。
尤其,可以将以下视为本发明的目的:提供解决现有技术中上文所提及问题的方法和混合垂直腔激光器(混合VCL)结构以提供光至光回路。
因而,上述目的以及其他几个目的意图在本发明的第一方面通过使用硅平台中的底部光栅镜在硅平台上制作多种混合VCL结构来实现,所述方法包括:
提供包括由III-V材料形成的活性区和高度反射性顶部镜的分层结构;
在硅层中形成光栅区,所述硅层被折射率比该硅层低的层支持,该光栅区包含由硅层部分形成的一维(1D)或二维(2D)周期性折射率光栅和在该硅层中形成的并且具有比该硅层低的折射率的区域;
在所述硅层中形成波导,所述波导被形成为带有末端部分,所述末端部分形成在光栅区内部或与之邻接以促进来自光栅区的光横向输出耦合于该波导,这可以通过在光栅区内部和/或与光栅区连接(如邻接)形成该波导来获得;并且
在光栅区上设置所述分层结构,包括在所述分层结构与所述光栅区之间提供折射率比所述硅层的折射率低的层,从而周期性折射率光栅构成底部光栅镜以使得在所述顶部镜和所述光栅区之间形成VCL腔。该波导优选地相对于VCL腔为横向取向并且作为VCL的输出耦合波导发挥作用。
下文中,将描述众多的其他方面、优选和/或任选的特征、要素、实例和实施。根据需要,相对于一个实施方式或方面所描述的特征或要素可以与其他实施方式或方面组合或适用于它们。例如,就混合VCL结构而言适用的结构性和功能性特征也可以通过适宜调整作为就用于混合VCL结构的方法而言的特征使用,并且反之亦然。另外,对本发明人所实现的本发明的潜在机制的解释用于解释性目的,并且它们不应当在用于推断本发明的事后分析中使用。
包括高度反射性顶部镜、活性区和底部光栅镜的结构既称作“光栅镜垂直腔激光器(GMVCL)结构”,又称作具有底部光栅镜或使用底部光栅镜所形成的VCL结构。在本描述的意思范围内,这些术语具有相同的意思。另外,包括高度反射性顶部镜和活性区,但无底部光栅镜的分层结构称作“部分VCL结构”或根据上下文,简单地称作“分层结构”。
混合VCL结构横向地发射光至面内(in-plane)波导,同时垂直腔表面发射的激光(VCSEL)从镜表面垂直地发射至空气。因此,混合VCL是这样的结构,其包含具有高度反射性从而不作为输出耦合器发挥作用的顶部镜,以III-V材料形成的活性区和形成高度反射性底部光栅镜以产生带顶部镜的VCL腔的硅基光栅区,以及用于从VCL腔发射光至硅衬底中外部光子回路的横向取向的波导。
可以在例如US 2007/0201526中找到使用二维(2D)光栅镜的现有技术VCSEL的实例。该结构在几个方面不同于本发明,其中之一是底端镜之一具生例如约-3dB的高路由/耦合效率,其可比于现有技术的全息光栅耦合器的耦合效率。然而,在不涉及PBG模的另一个类型的光栅镜中,在自由空间模中的光在光栅中衍射,但是并不与PBG模强烈耦合;因而,路由效率较低。
波导,也称作面内、输出耦合波导,在硅层中形成,并且优选地包含在光栅区中的光栅波导(GWG)和该光栅区外部的折射率对比波导(ICWG)。GWG是促进从PBG模提取部分光至ICWG模的中间波导(intermediate waveguide)。通过优化GWG的拓扑学和GWG和ICWG的连接部分,路由效率可以进一步提高超过-3dB。优选带有横向波导的底部光栅镜具有约99.5%的反射率和-3dB的路由效率。这种反射率值可比于常规VCSEL的垂直输出镜的反射率。
该光栅镜的路由功能很不同于常规光栅耦合器的耦合功能。在本发明的光栅镜中,极小部分的入射光被路由至面内波导,而大部分的入射光被反射。例如,当光栅镜具有99.5%的反射率和-3dB的路由效率时,99.5%的入射光被反射,而0.25%的入射光被输出至波导。相反,在现有技术的全息光栅耦合器中,-3dB即50%的入射光与波导耦合(Photonics Spectra,2006年3月,第62-67页)。
参与与PBG模的共振耦合的高度反射性光栅镜与波导形式的面内输出耦合器的这种组合是新颖的,其中所述的波导在光栅区内部形成或与之连接。迄今报道的大部分似乎相似的光栅结构在结构性形状、功能或反射过程(涉及慢光模)的方面不同于本发明的光栅镜。例如:
●在US 2007/0153860中,I.-S,Chung等人,(Subwavelength Grating-MirrorVCSEL With a Thin Oxide Gap(具有薄氧化物隙的亚波长光栅镜VCSEL)″,IEEE Photonics Technology Letters,2(2008)20,第105-107页)和WO2005/089098中,反射不涉及与慢光PBG模的共振耦合;
●在US 6,031,243中,光栅不作为反射镜工作;
●在US 2007/0201526中,光栅镜不具有用于横向输出而连接的波导,并且慢光PBG模在色散图中远离Γ(gamma)点;
●在R.Jones等人(“Grating based hybrid silicon lasers(基于光栅的混合硅激光器)”,Proceedings of SPIE,第7230卷,第72300U-1页中,光栅用来选择激射频率,既不作为反射镜也不作为路由器来发挥作用;
●在H.Wu等人(“超广带SOI二元闪耀光栅镜(Ultra broadband SOI binaryblazed grating mirror)”,第五届IV族光子学IEEE国际大会论文集(5th IEEEInternational Conference on Group IV Photonics),第299-301页)中,光栅是表面耦合镜使用并且具有优选大于99.95%的反射率的高度反射性顶部镜;和
-在被具有较低折射率的层支持的硅层中形成的光栅区,该光栅区包含由硅层部分形成的1D或2D周期性折射率光栅以及在该硅层中形成的并且具有比该硅层的折射率低的折射率的区域;
-在该硅层的光栅区的顶部提供的、具有比该硅层的折射率低的折射率的层;
其中分层结构设置在光栅区上,从而周期性折射率光栅构成了形成于顶部镜与光栅区之间的VCL腔的底部光栅镜,该底部光栅镜也促进处于VCL腔垂直模的光耦合于光栅区的面内模,和
-在硅层中形成的具有末端部分的波导,所述末端部分形成在光栅区内部或与之邻接以促进来自光栅区的光耦合于该波导。
第三方面涉及具有光栅区的硅基衬底,该光栅区来自第二方面,但单独地提供。因而,在第三方面,本发明提供带有横向取向的波导的硅基光栅镜,其包括:
-被具有较低折射率的层支持的硅层;
-光栅区,包含由硅层部分所形成的1D或2D周期性折射率光栅以及在所述硅层中形成的并且具有比该硅层的折射率低的折射率的区域;
-至少部分光栅区形成光栅镜,用于正常反射入射光并且使入射光与光栅区的面内模正常耦合;和
-在该硅层中形成的具有末端部分的波导,所述末端部分形成在光栅区内部或与之邻接以促进来自光栅区面内模的光耦合于该波导。
在光栅区顶部上形成的任何层,例如低折射率层,对于激射波长是透明的。例如,激射波长可以是1.1、1.3和1.55μm。
在该器件的制造加工期间,可以通过以平版印刷方式改变光栅设计(即光栅的厚度、周期性、空气填充率和图案形状)来改变光栅镜的反射率,同时可以通过改变硅光栅上方的低折射率层的厚度来调节GMVCL的激射波长。
在第四方面,一起提供带有来自第二方面的光栅区的部分VCL结构和衬底来作为单独、未装配的结构。因而,在第三方面,本发明提供如第二方面中所述的部分VCL结构和如第二方面中所述的硅层,但是作为替代连接结构的装配用套件(a kit for assembly)。
额外地或可选择地,第四方面可以提供分层结构和用于接受该分层结构的的硅平台衬底。
-该分层结构包含以III-V族材料形成的活性区和不作为输出耦合镜使用并且具有接近于100%(例如,高于99.95%)的反射率的高度反射性顶部镜;
-该硅层被具有较低折射率的层支持并且包含:
о光栅区,包含由硅层部分所形成的1D或2D周期性折射率光栅以及在该硅层中形成的并且具有比该硅层的折射率低的折射率的区域;和
о在该硅层中形成的具有末端部分的波导,所述末端部分形成在光栅区内部或与之邻接以促进来自光栅区的光耦合于该波导;
其中分层结构或光栅区至少之一包含或涉及这样的构造:当该分层结构在该光栅区上布置时,所述构造将在该光栅区上方提供折射率比该硅层的折射率低的层。
在一些实施方式中,光栅区中的GWG可以省略,从而耦合是直接从周期性折射率光栅的面内PBG模至光栅区外部形成的波导,如折射率对比波导。然而,这可能降低耦合效率。
优选该方法的实施方式包括来自VCL腔的光耦合于光栅区的面内PBG模。该混合结构因而发挥有效提供光至硅层中面内光栅模的作用,这有利于提供光至硅平台上的光子回路。
可以通过中间GWG促进与ICWG的耦合,所述的中间GWG优选地在光栅区内部形成。在这个实施方式中,该方法的实施方式还包括来自光栅区面内PBG模的光耦合于GWG的波导模,其中所述的GWG在硅层中、优选地在光栅区内部形成。这种布置可以通过以下方式实现:当VCL发射光时确保底部光栅镜中GWG模和VCL腔模之间出现部分重叠,以及设计GWG的几何形状,从而GWG模的模色散应当相似于或绝热地(adiabatically)变换成PBG模的模色散。
可以优选优化GWG的拓扑学和GWG和ICWG的连接部分,旨在进一步降低模耦合/路由期间不想要的散射损失,从而提高总体路由效率。
进一步优选在硅层上布置部分VCL结构后限定VCL的光学增益(optical
的时帧,其中白色和黑色分别表示高和低电磁(EM)场强度。所仿真装置的设计与3图中所示的设计相似,并且图15还显示部分VCL结构2、光栅区11和ICWG 19在硅层中的大致位置。
如可以见到,存在从垂直激射模(图1A中的16)至ICWG模(图1A中的的21)的合理耦合。
如先前提及,可以进一步优化光从周期性光栅区12中的PBG模17至GWG 18中GWG模20的取出以减少不希望的耦合损失。可以拓扑地优化图1B中的连接部分28以最小化因光栅周期性破坏所致的散射损失。可以优化GWG 18的形状,使得GWG模20的色散应当与PBG模17的模相似,以更好地模匹配。从GWG 18中的GWG模20至ICWG 19中ICWG模21的模转换的效率也可以通过拓扑优化图1B或C中的连接部分30加以最大化。拓扑优化的示意性实例在图16中显示。图16A和16B分别显示优化之前和之后的连接部分30。
这种拓扑优化的实例在例如L.Yang等人,Electronic Letters,13,第923页(2007)中描述,其中报道了5dB传输改善。
虽然已经联系所述的实施方式描述本发明,但不应以任何方式解释为限于所提出的实例。本发明的范围将在附带的权力要求集中解释。在所述权利要求的语境下,术语“包含”或“包括”不排除其他可能的要素或步骤。同样,对称谓如“a(一个)”或“an(一种)”等的提及不应当解释为排除复数。指代符号在权利要求中基于附图中所示要素的使用也不得解释为限制本发明的范围。此外,不同权利要求项中提供的各个特征可能可以有利地组合,并且这些特征在不同权利要求项中的提及不排除特征的组合不是可能的和有利的。
参考文献
●Gunn,Photonics Spectra,2006年3月,第62-67页
●Fang等人,Optics Express,14,第9203页(2006)
●US 2007/0153860
●US 6,031,243
●I.-S.Chung等人,″Subwavelength Grating-Mirror VCSEL With a ThinOxide Gap(具有薄氧化物隙的亚波长光栅镜VCSEL)″,IEEE PhotonicsTechnology Letters,2(2008)20,第105-107页
●US 2007/0201526
●R.Jones等人,“Grating based hybrid silicon lasers(基于光栅的混合硅激光器)”,Proceedings of SPIE,第7230卷,第72300U-1页至第72300U-8页
●WO 2005/089098
●H.Wu等人,“超广带SOI二元闪耀光栅镜(Ultra broadband SOI binaryblazed grating mirror)”,第五届IV族光子学IEEE国际大会论文集(5th IEEEInternational Conference on Group IV Photonics),第299-301页.
●Huang等人,Optics Express,15,1222(2007)
●IEEE j.selected topics in Quant.Electron.13,374(2007)
●IEEE Photon.Technol.Lett.18,688(2006)
●L.Yang,等人,Electronic Letters,13,第923页(2007)
●WO 2008/068209
●US 2007/0201526
●Ferrier L.等人:″Vertical microcavities based on photonic crystal mirrors forIII-V/Si integrated microlasers(用于III-V/Si集成微激光器的基于光子晶体镜的垂直微腔)″;Proc.of the SPIE,第6989卷,2008年,第69890W-1-69890W-12页

Claims (14)

1.使用硅平台中的底部光栅镜在硅平台上混合垂直腔激光器结构(1)的方法,该方法包括:
提供分层结构(2),该分层结构(2)包括由III-V材料形成的活性区(5)和不作为输出耦合镜使用并且具有大于99.5%的反射率的高度反射性顶部镜(4);
在硅层(10)中形成光栅区(11),所述硅层(10)被具有比所述硅层低的折射率的层(9)支持,该光栅区包含由硅层部分(12)形成的一维(1D)或二维(2D)周期性折射率光栅(11)以及在该硅层中形成的并且具有比该硅层的折射率低的折射率的区域(13);
在硅层中形成带有末端部分的波导(18,19),所述末端部分形成在该光栅区内部或与该光栅区邻接以促进来自光栅区的光横向输出耦合于该波导;并且
在光栅区上布置所述分层结构,包括在该分层结构与该光栅区之间提供折射率比该硅层的折射率低的层(15、15’、15”),从而周期性折射率光栅构成底部光栅镜,以在顶部镜和光栅区之间形成垂直腔激光器腔。
2.根据权利要求1所述的方法,还包括引发垂直腔激光器腔中的激射和将来自垂直腔激光器腔的光耦合于光栅区的横模。
3.根据权利要求2所述的方法,其中硅层中所形成的波导的末端部分包含在光栅区内部形成的光栅波导(18),该方法还包括将来自光栅区的横模的光耦合于光栅波导的导模。
4.根据权利要求2或3所述的方法,其中硅层中所形成的波导包含在光栅区外部形成的集成平面折射率对比波导(19),该方法还包括将来自光栅区的光耦合于折射率对比波导的导模。
5.根据权利要求1-3任一项所述的方法,其中通过控制所述分层结构与所述光栅区之间的较低折射率层(15、15’、15”)的厚度来控制垂直腔激光器腔的有效腔长度deff以及激射波长λ。
6.根据权利要求1-3任一项所述的方法,其中将垂直腔激光器的光学增益区(101、201、301、401、501)的位置限定在光栅区上的分层结构之后。
7.混合垂直腔激光器结构(1),包括:
-分层结构(2),该分层结构(2)包括由III-V族材料形成的活性区(5)和不作为输出耦合镜使用并且具有大于99.5%的反射率的高度反射性顶部镜(4);和
-在硅层(10)中形成的光栅区(11),所述硅层(10)被具有比所述硅层低的折射率的层(9)支持,该光栅区包含由硅层部分(13)形成的1D或2D周期性折射率光栅(12)以及在该硅层中形成的并且具有比该硅层的折射率低的折射率的区域(14);
-在该硅层的光栅区的顶部提供的、具有比该硅层的折射率低的折射率的层(15、15’、15”);
其中分层结构布置在光栅区上,从而周期性折射率光栅构成了底部光栅镜,以在顶部镜与光栅区之间形成垂直腔激光器腔,该底部光栅镜也促进在垂直腔激光器腔的模中的光耦合于光栅区的面内模,和
-在该硅层中形成带有末端部分的波导(18,19),所述末端部分形成在该光栅区内部或与该光栅区邻接以促进来自光栅区的光耦合于该波导。
8.根据权利要求7所述的混合垂直腔激光器结构,其中在分层结构与光栅区之间的较低折射率层是在分层结构上形成的氧化物层。
9.根据权利要求7所述的混合垂直腔激光器结构,其中在分层结构与光栅区之间的较低折射率层(15、15”)包含空气,并且其中当分层结构布置在光栅区之上时,分层结构包含一个或多个台面(25、715)以形成空气隙。
10.根据权利要求7-9任一项所述的混合垂直腔激光器结构,其中硅层中所形成的波导的末端部分包含在该光栅区内形成的光栅波导(18),该光栅波导被布置为促进来自光栅区的光耦合于光栅波导。
11.根据权利要求7-9任一项所述的混合垂直腔激光器结构,其中硅层中所形成的波导包含在光栅区外部的硅层中形成并被布置以促进来自光栅区的光耦合于折射率对比波导的集成平面折射率对比波导。
12.根据权利要求10所述的混合垂直腔激光器结构,其中硅层中所形成的波导包含在光栅区外部的硅层中形成并被布置以促进来自光栅区的光耦合于折射率对比波导的集成平面折射率对比波导。
13.带有横向取向的波导的硅基光栅镜,包括:
-被层(9)支持的硅层(10),所述层(9)具有比所述硅层低的折射率;
-光栅区(11),包含由硅层部分(13)所形成的1D或2D周期性折射率光栅(12)以及在该硅层中形成的并具有比该硅层的折射率低的折射率的区域(14);
-至少部分光栅区,用于形成光栅镜,来正常反射入射光并且使入射光正常耦合于光栅区的面内模(17);和
-在硅层中形成的带有末端部分的波导(18,19),所述末端部分形成在该光栅区内部或与该光栅区邻接以促进来自光栅区面内模的光耦合于该波导。
14.分层结构(2)和用于接受该分层结构的硅平台衬底(3):
-该分层结构包括由III-V族材料形成的活性区(5)和不作为输出耦合镜使用并且具有大于99.5%的反射率的高度反射性顶部镜(4);
-该硅平台衬底包含:
·被层(9)支持的硅层(10),所述层(9)具有比所述硅层低的折射率;
·光栅区(11),包含由硅层部分(13)形成的1D或2D周期性折射率光栅(12)以及在该硅层中形成的并且具有比该硅层的折射率低的折射率的区域(14);和
·在硅层中形成的带有末端部分的波导(18,19),所述末端部分形成在该光栅区内部或与该光栅区邻接以促进来自光栅区的光耦合于该波导;
其中分层结构或光栅区至少之一包含或涉及如下构造(15、15’、25、715),即其中分层结构设置在光栅区之上,所述构造将在该光栅区上方提供折射率比该硅层的折射率低的层(15、15’、15”)。
CN201080016327.8A 2009-02-11 2010-01-22 混合垂直腔激光器 Expired - Fee Related CN102388513B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15163109P 2009-02-11 2009-02-11
US61/151,631 2009-02-11
EP09153659.9 2009-02-25
EP09153659 2009-02-25
PCT/DK2010/050015 WO2010091688A1 (en) 2009-02-11 2010-01-22 Hybrid vertical-cavity laser

Publications (2)

Publication Number Publication Date
CN102388513A CN102388513A (zh) 2012-03-21
CN102388513B true CN102388513B (zh) 2014-12-10

Family

ID=40580884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080016327.8A Expired - Fee Related CN102388513B (zh) 2009-02-11 2010-01-22 混合垂直腔激光器

Country Status (7)

Country Link
US (1) US9184562B2 (zh)
EP (1) EP2396861B1 (zh)
JP (1) JP2012517705A (zh)
KR (1) KR101834015B1 (zh)
CN (1) CN102388513B (zh)
AU (1) AU2010213223A1 (zh)
WO (1) WO2010091688A1 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217410B2 (en) * 2009-03-27 2012-07-10 Wisconsin Alumni Research Foundation Hybrid vertical cavity light emitting sources
FR2954638B1 (fr) * 2009-12-21 2012-03-23 Commissariat Energie Atomique Laser hybride couple a un guide d'onde
EP2365654B1 (en) * 2010-03-10 2019-05-29 Ofs Fitel Llc, A Delaware Limited Liability Company Multicore fiber transmission systems and methods
JP5777722B2 (ja) * 2010-10-29 2015-09-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 小モード体積垂直共振器面発光レーザ
WO2012149497A2 (en) * 2011-04-29 2012-11-01 The Regents Of The University Of California Vertical cavity surface emitting lasers with silicon-on-insulator high contrast grating
CN103636084B (zh) * 2011-07-04 2016-09-28 丹麦技术大学 激光器
KR20130048628A (ko) * 2011-11-02 2013-05-10 삼성전자주식회사 광 직접 회로의 멀티 포트 광원
EP2805391B1 (en) 2012-01-18 2018-06-20 Hewlett-Packard Enterprise Development LP High density laser optics
KR20130085763A (ko) * 2012-01-20 2013-07-30 삼성전자주식회사 광 집적 회로용 혼성 레이저 광원
WO2013110004A1 (en) * 2012-01-20 2013-07-25 The Regents Of The University Of California Short cavity surface emitting laser with double high contrast gratings with and without airgap
CN102692682B (zh) * 2012-06-12 2013-07-17 中国科学院上海微系统与信息技术研究所 一种光栅耦合器及其制作方法
US10209445B2 (en) 2012-07-30 2019-02-19 Hewlett Packard Enterprise Development Lp Method of fabricating a compact photonics platform
US9995876B2 (en) 2012-07-30 2018-06-12 Hewlett Packard Enterprise Development Lp Configurable compact photonic platforms
KR101928436B1 (ko) 2012-10-10 2019-02-26 삼성전자주식회사 광 집적 회로용 하이브리드 수직 공명 레이저
US9106048B2 (en) * 2013-02-11 2015-08-11 Oracle International Corporation Waveguide-coupled vertical cavity laser
KR102050502B1 (ko) * 2013-03-18 2020-01-08 삼성전자주식회사 하이브리드 수직 공진 레이저 및 그 제조방법
TW201504599A (zh) * 2013-05-30 2015-02-01 Univ California 具有高對比光柵及可作爲雙重用途之高對比光柵垂直腔表面發射雷射檢測器之二維週期結構的極化無關光檢測器
US9438009B2 (en) * 2013-05-31 2016-09-06 Danmarks Tekniske Universitet Wavelength tunable photon source with sealed inner volume
FR3007589B1 (fr) * 2013-06-24 2015-07-24 St Microelectronics Crolles 2 Circuit integre photonique et procede de fabrication
US9634464B2 (en) * 2013-11-13 2017-04-25 Danmarks Tekniske Universitet Method for generating a compressed optical pulse
CN103633551B (zh) * 2013-12-19 2016-04-20 武汉电信器件有限公司 用于片上光互连的激光器封装方法
JP2015133426A (ja) * 2014-01-14 2015-07-23 古河電気工業株式会社 面発光レーザ素子
EP3130045A2 (en) * 2014-04-07 2017-02-15 Danmarks Tekniske Universitet Vcsel structure
WO2015167521A1 (en) * 2014-04-30 2015-11-05 Hewlett-Packard Development Company, L.P. Controllable diamond waveguide tuner
CN104051957A (zh) * 2014-06-23 2014-09-17 天津工业大学 一种1550nm长波长垂直腔面发射激光器的制备方法及其应用
WO2016014078A1 (en) 2014-07-25 2016-01-28 Hewlett-Packard Development Company, L.P. Tunable optical device
WO2016018288A1 (en) 2014-07-30 2016-02-04 Hewlett-Packard Development Company, L.P. Hybrid multilayer device
US10447011B2 (en) 2014-09-22 2019-10-15 Hewlett Packard Enterprise Development Lp Single mode vertical-cavity surface-emitting laser
US10079474B2 (en) 2014-09-22 2018-09-18 Hewlett Packard Enterprise Development Lp Single mode vertical-cavity surface-emitting laser
GB201418637D0 (en) 2014-10-20 2014-12-03 Univ St Andrews Laser
WO2016076793A1 (en) * 2014-11-10 2016-05-19 Agency for Science,Technology and Research An optical device and a method for fabricating thereof
US10103514B2 (en) * 2015-03-20 2018-10-16 Kabushiki Kaisha Toshiba Optical semiconductor device and method for manufacturing the same
JP6581022B2 (ja) * 2015-03-20 2019-09-25 株式会社東芝 半導体発光デバイスおよび光半導体デバイス
WO2016184471A1 (en) 2015-05-15 2016-11-24 Danmarks Tekniske Universitet Vertical cavity laser
US9874693B2 (en) 2015-06-10 2018-01-23 The Research Foundation For The State University Of New York Method and structure for integrating photonics with CMOs
US10658177B2 (en) * 2015-09-03 2020-05-19 Hewlett Packard Enterprise Development Lp Defect-free heterogeneous substrates
WO2017123245A1 (en) 2016-01-15 2017-07-20 Hewlett Packard Enterprise Development Lp Multilayer device
WO2017171737A1 (en) 2016-03-30 2017-10-05 Hewlett Packard Enterprise Development Lp Devices having substrates with selective airgap regions
US10109983B2 (en) * 2016-04-28 2018-10-23 Hewlett Packard Enterprise Development Lp Devices with quantum dots
US10566765B2 (en) 2016-10-27 2020-02-18 Hewlett Packard Enterprise Development Lp Multi-wavelength semiconductor lasers
US10680407B2 (en) 2017-04-10 2020-06-09 Hewlett Packard Enterprise Development Lp Multi-wavelength semiconductor comb lasers
US10396521B2 (en) 2017-09-29 2019-08-27 Hewlett Packard Enterprise Development Lp Laser
US10381801B1 (en) 2018-04-26 2019-08-13 Hewlett Packard Enterprise Development Lp Device including structure over airgap
CN108683078B (zh) * 2018-06-21 2023-06-09 中国科学院福建物质结构研究所 一种波长可调谐的半导体激光器
JP2020047783A (ja) * 2018-09-19 2020-03-26 株式会社東芝 半導体発光デバイスの製造方法及び半導体発光デバイス
JP7166871B2 (ja) * 2018-10-18 2022-11-08 スタンレー電気株式会社 垂直共振器型発光素子
CN111435781B (zh) * 2019-01-15 2022-03-18 中国科学院半导体研究所 垂直腔面发射半导体激光器结构
CN110265871A (zh) * 2019-07-02 2019-09-20 深圳市柠檬光子科技有限公司 用于激光雷达的激光发射模组
CN110932091B (zh) * 2019-12-06 2020-10-09 北京大学 一种基于能带反转光场限制效应的拓扑体态激光器及方法
CN111106533A (zh) * 2019-12-21 2020-05-05 江西德瑞光电技术有限责任公司 一种vcsel芯片及其制造方法
US11243350B2 (en) * 2020-03-12 2022-02-08 Globalfoundries U.S. Inc. Photonic devices integrated with reflectors
CN111600198B (zh) * 2020-05-26 2021-05-04 陕西源杰半导体科技股份有限公司 一种通讯用超大功率激光器及其制备方法
CN111751830B (zh) * 2020-07-08 2021-02-19 北京工业大学 一种基于vcsel混合激光的空间微弱目标红外探测系统
CN114498295B (zh) * 2022-04-13 2022-06-24 常州纵慧芯光半导体科技有限公司 一种带增益耦合光栅的dfb激光器及其制备方法
CN118263765A (zh) * 2022-12-27 2024-06-28 青岛海信宽带多媒体技术有限公司 一种激光器及光模块
DE102023104674A1 (de) 2023-02-27 2024-08-29 Trumpf Photonic Components Gmbh VCSEL zum Erzeugen eines Laserlichts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227061A (zh) * 2007-12-28 2008-07-23 武汉光迅科技股份有限公司 可调谐半导体激光器的制作方法及可调谐半导体激光器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031243A (en) * 1996-10-16 2000-02-29 Geoff W. Taylor Grating coupled vertical cavity optoelectronic devices
US6330265B1 (en) 1998-04-21 2001-12-11 Kabushiki Kaisha Toshiba Optical functional element and transmission device
FR2792734A1 (fr) 1999-04-23 2000-10-27 Centre Nat Rech Scient Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit
US6829286B1 (en) 2000-05-26 2004-12-07 Opticomp Corporation Resonant cavity enhanced VCSEL/waveguide grating coupler
US6624444B1 (en) * 2002-03-28 2003-09-23 Intel Corporation Electrical-optical package with capacitor DC shunts and associated methods
US6775448B2 (en) * 2002-11-05 2004-08-10 Mesophotonics Limited Optical device
WO2005089098A2 (en) 2004-01-14 2005-09-29 The Regents Of The University Of California Ultra broadband mirror using subwavelength grating
EP1966636A2 (en) 2005-12-22 2008-09-10 Université Jean-Monnet Mirror structure and laser device comprising such a mirror structure
US8110823B2 (en) * 2006-01-20 2012-02-07 The Regents Of The University Of California III-V photonic integration on silicon
JP5037835B2 (ja) * 2006-02-28 2012-10-03 キヤノン株式会社 垂直共振器型面発光レーザ
US7583712B2 (en) * 2006-06-16 2009-09-01 Pbc Lasers Gmbh Optoelectronic device and method of making same
FR2909491B1 (fr) 2006-12-05 2010-04-23 Commissariat Energie Atomique Dispositif laser a source laser et guide d'onde couples
US8116171B1 (en) * 2009-11-11 2012-02-14 Western Digital (Fremont), Llc Method and system for providing energy assisted magnetic recording disk drive using a vertical surface emitting laser
US8257990B2 (en) * 2009-12-30 2012-09-04 Intel Corporation Hybrid silicon vertical cavity laser with in-plane coupling
US8422342B1 (en) * 2010-06-25 2013-04-16 Western Digital (Fremont), Llc Energy assisted magnetic recording disk drive using a distributed feedback laser
US8451695B2 (en) * 2011-06-23 2013-05-28 Seagate Technology Llc Vertical cavity surface emitting laser with integrated mirror and waveguide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227061A (zh) * 2007-12-28 2008-07-23 武汉光迅科技股份有限公司 可调谐半导体激光器的制作方法及可调谐半导体激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Lydie Ferrier, et al.Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers.《Proc. of SPIE》.2008,第6989卷(第2008期),全文. *
Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers;Lydie Ferrier, et al;《Proc. of SPIE》;20081231;第6989卷(第2008期);全文 *

Also Published As

Publication number Publication date
US9184562B2 (en) 2015-11-10
EP2396861B1 (en) 2013-08-28
JP2012517705A (ja) 2012-08-02
US20120008658A1 (en) 2012-01-12
EP2396861A1 (en) 2011-12-21
WO2010091688A1 (en) 2010-08-19
KR101834015B1 (ko) 2018-04-13
KR20110126661A (ko) 2011-11-23
CN102388513A (zh) 2012-03-21
AU2010213223A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
CN102388513B (zh) 混合垂直腔激光器
JPH10506756A (ja) 一次元周期誘導体導波路を使用する共振微小空洞
KR20150037863A (ko) 소형 포토닉 플랫폼
Zhao et al. Design of photonic crystal membrane-reflector-based VCSELs
CN208062487U (zh) 一种基于半波耦合部分反射器的可调谐半导体激光器
Zhu et al. Novel high efficiency vertical to in-plane optical coupler
Kumari et al. Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit
Zhou et al. High-efficiency unidirectional vertical emitter achieved by an aperture-coupling nanoslot antenna array
Viktorovitch et al. Double photonic crystal vertical-cavity surface-emitting lasers
Zhang et al. Design of 940-nm VCSEL with metastructure
Yang et al. High-Q photonic crystal cavities for nanolasers on patterned silicon-on-insulator substrates
Viktorovitch et al. Surface addressable photonic crystal membrane resonators: generic enablers for 3D harnessing of light
Yang et al. Design of low-loss hybrid vertical cavity with a monolithic diffuser
Contu et al. 3D integrated silicon photonic external cavity laser (SPECL)
De Koninck et al. Cavity enhanced reflector based hybrid silicon laser
Liu et al. Grating couplers for efficient integration of surface-emitting blue lasers and silicon nitride waveguide
Stanton et al. Quantum cascade multi-spectral laser with integrated beam combiner on silicon
Yao et al. A CMOS-compatible low back reflection grating coupler for on-chip laser sources integration
Bissinger et al. Waveguide Coupling of an Integrated Nanowire Laser on Silicon with Enhanced End-Facet Reflectivity
Liu et al. Unidirectional transmission in finite-size high-contrast gratings
CN101771240A (zh) 光子晶体可调谐边发射激光器及其制作方法
Kumari et al. Design of an intra-cavity SiN grating for integrated 850nm VCSELs
Gao et al. High index contrast circular Bragg reflector on silicon-on-insulator with flat and broadband spectrum
Chung et al. Hybrid vertical cavity laser
Pan et al. A High-Compactness Electrically Controlled Beam-Steering Chip

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210

Termination date: 20200122

CF01 Termination of patent right due to non-payment of annual fee