CN102388487A - 基于氟化物的转换电极的阴极材料及其制备方法和应用 - Google Patents

基于氟化物的转换电极的阴极材料及其制备方法和应用 Download PDF

Info

Publication number
CN102388487A
CN102388487A CN2010800161465A CN201080016146A CN102388487A CN 102388487 A CN102388487 A CN 102388487A CN 2010800161465 A CN2010800161465 A CN 2010800161465A CN 201080016146 A CN201080016146 A CN 201080016146A CN 102388487 A CN102388487 A CN 102388487A
Authority
CN
China
Prior art keywords
fluoride
metal
cathode material
organic compound
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800161465A
Other languages
English (en)
Other versions
CN102388487B (zh
Inventor
M.菲希特纳
H.哈恩
R.普拉卡什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of CN102388487A publication Critical patent/CN102388487A/zh
Application granted granted Critical
Publication of CN102388487B publication Critical patent/CN102388487B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/388Halogens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Abstract

本发明涉及一种基于氟化物的转换电极的阴极材料,其含碱金属离子、氟阴离子和大小最高为20nm的金属纳米颗粒,该颗粒分布于石墨纳米碳基质中。此外,本发明还涉及一种用于制备该基于氟化物的转换电极的阴极材料的方法,其中加热包括金属和有机化合物的成分直到该有机化合物分解。在该热处理步骤前或后加入碱金属氟化物。最后本发明还涉及基于氟化物的转换电极的阴极材料在碱金属离子电池中的应用。

Description

基于氟化物的转换电极的阴极材料及其制备方法和应用
本发明涉及一种基于氟化物的转换电极的阴极材料、其制备方法及其应用。
未来的移动式和便携式应用需要高能量密度的二次电池,特别是基于锂离子交换运行的电池适合于此。在该领域中由J. –M. Tarascon和M. Armand, Nature 414, S. 359, 2001;S. –Y. Chung等人, Nature Material 1, S. 123, 2002;K. Kang等人, Science 311, S. 977, 2006 以及由M. Armand和J. –M. Tarascon, Nature 451, S. 652, 2008用可可逆贮存锂的材料进行了研制。
这类电池含具有层结构或可贮存锂的阴极材料,主要是LiCoO2、LiMnO2和LiFePO4。在3.3-4.0 V的工作电压下其通常比容量为90-140 mAh/g。因此夹层材料如LiNiO2和LiMn2O4是有利的,因为其价格较低,并具有更好的环境友好性;但未报导较高的贮存密度。在阳极侧主要使用石墨和相关的碳材料作为对于锂的良好可逆的夹层体系,由此比容量最高可达373 mAh/g。
基于此,研发的目的在于提供一种新型电池,其制造成本低、环境友好、可安全操作和受温度影响低,具有持久的元素组成,容许高的循环次数和具有高的重量能量密度(Wh/kg)和高的体积能量密度(Wh/l)。
新近发现,用基于转换材料代替贮存材料运行的电极材料可达到特别高的能量密度。在阳极侧,Y. Oumellal等人, Nature Materials 7, S. 916, 2008和P. G. Bruce等人, Angew. Chem. Int. Ed. 47, S. 2930, 2008用氧化物如SnO2或MoO3和金属氢化物已取得首批结果。在这些情况下表明,该活性材料还原成金属,同时形成锂化合物。在脱锂化时逆转反应方向,并且该金属被重新氧化。
在阴极侧,基于金属氟化物的转换材料提供了高的理论势能,该势能最高达2000 mAh/g。这时原则上发生下列的可逆电化学反应:
n Li+ n e- + Men+Fn
Figure DEST_PATH_IMAGE002
 nLiF + Meo
因此,在放电过程中金属锂与过渡金属Me的氟化物反应形成氟化锂和过渡金属。锂例如以金属形式或嵌入石墨中形成阳极;阴极由金属氟化物和导电碳形成。
H. Arai, Sh. Okada, Y. Sakurai, J. Yamaki, J. Power Sources, 68, S. 716, 1997, 首次报导了金属三氟化物的高理论势能,但在室温下用由FeF3和乙炔炭黑混合成的电极材料仅达到80 Amh/g的比容量。
在US 2004/0121235 A1中和由Badway, F.等人在 J. Electrochem. Soc. 150, S. A1209, 2003和在J. Electrochem. Soc. 150, S. A1318, 2003中曾描述了碳-金属-复合材料,其例如由85重量%的FeF3和15重量%的C组成,并由此在室温下其比容量达到200 mAh/g,其相应于在2.8-3.5 V范围内的Fe3+到Fe2+的可逆反应。与Arai等人相比的改进特性归因于在此情况下该金属氟化物以较小的粒度存在,并与导电碳紧密混合。使不同量的石墨、炭黑和活性炭与金属氟化物混合,并且该混合物在高能球磨机中研磨数小时。所得的FeF3的晶粒大小为30-50 nm。以此方法最高达到560 mAh/g的比容量,但该材料仅具有有限的可循环性,且由于在室温下有差的电极过程动力学,所以需在70℃进行测量。此外,在US 2004/0121235 A1中也表明,由氟化锂、过渡金属和单质碳组成的纳米复合材料可用作可逆工作的电极材料。
Bervas等人, Electrochem. Solid State Lett. 8, S. A179, 2005,报导了关于BiF3/C纳米复合材料的可逆反应形成Bi和LiF,其比容量为230 mAh/g。但该材料也不具有良好的循环特性。
H. Li, G. Richter 和J. Maier, Advabced Materials 15, S. 736, 2003中以TiF3和VF3为例表明,与锂形成合金的过渡金属具有更好的可循环性,比其它的快速失去容量的非合金金属如铁允许更高的循环次数。报导了对TiF3和VF3阴极经10次循环后的比容量至多为500 mAh/g,其中该电极材料借助于球磨机由原料制备。
Makimura等人在App. Surf. Sci. 252, S 4587, 2006和Electrochem. Commun. 8, 1769, 2006中报导了关于比1 μm还薄的FeF3膜的制备,该膜借助于脉冲激光解吸作用淀积在于-50℃冷却的基板上。其它在600℃淀积的膜由FeF2组成。该两种膜的起始电化学特性是不同的,但经几个循环后就与FeF2的特性相同了。
因此,在制备基于氟化物的电池中的阴极材料而迄今使用的方法中,各成分借助于高能球磨机以机械法形成合金或用薄膜法形成合金。这些方法明显导致有限的可循环性、材料选择限制和测得的比容量降低。因此由于电极过程的局部不可逆性和差的循环特性使得难以使用金属氟化物阴极。
从Leonhardt等人,Chemical Vapor Deposition 12, S. 380, 2006已知,在高于500℃的温度下载气工艺中的气态二茂铁按下列反应完全分解:
Fe(C5H5)2 → Fe + H2 + CH4 + C5H6 + … + 反应性烃。
与载气的流过速率有关,该铁簇作为催化作用核心,并产生不同类型的纳米碳,其中产生在催化剂核心上生长的单壁或多壁碳纳米管和空心碳纤维。
用于制备纳米碳的其它方法是电弧放电法(参见Ebessen等人, Nature 358, S. 220, 1992)、激光消蚀法(参见Thess等人, Science 273, S. 483, 1996)和化学气相沉积法(CVD, 参见Jose-Yacaman 等人, Appl. Phys. Lett. 62, S. 657, 1993),如所谓的HiPco法(Nikolaev 等人, Chem. Phys. Lett. 313, S. 91, 1999)。
由US 6946110 B2中已知一种用于制备碳纤维的方法,其中在有有机化合物和过渡金属催化剂存在下,在惰性气流中的苯在1200℃下分解。
Hu等人, Adv. Func. Mater. 17, S. 1873, 2007中指出,使用微孔和纳米孔的碳为电化学应用带来优点。其中该碳经复杂昂贵的模板法利用SiO2基质制备。
在US 6465132 B1中,通过在用载气经典型的石英玻璃制CVD反应器导出的气体混合物中的反应由二茂铁产生碳纳米纤维和碳纳米管。这里精确控制多个反应参数,特别是温度、反应时间、前体的浓度和载体气体的流过速率起决定性作用。
由此,本发明的目的在于提供一种基于氟化物的转换电极的阴极材料、其制备方法及其应用,其不具有所提及的缺点和限制。
特别是要提供一种材料,其直接适合用作基于氟化物的转换电极的阴极材料,并且同时甚至在室温下经多次充电循环和放电循环仍表现出极高的稳定性。
此外,特别是要提供一种制备方法,用该方法可简单和低成本地以一步法由前体物质或前体混合物制备用于这种阴极材料的纳米复合材料。
关于基于氟化物的转换电极的阴极材料的目的是通过权利要求1的主题实现的,关于制备该阴极材料的方法是通过权利要求4的主题实现的,关于该阴极材料的应用是通过权利要求12的主题实现的。从属权利要求分别描述本发明的有利方案。
本发明的基于氟化物的转换电极的阴极材料含有:
- 碱金属离子,优选锂离子或钠离子,
- 氟阴离子,以及
- 金属纳米颗粒,其大小最高为20 nm,和
- 该颗粒分布于由石墨的纳米碳、优选多壁的纳米碳构成的基质中。
本发明的基于氟化物的转换电极的阴极材料可用下列方法制备,该方法不同于制备纳米碳的通用方法。
为此,将包括金属,优选过渡金属,特别优选Ti、V、Cr、Mn、Fe、Co或Ni,和有机化合物的成分优选在封闭的反应器中加热到该有机化合物分解。在该热处理步骤之前或之后,优选通过球磨机混入碱金属氟化物。
因此,在本发明方法的一个方案中,包括金属和有机化合物的成分与碱金属氟化物一起在单一的热处理步骤中反应。
本发明的第二个方案中,该包括金属和有机化合物的成分随后经受单一的热处理步骤,然后与碱金属氟化物相混合。
实施本发明方法所需的成分包括呈单一化合物形式的金属和有机化合物,优选金属茂,或呈金属盐在有机化合物基质中的分散体形式。
在一个特别优选的方案中使用金属茂,即结构中既含金属也含有机化合物的化学化合物。为此,将干燥的金属茂粉末,特别是二茂铁、二茂钴、二茂镍或二茂钛或这些金属茂的混合物和碱金属氟化物特别是氟化锂或氟化钠于惰性气氛下装填在反应器(钢容器)中和优选封闭。接着将该反应器连同内容物一起加热到所需温度,优选为600℃-800℃。只要开始时未同时加入碱金属氟化物,则接着优选通过球磨机混入该碱金属氟化物。在另一个备选方案中,所述反应在敞口容器中进行。
该所述原料中任选可再与其它活性剂和调节剂,特别是粘合剂和其它导电物质混合。
在另一个方案中,使用金属盐在由作为有机化合物的聚合物或单体构成的基质中的高分散混合物(分散体)并按所述进行热处理。
在另一个方案中,使用金属盐在由作为有机化合物的生物材料(优选植物或动物材料,特别是明胶)构成的基质中的高分散混合物(分散体)并进行热处理。
在该方法中所形成的和含碱金属氟化物的纳米复合材料由空心结构和密实结构排列的、优选多壁的石墨结构构造构成,该石墨结构与金属纳米颗粒,特别是Ti、V、Cr、Mn、Fe、Co或Ni纳米颗粒呈紧密接触,其中该金属颗粒由碳结构所包封。
如在实施例中所表明的,用这种方法制备的阴极材料具有与至今已知的材料不同的微结构和组成。该阴极材料的新型组成是基于氟化物的转换电极的优良可逆性的前提。
令人意外地表明,在锂离子电池中应用本发明的阴极材料时,不仅与上述现有技术不同,而且与未与锂形成合金的铁不同,在室温下可观测到250-300 mA/g的比容量和经至今200次充电和放电循环可观察到稳定的电池特性。由此实验证实,无需现有技术已知的昂贵实验设计和使用CVD方法来制备一种与现有技术相比具有在基于氟化物的电池中作为电极材料的有利特性的纳米复合材料。
根据本发明的元素可在碱金属离子电池,特别在锂离子电池或钠离子电池中优选用作为基于氟化物的转换电池的阴极材料。
本发明特别具有下列述及的优点。
对于在基于金属氟化物的电极中的应用,研发了一种材料,该材料在室温下具有明显更稳定的循环特性,同时具有高的容量。其中存在的导电碳即碳纳米管(CNT)和碳纳米纤维(CNF)、纳米多孔碳或石墨纳米碳与过渡金属或其氟化物的紧密混合带来明显的优点。另一优点在于可在热方法中简易制备该材料。
下面按实施例和附图详述本发明。
一般制备方法
首先使细粉末金属茂和氟化锂(LiF)在真空下于优选为100℃和200℃的温度下干燥。为更好地混合该两原料,使用球磨机研磨15分到12小时,球∶粉末的重量比 > 50∶1。
热处理步骤于惰性气氛下在置于管式炉中的封闭的耐压不锈钢管中进行。然后以优选2-10 K/min的加热速率将该管加热到600℃和800℃的温度,并在此温度下放置1-6小时。也可选择将该反应器送入已加热的炉中。
1. 制备基于铁的碳纳米复合材料
为此将研碎的二茂铁加入上述的管式反应器中,在Ar气氛下封闭,并在室温下送入管式炉中。在加热到700℃后使反应混合物在700℃再保持2小时。取出反应器,使其经约2小时冷却至室温,然后在充有氩气的手套箱中打开,散发出气态的含碳反应产物。该材料的产率按原料的重量计为85-90%。该复合材料的碳含量以元素分析测定例如为62.5±0.5重量%。
2. 制备基于Fe/LiF的碳纳米复合材料
如实施例1,使二茂铁与细粉LiF的混合物在封闭体系中于700℃下处理2小时。该产物的产率按原料的重量计为94-95%。碳含量测定达42.1±0.5重量%。
3. 在直接加热下制备基于Fe/LiF的碳纳米复合材料
或者,实施例2的产物可如此制备,即将含有0.9 g二茂铁和0.34 g LiF的反应混合物的反应器直接送入700℃的热炉中,在此温度下保持2小时。该产物的产率按原料的重量计为92-95%。复合材料中的碳含量为41.9±0.5重量%。
4. 借助于经球磨的原料混合物制备基于Fe/LiF的碳纳米复合材料
为此,首先使实施例2的原料混合物在硬质钢制成的研磨杯中用硬质钢球研磨,其中球与粉末的重量比为370∶1。伦琴衍射照片表明,原料通过该处理仅被混合,而不能证实分解或材料转变。将经如此研磨的混合物送入反应器并封闭,接着如实施例2进行处理。经球磨和加热步骤后的材料收率按原料的重量计为88%。碳含量为41.8±0.5重量%。
基于Fe或基于Fe/LiF的碳纳米复合材料的结构特征
图1示出复合物和原料混合物在惰性条件下的伦琴衍射图(XRD),摄取该图用以表征基于Fe或基于Fe/LiF的碳纳米复合材料。图1a)是纯二茂铁的XRD,图1b)是实施例1的基于Fe的碳纳米复合材料的XRD,图1c)是按实施例2制备的基于Fe/LiF的碳纳米复合材料的XRD。所有摄取均在室温下进行。在图1b)和图1c)中除Fe和LiF外还出现Fe3C相,而未识别出氧化物相。也未表明存在LiF的热诱导分解。
该材料的微结构用电子显微镜方法如HR-TEM、明视场 (BF)和暗视场 (DF)以及选择区域电子衍射 (SAED)进行研究。为此将粉末样品分散于无水戊烷中,加几滴在碳载体上,并在手套箱中于Ar气下干燥至少2小时。该样品在惰性气体下送向显微镜,并经短时间空气接触后送入。
在图2中示出复合材料的照片,其表明石墨纳米碳的空心结构的局部卷绕状态,其中嵌有大小为2 nm-20 nm的Fe-纳米颗粒。更高分辨率的细节照片证实,该Fe颗粒总由石墨碳壳所围绕。
电化学研究
用Swagelok型二电极电池研究纳米复合材料的电化学特性。正电极通过基于Fe/LiF的碳纳米复合材料与作为粘合剂的PVDV共聚物来制备,该粘合剂例如占总混合物的10 %。或者使用不加粘合剂的纯纳米复合材料。应用纯锂作为负电极,而用一层玻璃纤维纸作为隔板。使用碳酸亚乙酯和碳酸二甲酯的1∶1-混合物作为电解质,其中溶有1 M的LiPF6。在恒定电流下用电池试验仪测量充电和放电循环。
基于Fe/LiF的碳纳米复合材料的电化学研究
为表征实施例2的Fe/LiF-碳纳米复合材料的电化学特性,于室温下在20.83 mA/g (C/50)情况下在4.3-0.5 V之间的对一系列实验电池进行了较长时间的试验。
图3示出于室温下测量的在4.3-0.5 V电压范围内在20.83 mA/g电流密度下的基于Fe/LiF的碳-纳米复合材料的第一充电和放电过程。由此可看出,反应是可逆的,比容量为320或305 mAh/g,相应于Fe/LiF反应的理论容量的46 %。所示出的曲线具有3个坪,由此得出结论,即在3个相继进行的氧化还原过程中发生反应。在第一循环的终点,该材料的XRD照片示出几乎与原料相同的组成。
为研究实施例2的纳米复合材料的循环稳定性,该电池于室温下用C/50循环了超过140次。为可更好地看到细节,头5个循环示于图4。于室温下测定的在电流密度为20.83 mA/g时的电压为4.3-0.5 V。
图5示出经头60个循环和在各种电流强度下的Fe/LiF-碳纳米复合材料的比充电容量和比放电容量与循环数的关系曲线。于室温下测定的在电流密度为20.83 mA/g时的电压为4.3-0.5 V。由此看出,该纳米复合材料经60次循环后仍具有280 mAh/g的稳定的可逆容量。在第一循环中经开始的容量下降后,该容量在整个测量时期中均保持稳定。在较高电流下测定(C/20)的充电和放电循环表明,与至今已知的现有技术相比,该材料甚至在室温下也可非常稳定地循环。
在10.42 mAh/g (C/100)和1.05 Ah/g (1C)之间的较低充电电流和较高充电电流下,也研究了该材料的可逆特性。图5示出,该容量随不断增加的C-速率而下降,即通常在电池中观测到的效应。但与此无关,保持了循环稳定性。

Claims (12)

1. 基于氟化物的转换电极的阴极材料,其含碱金属离子、氟阴离子和尺寸最高为20 nm的金属纳米颗粒,该颗粒分布于由石墨纳米碳构成的基质中。
2. 权利要求1的阴极材料,其含锂离子或钠离子作为碱金属离子。
3. 权利要求1或2的阴极材料,其含由多壁纳米碳构成的基质。
4. 用于制备权利要求1-3之一的基于氟化物的转换电极的阴极材料的方法,其中在单一的热处理步骤中加热包括金属和有机化合物的成分,直到所述有机化合物分解,其中在该热处理步骤前或后加入碱金属氟化物。
5. 权利要求4的方法,其中通过球磨机混入所述金属氟化物。
6. 权利要求4或5的方法,其中使用氟化锂或氟化钠作为金属氟化物。
7. 权利要求4-6之一的方法,其中使用金属茂作为包括金属和有机化合物的成分。
8. 权利要求7的方法,其中使用含过渡金属的金属茂。
9. 权利要求7或8的方法,其中所述金属茂在封闭的反应容器中与金属氟化物一起在600℃-800℃范围内热分解。
10. 权利要求4-6之一的方法,其中使用金属盐在由有机化合物构成的基质中的分散体。
11. 权利要求10的方法,其中使用金属盐在由聚合物、单体或生物材料构成的基质中的分散体作为有机化合物。
12. 权利要求1-3之一的基于氟化物的转换电极的阴极材料在碱金属离子电池中的应用。
CN201080016146.5A 2009-04-11 2010-04-03 基于氟化物的转换电极的阴极材料及其制备方法和应用 Expired - Fee Related CN102388487B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009017262A DE102009017262A1 (de) 2009-04-11 2009-04-11 Kathodenmaterial für fluoridbasierte Konversionselektroden, Verfahren zu seiner Herstellung und seine Verwendung
DE102009017262.9 2009-04-11
PCT/EP2010/002147 WO2010115601A1 (de) 2009-04-11 2010-04-03 Kathodenmaterial für fluoridbasierte konversionselektroden, verfahren zu seiner herstellung und seine verwendung

Publications (2)

Publication Number Publication Date
CN102388487A true CN102388487A (zh) 2012-03-21
CN102388487B CN102388487B (zh) 2015-05-13

Family

ID=42246187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080016146.5A Expired - Fee Related CN102388487B (zh) 2009-04-11 2010-04-03 基于氟化物的转换电极的阴极材料及其制备方法和应用

Country Status (5)

Country Link
US (1) US8568618B2 (zh)
EP (1) EP2417655B1 (zh)
CN (1) CN102388487B (zh)
DE (1) DE102009017262A1 (zh)
WO (1) WO2010115601A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779541A (zh) * 2012-07-24 2014-05-07 坤特斯卡普公司 用于电化学转换反应的纳米结构材料
CN103996849A (zh) * 2014-05-16 2014-08-20 江苏华东锂电技术研究院有限公司 锂离子电池正极活性材料的制备方法
CN104332609A (zh) * 2012-07-24 2015-02-04 量子世界公司 制造电池的方法、形成转换材料的方法和形成电池单元的方法
CN105177745A (zh) * 2015-08-31 2015-12-23 贵州省纤维检验局 一种新型电磁屏蔽纳米碳导电纤维材料及其制备方法
CN108336299A (zh) * 2017-12-19 2018-07-27 成都亦道科技合伙企业(有限合伙) 一种锂电池正极材料及其制备方法、正极结构和锂电池
US10326135B2 (en) 2014-08-15 2019-06-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes
US11557756B2 (en) 2014-02-25 2023-01-17 Quantumscape Battery, Inc. Hybrid electrodes with both intercalation and conversion materials

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG192984A1 (en) * 2011-03-02 2013-09-30 Univ Nanyang Tech An electrode material and a method of generating the electrode material
US9466830B1 (en) 2013-07-25 2016-10-11 Quantumscape Corporation Method and system for processing lithiated electrode material
KR102214826B1 (ko) 2013-07-31 2021-02-10 삼성전자주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
KR20180028511A (ko) * 2015-07-13 2018-03-16 실라 나노테크놀로지스 인코포레이티드 금속 및 금속-이온 배터리들을 위한 안정적인 리튬 불화물계 캐소드들
US11043666B2 (en) * 2016-01-19 2021-06-22 Seoul National University R&Db Foundation Composite materials for cathode materials in secondary battery, method of manufacturing the same, and lithium secondary battery including the same
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
CN106629720A (zh) * 2016-09-26 2017-05-10 大连理工大学 一种基于离子液体直接炭化法制备杂原子共掺杂多孔碳材料的方法
CN114824209B (zh) * 2022-04-20 2024-04-09 天津大学 一种绒丝状高导电含锰氟化物复合材料及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108480A1 (en) * 2001-12-11 2003-06-12 Baker R. Terry K. Catalysts for producing narrow carbon nanostructures
WO2004034489A2 (en) * 2002-09-13 2004-04-22 Max-Planck-Gesellschaft Zur Novel electrodes for li-based electrochemical energy storage devices and a li-based electrochemical storage device
WO2004051772A2 (en) * 2002-11-27 2004-06-17 Rutgers, The State University Metal fluorides as electrode materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW524904B (en) 1999-03-25 2003-03-21 Showa Denko Kk Carbon fiber, method for producing same and electrodes for electric cells
US6465132B1 (en) 1999-07-22 2002-10-15 Agere Systems Guardian Corp. Article comprising small diameter nanowires and method for making the same
US7371338B2 (en) 2002-10-01 2008-05-13 Rutgers, The State University Metal fluorides as electrode materials
US7718156B2 (en) * 2006-12-20 2010-05-18 Headwaters Technology Innovation, Llc Method for manufacturing carbon nanostructures having minimal surface functional groups

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108480A1 (en) * 2001-12-11 2003-06-12 Baker R. Terry K. Catalysts for producing narrow carbon nanostructures
WO2004034489A2 (en) * 2002-09-13 2004-04-22 Max-Planck-Gesellschaft Zur Novel electrodes for li-based electrochemical energy storage devices and a li-based electrochemical storage device
WO2004051772A2 (en) * 2002-11-27 2004-06-17 Rutgers, The State University Metal fluorides as electrode materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORIAKI SANO等: "Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen", 《CARBON》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779541A (zh) * 2012-07-24 2014-05-07 坤特斯卡普公司 用于电化学转换反应的纳米结构材料
CN104332609A (zh) * 2012-07-24 2015-02-04 量子世界公司 制造电池的方法、形成转换材料的方法和形成电池单元的方法
US9640793B2 (en) 2012-07-24 2017-05-02 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
CN104332609B (zh) * 2012-07-24 2017-06-09 量子世界公司 制造电池的方法、形成转换材料的方法和形成电池单元的方法
US10511012B2 (en) 2012-07-24 2019-12-17 Quantumscape Corporation Protective coatings for conversion material cathodes
US11557756B2 (en) 2014-02-25 2023-01-17 Quantumscape Battery, Inc. Hybrid electrodes with both intercalation and conversion materials
CN103996849A (zh) * 2014-05-16 2014-08-20 江苏华东锂电技术研究院有限公司 锂离子电池正极活性材料的制备方法
US10326135B2 (en) 2014-08-15 2019-06-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes
CN105177745A (zh) * 2015-08-31 2015-12-23 贵州省纤维检验局 一种新型电磁屏蔽纳米碳导电纤维材料及其制备方法
CN108336299A (zh) * 2017-12-19 2018-07-27 成都亦道科技合伙企业(有限合伙) 一种锂电池正极材料及其制备方法、正极结构和锂电池
CN108336299B (zh) * 2017-12-19 2021-07-16 成都大超科技有限公司 一种锂电池正极材料及其制备方法、正极结构和锂电池

Also Published As

Publication number Publication date
WO2010115601A1 (de) 2010-10-14
US8568618B2 (en) 2013-10-29
EP2417655A1 (de) 2012-02-15
DE102009017262A1 (de) 2010-10-14
CN102388487B (zh) 2015-05-13
US20120032118A1 (en) 2012-02-09
EP2417655B1 (de) 2013-03-06

Similar Documents

Publication Publication Date Title
CN102388487B (zh) 基于氟化物的转换电极的阴极材料及其制备方法和应用
Pan et al. MoS 2-covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life
Yang et al. Embracing high performance potassium-ion batteries with phosphorus-based electrodes: a review
CN102214823B (zh) 非水电解质二次电池用负极材料及其制造方法以及锂离子二次电池
Su et al. A carbon-coated Li 3 V 2 (PO 4) 3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries
Yan et al. Improved cycling performance of prussian blue cathode for sodium ion batteries by controlling operation voltage range
Yin et al. A graphene–amorphous FePO 4 hollow nanosphere hybrid as a cathode material for lithium ion batteries
US8168329B2 (en) Electrochemical composition and associated technology
CN102214824B (zh) 非水电解质二次电池用负极材料及其制造方法以及锂离子二次电池
Wang et al. Facile synthesis of one-dimensional hollow Sb2O3@ TiO2 composites as anode materials for lithium ion batteries
US20080138710A1 (en) Electrochemical Composition and Associated Technology
Pandit et al. Exploration of a Na3V2 (PO4) 3/C–Pb full cell Na-ion prototype
Suh et al. Enhancing the electrochemical properties of a Si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries
Yuan et al. Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance
Cui et al. Nanostructural CoSnC anode prepared by CoSnO3 with improved cyclability for high-performance Li-ion batteries
Liu et al. Synthesis of three-dimensional honeycomb-like Fe3N@ NC composites with enhanced lithium storage properties
Kim et al. V4P7@ C nanocomposite as a high performance anode material for lithium-ion batteries
CN105612640A (zh) 碳涂覆的电化学活性粉末
Ganesan et al. Robust nanocube framework CoS2-based composites as high-performance anodes for Li-and Na-ion batteries
Liu et al. Investigating the influence of sodium sources towards improved Na3V2 (PO4) 3 cathode of sodium-ion batteries
CN108899499B (zh) 基于Sb/Sn磷酸盐的负极材料及其制备方法与在钠离子电池中的应用
CN110444740A (zh) 一种借助苯胺聚合限域作用合成石墨烯/碳包覆磷酸铁锂小尺度纳米复合材料的方法
Ilango et al. Wet chemical synthesis and characterization of nanocrystalline ZnWO4 for application in Li-ion batteries
EP2860801B1 (en) Electrochemical composition and associated technology
Li et al. Carbon-coated Bi5Nb3O15 as anode material in rechargeable batteries for enhanced lithium storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150513

Termination date: 20180403