CN102387098B - 一种频率偏差与相位偏差的联合测量方法及装置 - Google Patents

一种频率偏差与相位偏差的联合测量方法及装置 Download PDF

Info

Publication number
CN102387098B
CN102387098B CN201110316111.XA CN201110316111A CN102387098B CN 102387098 B CN102387098 B CN 102387098B CN 201110316111 A CN201110316111 A CN 201110316111A CN 102387098 B CN102387098 B CN 102387098B
Authority
CN
China
Prior art keywords
phase
matrix
matching
phase deviation
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110316111.XA
Other languages
English (en)
Other versions
CN102387098A (zh
Inventor
张力
张途
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transcom Shanghai Technologies Co Ltd
Original Assignee
Shanghai TransCom Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai TransCom Instruments Co Ltd filed Critical Shanghai TransCom Instruments Co Ltd
Priority to CN201110316111.XA priority Critical patent/CN102387098B/zh
Publication of CN102387098A publication Critical patent/CN102387098A/zh
Application granted granted Critical
Publication of CN102387098B publication Critical patent/CN102387098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种频率偏差与相位偏差的联合测量方法及装置。本发明在对移动通信终端进行测试过程中,不考虑多用户干扰的情况下,提供了一种基于矩阵预处理机制的频偏和相偏联合测量方法,其利用预先构造的结构矩阵,对其进行经济型的简化QR分解,并以之求采样数值曲线的回归线最小二乘解,从而得到频率偏差和相位偏差的最优解。采用本发明可实现频率偏差与相位偏差的联合测量,且与现有技术相比具有更高算法效率和更强的适用性。

Description

一种频率偏差与相位偏差的联合测量方法及装置
技术领域
本发明涉及通信技术领域中的移动通信终端测试技术,尤其涉及一种频率偏差与相位偏差的联合测量方法及装置。
背景技术
移动终端设备的射频性能直接取决于射频收发信机的校准。因此移动终端设备射频性能的测试与校准成为终端生产测试中最重要的环节。射频性能校准中,AFC(Auto Frequency Control,自动频率控制)校准是非常重要的一个校准环节。AFC校准是通过调整终端的晶振使终端发出的信号具有正确的载波频率。校准的方法一般是通过上位机(通常是PC)控制终端在一系列频率上发射信号,使用信号分析仪分析该信号的频率误差,然后根据分析结果对终端晶振进行调整。这其中频率偏差又会产生相位偏差,因此,频率偏差与相位偏差的测量和校准是移动通信设备正常工作必不可少的重要步骤,同时也是其他调制精度测试如EVM(误差向量幅度)测试的关键基础。
频率误差定义为考虑了调制和相位误差的影响后,发射信号的频率与该绝对射频频道号对应的标称频率之间的差。现有技术提供了以下两种测试方案:
方案(一):在3GPP TS 51.010-1 v9.4.0测试标准中规定了一种GSM(Global System of Mobile communication,全球移动通讯)系统中频率误差测试方法。此方法基于对接收信号进行解调或使用已知伪随机比特流得到接收码序列,然后根据此码序列生成理想状态下的参考相位曲线。用实测相位曲线减去理想相位曲线的到各采样点相位误差(度)φe(j),j=0...n。其对应的采样点数构成矢量t=t(0)...t(n),共n+1个采样。通过对相位误差做一元线形回归,计算该回归线的斜率得到:
k = Σ j = 0 j = n t ( j ) * φ e ( j ) Σ j = 0 j = n t ( j ) 2
则频率误差就表示为k/(360*Ts),其中Ts为采样间隔(秒)。
此种方法利用一元线性回归计算回归线斜率,计算复杂度为2*(n+1)次乘法计算,2*n次加法计算和一次除法计算,计算复杂度较低。但是,此种方法只能单一求解频率误差,对初始相位误差需要另行计算,算法效率较低。
方案(二):现有技术中还提供了一种UMTS(Universal MobileTelecommunications System,通用移动通信系统)中频率误差和初始相位误差的估计方法。此方法基于利用快速傅立叶变换(FFT)和的线性调频Z变换(CZT)对采样数据的误差部分进行1Hz精度的频率分辨,从而找出频率误差和对应的初始相位误差。为了计算N点FFT需要进行N*log2N次加法和0.5*N*log2N次乘法,因此此种方法计算复杂度较第一种高。且频率分辨率一般为1Hz,分辨率较低,故仅适合高速宽带系统的频率误差测量。
现有方案(一)只能单一求解频率误差,对初始相位偏差和即时相位误差需要另行计算,算法效率较低。现有方案(二)计算复杂度较第一种高,且频率分辨率较低,一般为1Hz,故不适合精度要求较高的频率误差测量。
由此可见,目前需要一种能够同时进行频率偏差和相位偏差测试,并且算法效率更高,以及适用性更强的无线设备测量方案。
发明内容
本发明提供了一种频率偏差与相位偏差的联合测量方法及装置,用以实现频率偏差与相位偏差的联合测量,且与现有技术相比具有更高算法效率和更强的适用性。
本发明提供的频率偏差与相位偏差的联合测量方法,包括:
测试设备对被测移动终端的发射信号进行高倍采样,并对每一路单倍采样点执行以下处理:
计算当前采样点中I、Q采样信号调制后的实测相位曲线
Figure BSA00000593500400031
根据所述实测相位曲线和预置相位表生成对应的参考相位曲线φrefi
根据所述实测相位曲线和对应的参考相位曲线,得到当前采样点的总的相位偏差φei=φirefi
利用各采样点的相位偏差组成的列向量[φe1,φe2,...,φeN]T构造一元拟合矩阵方程yN×1=VN×2×P2×1,并通过简化的QR分解求构造矩阵方程的最小二乘解,得到拟合因子向量P2×1;其中,yN×1=[φe1,φe2,...,φeN]T V = 1 1 2 1 . . . . . . N 1 N × 2 , P = P 1 P 2 2 × 1 ;
根据拟合因子向量P2×1得到当前采样点的频率偏差与相位偏差;
其中,i表示采样点的序列号,N为采样点单倍数据的长度。
本发明提供的测试设备,包括:
采样模块,用于对被测移动终端的发射信号进行高倍采样;
实测相位曲线计算模块,用于计算当前采样点中I、Q采样信号调制后的实测相位曲线
Figure BSA00000593500400034
参考相位曲线生成模块,用于根据所述实测相位曲线和预置相位表生成对应的参考相位曲线φrefi
总相位偏差计算模块,用于根据所述实测相位曲线和对应的参考相位曲线,得到当前采样点的总的相位偏差φei=φirefi
拟合因子计算模块,用于利用各采样点的相位偏差组成的列向量[φe1,φe2,...,φeN]T构造一元拟合矩阵方程yN×1=VN×2×P2×1,并通过简化的QR分解求构造矩阵方程的最小二乘解,得到拟合因子向量P2×1;其中,yN×1=[φe1,φe2,...,φeN]T V = 1 1 2 1 . . . . . . N 1 N × 2 , P = P 1 P 2 2 × 1 ;
频率偏差与相位偏差计算模块,用于根据拟合因子向量P2×1得到当前采样点的频率偏差与相位偏差;
其中,i表示采样点的序列号,N为采样点单倍数据的长度。
与现有技术相比,本发明具有如下有益技术效果:
本发明在对移动终端进行测试过程中,利用预先构造的结构矩阵,对该矩阵进行简化QR分解,并以之求回归线的最小二乘解,从而得到拟合因子,再拟合因子得到采样点的频率偏差与相位偏差。相对于现有方案(一),本发明可以在更少的计算复杂度上实现频率偏差和相位偏差的联合估计,算法效率较高。相对于方案(二),本发明计算复杂度要更低,并且频率分辨率取决于采样精度,故能取得更高的测量精度,适用性更强。
附图说明
图1为本发明实施例一提供的频率偏差与相位偏差联合测量流程示意图;
图2为本发明实施例二提供的频率偏差与相位偏差联合测量流程示意图;
图3为本发明实施例三提供的测试设备的结构示意图;
图4为本发明实施例四提供的测试设备的结构示意图。
具体实施方式
如前所述,测试发射信号的频率和相位误差是检测发信级调制信号的质量。以GSM系统(3GPP 05 v5.4.0)为例,GSM调制方案是高斯最小移频键控(GMSK),归一化带宽BT=0.3;在GSM调制中的传输符号“0”在MSK调制中会带来90°的相位递增,数据“1”会带来90°的相位递减。在实际单个终端测试应用中,不存在多用户干扰情况,信道情况也设定为理想信道,因此,可以仅通过分析被测信号的相位偏差值测量突发时隙的载波频率偏差和初始相位偏差,而不需要迭代过程。
根据定义,发射信号的相位偏差为发信机发射信号的相位与理论上最好的信号的相位之差。由3GPP 51.010 v9.4.0可知,理论上的相位轨迹可由接收信号解调或者根据发射已知的伪随机比特流通过GMSK脉冲成形滤波器得到。频率误差定义为考虑了调制和相位误差影响后,发射信号频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。它通过相位误差做线性回归,计算该回归线的斜率,即可得到频率误差。
本发明实施例在对移动通信终端进行测试过程中不考虑多用户干扰的情况下,遵循上述定义,提供了一种基于矩阵预处理机制的频偏和相偏联合测量方法,其利用预先构造的结构矩阵,对其进行经济型的简化QR分解,并以之求回归线的最小二乘解,从而得到频率偏差和相位偏差的最优解。
下面结合附图对本发明实施例进行详细描述。
实施例一
参见图1,为本发明实施例一提供的频率偏差与相位偏差的联合测量的流程示意图,如图所示,该流程可包括:
步骤101,测试设备对被测移动终端的发射信号进行采样。
具体的,测试设备与被测移动终端利用用于信道估计的训练序列码(TSC)完成高倍速(本实施例使用48倍速采样)采样信号同步之后,得到最佳同步位置SYNC。SYNC不但包括匹配的Active Part的起始比特位置信息,也包括在一个比特的48个采样点中的最佳匹配样值点。这里以SYNC为中心,左右各扫描m个采样点,共2m+1个采样点,以这其中每个采样点分别为最佳采样点,抽取出2m+1组长度为N的采样倍数为1倍数的数据。
之后,对于每一组单倍数采样突发数据均进行以下步骤102~108的操作,以得到每一组单倍采样突发数据的频率偏差与相位偏差:
步骤102~103,抽取采样点数据中的单倍I、Q采样数据,计算突发采样中I、Q采样信号GMSK调制后的实测相位曲线
Figure BSA00000593500400061
其中i表示当前采样点的序列号。
步骤104,根据该实测相位曲线,采用信号差分方式判断在每个符号周期内相位变化方向,解调得到预测的实际信号符号序列。
具体的,根据GMSK的相位特性,使用采样信号差分相位值判断在每个符号周期内相位变化方向,根据此判决快速解调出预测的实际信号符号序列。其中,当Δφi大于零,则解调为逻辑“0”;当Δφi小于零则解调为逻辑“1”。逻辑“0”为电平+1;逻辑“1”为电平-1。
步骤105,根据预测出的码序列(即预测出的实际信号符号序列)查预置相位表再生成理想状态下的参考相位曲线φrefi,其中初始相位为0。
具体的,参考相位的生成是由解调得到的符号序列对照预置的理想信号相位变化表快速生成。由于GMSK信号的相位是MSK信号符号经由BT=0.3的高斯滤波产生,工程中现在均采用对高斯滤波的矩形脉冲响应截断的方式进行积分计算,一般来说5个符号周期5Tb的截断已经可以满足对其相位函数的精度要求。所以第K个符号bK经过GMSK在一个符号周期Tb内的相位变化与bK-2,bK-1,bK,bK+1,bK+2五个符号有关,也就意味着经过GMSK调制后在一个符号周期Tb内的相位变化有25=32种可能值。因此可将一个符号周期内的相位变化与调制前符号的映射关系制成对应关系表。很明显,第K个符号bK经GMSK调制后在一个符号周期Tb内的相位变化φrefi可以由其本身和其前后各两个预测的符号信息来查表得出。那么理想信号的参考相位则可得到:φref K=φref K-1+Δφref K。
步骤106,根据采样点的实测相位曲线和对应的参考相位曲线,得到该采样点的总的相位偏差φei=φirefi
具体的,用GMSK实测相位减去由预测码序列再生的理想参考相位,得到总的相位偏差φei=φirefi
步骤107,利用各采样点的相位偏差组成的列向量[φe1,φe2,...,φeN]T构造一元拟合矩阵方程yN×1=VN×2×P2×1,并通过QR分解求构造矩阵方程的最小二乘解,得到拟合因子向量P2×1
由于总的相位偏差φei包含频率偏差fe,即时相位偏差θei和初始相位偏差φ0的影响,在本方法中使用一元回归的方式拟合,由超定方程组可以构造以下矩阵方程,以进行拟合计算:
y=P2+P1x……………………………………………………[1]
其中,yN×1=[φe1,φe2,...,φeN]T为各采样点的总相位偏差列向量,xN×1=[1,2,...,N]T为归一化采样定时列向量,P1、P2为拟合因子。
进一步的,重构矩阵方程(2)为:
yN×1=VN×2×P2×1……………………………………………………[2]
其中,构造预置矩阵 V = 1 1 2 1 . . . . . . N 1 N × 2 , 拟合因子向量 P = P 1 P 2 2 × 1 .
根据计算法则,可以对预置构造矩阵V进行QR分解求矩阵方程的最小二乘解矩阵P2×1,以求出拟合因子P1、P2。在本发明实施例中,由于使用一元拟合回归方式,因此采用“经济型”QR分解,即,只需求解Q矩阵的前2个列向量构成的矩阵QN×2和R矩阵的前2个行向量构成的矩阵R2×2,则矩阵(2)转化为yN×1=QN×2×R2×2×P2×1。根据QR分解定义,此矩阵方程可转化为:
P2×1=inv(R2×2)×(QN×2)H×yN×1…………………………………………[3]
其中,inv(·)表示求逆矩阵,(·)H表示矩阵共轭转置,由此可得最小二乘解P2×1从而得到拟合因子P1、P2
步骤108,根据拟合因子向量P2×1得到采样点的频率偏差与相位偏差。
具体的,由拟合定义,频率偏差为
Figure BSA00000593500400081
其中Ts为采样时间间隔;初始相位偏差为φ0=P2;即时相位偏差θei=θei0-2·π·i·Ts·fe
进一步的,对于即时相位偏差θei,还可包括以下步骤:
步骤109,根据所得即时相位偏差θei,计算并记录当前单倍采样数据组的均方根(RMS)相位偏差。
返回步骤102对下一组单倍采样数据进行步骤102~109的操作,直到最后一组单倍采样数据,这样得到了所选择的各路采样点(2m+1组)的频率偏差与相位偏差。
进一步的,该流程还可包括以下步骤:
步骤110,根据各组采样点的频率偏差与相位偏差,得到最终的测试结果,如选取其中的一路采样点的频率偏差与相位偏差作为最终测试结果。
具体的,为了提高测试精度,可将所得2m+1组RMS相位偏差值进行对比,选取RMS相位偏差值最小的一组数据,其所对应的频率偏差fe,即时相位偏差θei和初始相位偏差φ0为最终测试结果以便进行输出。
通过实施例一的描述可以看出,与现有技术相比,本发明实施例具有以下优势:
(1)本发明实施例与现有方案(一)比较,直接同时完成了频率偏差、初始相位偏差和即时相位偏差的联合测量,简化了测量步骤,算法效率大为提高;
(2)本发明实施例利用预存的理想信号相位变化于符号序列对照表,可快速还原传输符号的理想相位,以便于快速测量,测量速度大为提高;
(3)本发明实施例利用采样信号差分相位值判断前后符号间相位转换方向,可更加快速解调得出预测符号序列,同样提高了测量效率。
实施例二
为了进一步简化操作,提高处理效率,在上述实施例一的基础上进一步改进,得到了实施例二。具体的,实施例二与实施例一的不同之处在于:
预先在求解构造矩阵方程的最小二乘解中,求解Q矩阵的前2个列向量构成的矩阵QN×2和R矩阵的前2个行向量构成的矩阵R2×2,计算矩阵inv(R2×2)和(QN×2)H的值,并将计算出的矩阵inv(R2×2)和(QN×2)H的值进行存储。这样,在进行测试时,可直接获取预先存储的矩阵inv(R2×2)和(QN×2)H的值,根据公式P2×1=inv(R2×2)×(QN×2)H×yN×1计算出拟合因子向量P2×1
实施例二的处理流程可如图2所示,在此不再赘述。
其原理分析如下:
在实施例一的步骤107中,先根据预置构造矩阵VN×2进行经济型QR分解得到简化的QR矩阵QN×2和R2×2,然后根据公式(3)直接求出拟合因子P1、P2。可以看出,虽然经济型QR分解节省了计算资源,但是由于每次测试都要进行此操作步骤,所以仍然占用一定计算时间。
因为采样周期为等间隔,所以构造矩阵 V = 1 1 2 1 . . . . . . N 1 N × 2 对于每次测量都是固定的,所以所得的QR矩阵QN×2和R2×2也是固定并已知的。因此,根据公式(3)可以继续简化计算步骤,即,可预先计算矩阵inv(R2×2)和(QN×2)H的值,并将计算值预存于寄存器中,那么每次测量时,只需要从寄存器中读取矩阵inv(R2×2)和(QN×2)H的值并计算一次P2×1=inv(R2×2)×QN×2)H×yN×1,即可完成拟合因子向量P2×1的求解。其计算复杂度为2*N次乘法和2*(N-1)次加法,即可完成主要计算步骤,比之实施例一大大降低。
基于相同的技术构思,本发明实施例还提供了一种测试设备,可用于测试移动终端,该测试设备可以是移动终端综测仪。
参见图3,为本发明实施例三提供的测试设备的结构示意图,该测试设备可应用于实施例一的流程,如图所示,该测试设备可包括:
采样模块301,用于对被测移动终端的发射信号进行高倍采样。具体的,测试设备与被测移动终端利用用于信道估计的训练序列码(TSC)完成高倍速采样信号同步之后,得到最佳同步位置;以所述同步位置为基点,选取包括所述同步位置的采样点在内的相邻连续数个采样点,分别以每个采样点为同步点,抽取出单路长度为N、采样倍数为1倍数的单倍数据。以下描述中,i表示采样点的序列号,N为采样点单倍数据的长度。
实测相位曲线计算模块302,用于根据采用模块301采用得到的采样点数据,计算当前采样点中I、Q采样信号调制后的实测相位曲线
Figure BSA00000593500400101
参考相位曲线生成模块303,用于根据实测相位曲线计算模块302计算得到的实测相位曲线和预置相位表生成对应的参考相位曲线φrefi
总相位偏差计算模块304,用于根据实测相位曲线计算模块302计算得到的实测相位曲线,以及参考相位曲线生成模块303生成的对应的参考相位曲线,得到当前采样点的总的相位偏差φei=φirefi
拟合因子计算模块305,用于利用总相位偏差计算模块304计算出的各采样点的相位偏差组成的列向量[φe1,φe2,...,φeN]T,构造一元拟合矩阵方程yN×1=VN×2×P2×1,并通过简化的QR分解求构造矩阵方程的最小二乘解,得到拟合因子向量P2×1;其中,yN×1=[φe1,φe2,...,φeN]T V = 1 1 2 1 . . . . . . N 1 N × 2 , P = P 1 P 2 2 × 1 ;
频率偏差与相位偏差计算模块306,用于根据拟合因子计算模块305计算出的拟合因子向量P2×1得到当前采样点的频率偏差与相位偏差。
具体的,拟合因子计算模块305可在求解构造矩阵方程的最小二乘解中,求解Q矩阵的前2个列向量构成的矩阵QN×2和R矩阵的前2个行向量构成的矩阵R2×2;根据公式P2×1=inv(R2×2)×(QN×2)H×yN×1确定拟合因子向量P2×1,其中,inv(·)表示求逆矩阵,(·)H表示矩阵共轭转置。
具体的,频率偏差与相位偏差计算模块306可根据拟合因子向量P2×1得到的当前采样点的频率偏差为
Figure BSA00000593500400111
根据拟合因子向量P2×1得到的当前采样点的初始相位偏差为φ0=P2,即时相位偏差为θei=φei0-2·π·i·Ts·fe;其中,Ts为采样时间间隔。
具体的,实测相位曲线计算模块302可具体用于:计算当前采样点中I、Q采样信号高斯滤波最小频移键控GMSK调制后的实测相位曲线
Figure BSA00000593500400112
相应的,参考相位曲线生成模块303可根据GMSK的相位特性,使用采样信号差分相位值
Figure BSA00000593500400113
判断在每个符号周期内相位变化方向,根据每个符号周期内相位变化方向解调出预测出的实际信号符号序列;根据预测出的实际信号符号序列查预置相位表,生成参考相位曲线φrefi,其中初始相位为0。具体的,参考相位曲线生成模块303,由解调得到的当前符号以及其前后各两个符号共5个解调符号bK-2,bK-1,bK,bK+1,bK+2,对照预置相位表得到当前一个符号周期内相位变化值Δφref K;将相位累加得到参考相位φref K=φref K-1+Δφref K
上述测试设备还可包括测试结果输出模块307,用于在频率偏差与相位偏差计算模块306根据拟合因子向量P2×1得到各采样点的频率偏差与相位偏差之后,比较各路采样点的相位偏差,选取其中均方根(RMS)相位偏差最小的一路单倍采样点;将所选取的采样点的频率偏差、即时相位偏差和初始相位偏差,作为测试结果输出。
参见图4,为本发明实施例四提供的测试设备的结构示意图,该测试设备可应用于实施例二的流程。实施例四提供的测试设备是在实施例三提供的测试设备上改进得到的,实施例四提供的测试设备与实施例三提供的测试设备相比,区别在于:
该测试设备还包括存储模块308,用于存储矩阵inv(R2×2)和(QN×2)H的值;其中,所述矩阵inv(R2×2)和(QN×2)H的值是预先在求解构造矩阵方程的最小二乘解中,求解Q矩阵的前2个列向量构成的矩阵QN×2和R矩阵的前2个行向量构成的矩阵R2×2,计算矩阵inv(R2×2)和(QN×2)H的值,并将计算出的矩阵inv(R2×2)和(QN×2)H的值进行存储的;其中,inv(·)表示求逆矩阵,(·)H表示矩阵共轭转置。
相应的,拟合因子计算模块405获取存储模块308中预先存储的矩阵inv(R2×2)和(QN×2)H的值,根据公式P2×1=inv(R2×2)×(QN×2)H×yN×1确定拟合因子向量P2×1
其它功能模块与实施例三中的相应功能模块相同,在此不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台终端测试设备(可以是手机终端测试仪,或者矢量网络测试仪等设备)执行本发明各个实施例所述的方法。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (15)

1.一种频率偏差与相位偏差的联合测量方法,其特征在于,该方法包括:
测试设备对被测移动终端的发射信号进行高倍采样,并对每一路单倍采样点执行以下处理:
计算当前采样点中I、Q采样信号调制后的实测相位曲线
Figure FDA0000393588780000011
根据所述实测相位曲线和预置相位表生成对应的参考相位曲线φrefi
根据所述实测相位曲线和对应的参考相位曲线,得到当前采样点的总的相位偏差φei=φirefi
利用各采样点的相位偏差组成的列向量[φe1e2,...,φeN]T构造一元拟合矩阵方程yN×1=VN×2×P2×1,并通过简化的QR分解求构造矩阵方程的最小二乘解,得到拟合因子向量P2×1;其中,yN×1=[φe1e2,...,φeN]T V = 1 1 2 1 · · · · · · N 1 N × 2 , P = P 1 P 2 2 × 1 , P1、P2为拟合因子;
根据拟合因子向量P2×1得到当前采样点的频率偏差与相位偏差;
其中,i表示采样点的序列号,N为采样点单倍数据的长度。
2.如权利要求1所述的方法,其特征在于,所述通过简化的QR分解求构造矩阵方程的最小二乘解,得到拟合因子向量P2×1,具体为:
在求解构造矩阵方程的最小二乘解中,求解Q矩阵的前2个列向量构成的矩阵QN×2和R矩阵的前2个行向量构成的矩阵R2×2
根据公式P2×1=inv(R2×2)×(QN×2)H×yN×1确定拟合因子向量P2×1,其中,inv(·)表示求逆矩阵,(·)H表示矩阵共轭转置。
3.如权利要求1所述的方法,其特征在于,预先在求解构造矩阵方程的最小二乘解中,求解Q矩阵的前2个列向量构成的矩阵QN×2和R矩阵的前2个行向量构成的矩阵R2×2,计算矩阵inv(R2×2)和(QN×2)H的值,并将计算出的矩阵inv(R2×2)和(QN×2)H的值进行存储;其中,inv(·)表示求逆矩阵,(·)H表示矩阵共轭转置;
所述通过简化的QR分解求构造矩阵方程的最小二乘解,得到拟合因子向量P2×1,具体为:
获取预先存储的矩阵inv(R2×2)和(QN×2)H的值,根据公式P2×1=inv(R2×2)×(QN×2)H×yN×1确定拟合因子向量P2×1
4.如权利要求1所述的方法,其特征在于,根据拟合因子向量P2×1得到的当前采样点的频率偏差为
Figure FDA0000393588780000021
根据拟合因子向量P2×1得到的当前采样点的初始相位偏差为φ0=P2,即时相位偏差为θei=φei-φ0-2·π·i·Ts·fe
其中,Ts为采样时间间隔。
5.如权利要求1所述的方法,其特征在于,所述测试设备对被测移动终端的发射信号进行采样,包括:
测试设备与被测移动终端利用用于信道估计的训练序列码TSC完成高倍速采样信号同步之后,得到最佳同步位置;
以所述同步位置为基点,选取包括所述同步位置的采样点在内的相邻连续数个采样点,分别以每个采样点为同步点,抽取出单路长度为N、采样倍数为1倍数的单倍采样数据。
6.如权利要求1所述的方法,其特征在于,所述计算当前采样点中I、Q采样信号调制后的实测相位曲线
Figure FDA0000393588780000022
根据所述实测相位曲线和预置相位表生成对应的参考相位曲线φrefi,包括:
计算当前采样点中I、Q采样信号高斯滤波最小频移键控GMSK调制后的实测相位曲线 φ i = arctan Q i I i ;
根据GMSK的相位特性,使用采样信号差分相位值
Figure FDA0000393588780000031
判断在每个符号周期内相位变化方向,根据每个符号周期内相位变化方向解调出预测出的实际信号符号序列;
根据预测出的实际信号符号序列查预置相位表,生成参考相位曲线φrefi,其中初始相位为0。
7.如权利要求6所述的方法,其特征在于,所述根据预测出的实际信号符号序列查预置相位表,生成参考相位曲线φrefi,具体为:
由解调得到的当前符号以及其前后各两个符号共5个解调符号bK-2,bK-1,bK,bK+1,bK+2,对照预置相位表得到当前一个符号周期内相位变化值ΔφrefK
将相位累加得到参考相位φrefK=φrefK-1+ΔφrefK
8.如权利要求1所述的方法,其特征在于,根据拟合因子向量P2×1得到各采样点的频率偏差与相位偏差之后,还包括:
比较各路采样点的均方根RMS相位偏差,选取其中RMS相位偏差最小的一路采样点;
将所选取的采样点的频率偏差、即时相位偏差和初始相位偏差,作为测试结果输出。
9.一种测试设备,其特征在于,包括:
采样模块,用于对被测移动终端的发射信号进行高倍采样;
实测相位曲线计算模块,用于计算当前采样点中I、Q采样信号调制后的实测相位曲线 φ i = arctan Q i I i ;
参考相位曲线生成模块,用于根据所述实测相位曲线和预置相位表生成对应的参考相位曲线φrefi
总相位偏差计算模块,用于根据所述实测相位曲线和对应的参考相位曲线,得到当前采样点的总的相位偏差φei=φirefi
拟合因子计算模块,用于利用各采样点的相位偏差组成的列向量[φe1e2,...,φeN]T构造一元拟合矩阵方程yN×1=VN×2×P2×1,并通过简化的QR分解求构造矩阵方程的最小二乘解,得到拟合因子向量P2×1;其中,yN×1=[φe1e2,...,φeN]T V = 1 1 2 1 · · · · · · N 1 N × 2 , P = P 1 P 2 2 × 1 , P1、P2为拟合因子;
频率偏差与相位偏差计算模块,用于根据拟合因子向量P2×1得到当前采样点的频率偏差与相位偏差;
其中,i表示采样点的序列号,N为采样点单倍数据的长度。
10.如权利要求9所述的测试设备,其特征在于,所述拟合因子计算模块具体用于,在求解构造矩阵方程的最小二乘解中,求解Q矩阵的前2个列向量构成的矩阵QN×2和R矩阵的前2个行向量构成的矩阵R2×2;根据公式P2×1=inv(R2×2)×(QN×2)H×yN×1确定拟合因子向量P2×1,其中,inv(·)表示求逆矩阵,(·)H表示矩阵共轭转置。
11.如权利要求9所述的测试设备,其特征在于,还包括存储模块;
所述存储模块,用于存储矩阵inv(R2×2)和(QN×2)H的值;其中,所述矩阵inv(R2×2)和(QN×2)H的值是预先在求解构造矩阵方程的最小二乘解中,求解Q矩阵的前2个列向量构成的矩阵QN×2和R矩阵的前2个行向量构成的矩阵R2×2,计算矩阵inv(R2×2)和(QN×2)H的值,并将计算出的矩阵inv(R2×2)和(QN×2)H的值进行存储的;其中,inv(·)表示求逆矩阵,(·)H表示矩阵共轭转置;
所述拟合因子计算模块具体用于,获取所述存储模块中预先存储的矩阵inv(R2×2)和(QN×2)H的值,根据公式P2×1=inv(R2×2)×(QN×2)H×yN×1确定拟合因子向量P2×1
12.如权利要求9所述的测试设备,其特征在于,所述频率偏差与相位偏差计算模块根据拟合因子向量P2×1得到的当前采样点的频率偏差为
Figure FDA0000393588780000051
根据拟合因子向量P2×1得到的当前采样点的初始相位偏差为φ0=P2,即时相位偏差为θei=φei0-2·π·i·Ts·fe;其中,Ts为采样时间间隔。
13.如权利要求9所述的测试设备,其特征在于,所述实测相位曲线计算模块具体用于,计算当前采样点中I、Q采样信号高斯滤波最小频移键控GMSK调制后的实测相位曲线 φ i = arctan Q i I i ;
所述参考相位曲线生成模块具体用于,根据GMSK的相位特性,使用采样信号差分相位值
Figure FDA0000393588780000053
判断在每个符号周期内相位变化方向,根据每个符号周期内相位变化方向解调出预测出的实际信号符号序列;根据预测出的实际信号符号序列查预置相位表,生成参考相位曲线φrefi,其中初始相位为0。
14.如权利要求13所述的测试设备,其特征在于,所述参考相位曲线生成模块具体用于,由解调得到的当前符号以及其前后各两个符号共5个解调符号bK-2,bK-1,bK,bK+1,bK+2,对照预置相位表得到当前一个符号周期内相位变化值ΔφrefK;将相位累加得到参考相位φrefK=φrefK-1+ΔφrefK
15.如权利要求9所述的测试设备,其特征在于,还包括:
测试结果输出模块,用于根据拟合因子向量P2×1得到各采样点的频率偏差与相位偏差之后,比较各路采样点的RMS相位偏差,选取其中RMS相位偏差最小的一路单倍采样点;将所选取的采样点的频率偏差、即时相位偏差和初始相位偏差,作为测试结果输出。
CN201110316111.XA 2011-10-18 2011-10-18 一种频率偏差与相位偏差的联合测量方法及装置 Active CN102387098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110316111.XA CN102387098B (zh) 2011-10-18 2011-10-18 一种频率偏差与相位偏差的联合测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110316111.XA CN102387098B (zh) 2011-10-18 2011-10-18 一种频率偏差与相位偏差的联合测量方法及装置

Publications (2)

Publication Number Publication Date
CN102387098A CN102387098A (zh) 2012-03-21
CN102387098B true CN102387098B (zh) 2014-04-16

Family

ID=45826089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110316111.XA Active CN102387098B (zh) 2011-10-18 2011-10-18 一种频率偏差与相位偏差的联合测量方法及装置

Country Status (1)

Country Link
CN (1) CN102387098B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023829B (zh) * 2012-11-26 2016-04-20 电信科学技术研究院 一种调制精度的估计方法及装置
CN104427545B (zh) * 2013-08-21 2017-10-31 电信科学技术研究院 一种确定频偏、初始相位和误差向量幅度的方法与设备
CN105676158A (zh) * 2015-12-15 2016-06-15 国网山西省电力公司电力科学研究院 一种双端同步交流采样技术的相位误差补偿方法
CN105635014B (zh) * 2015-12-25 2018-12-21 北京遥测技术研究所 基于查表法的cpm调制数字化实现方法及数字化cpm调制模块
CN109298282B (zh) * 2017-12-12 2021-05-07 上海创远仪器技术股份有限公司 一种多类型电缆连接系统精确故障定位的方法
CN108183841B (zh) * 2017-12-29 2020-07-28 深圳市极致汇仪科技有限公司 综测仪中基于IEEE802.11ah的基带数据处理方法及系统
CN110361099B (zh) * 2019-07-17 2020-08-25 东北大学 一种谱域低相干光干涉光程差解调方法
CN111404857B (zh) * 2020-03-13 2023-04-11 北京中科晶上科技股份有限公司 载波同步方法、装置、存储介质和处理器
CN111551787A (zh) * 2020-05-13 2020-08-18 南京迅测科技有限公司 基于中频分段机制实现信号分析仪中的fpga扫频处理的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023318A (zh) * 2004-09-22 2007-08-22 康宁股份有限公司 用于频移干涉测量的相位分辨测量

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023318A (zh) * 2004-09-22 2007-08-22 康宁股份有限公司 用于频移干涉测量的相位分辨测量

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Darry Dexu Lin et al..Joint estimation of channel response, frequency offset, and phase noise in OFDM.《IEEE transactions on signal processing》.2006,第54卷(第9期),
Joint estimation of channel response, frequency offset, and phase noise in OFDM;Darry Dexu Lin et al.;《IEEE transactions on signal processing》;20060930;第54卷(第9期);全文 *

Also Published As

Publication number Publication date
CN102387098A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
CN102387098B (zh) 一种频率偏差与相位偏差的联合测量方法及装置
CN104717172B (zh) 一种发射机中iq不平衡的补偿方法和装置
CN102457870B (zh) 主同步信号检测方法、装置及小区搜索方法、系统
CN102546500B (zh) 基于导频和软信息联合辅助的soqpsk载波同步方法
CN103929391B (zh) 一种频率校准方法及装置
CN107332800B (zh) 一种基于随机子载波选择的方向调制精准无线传输方案
CN103023831B (zh) 一种适用于突发波形的载波频偏估计方法
CN103209032A (zh) 一种频谱感知方法和系统
CN202906963U (zh) 相干解调频移键控调制信号的频率偏移估计系统
CN108183841A (zh) 综测仪中基于IEEE802.11ah的基带数据处理方法及系统
CN104601512B (zh) 一种检测相位调制信号载波频偏的方法及系统
CN102833204A (zh) 一种频偏估计实现方法
CN101964991B (zh) Tdd-lte终端随机接入信道的矢量幅度误差测量方法和装置
CN104185271A (zh) 一种针对于多个无源互调发生点的识别和定位方法
CN103188067B (zh) 一种扩频系统的码片时钟频率偏差误差估计及校正的方法
CN103023829B (zh) 一种调制精度的估计方法及装置
CN101925103B (zh) Tdd-lte终端上行共享信道的矢量幅度误差测量方法和装置
CN1652492A (zh) 基于频域相关检测实现0fdm通信系统时频同步的方法
CN103873416A (zh) 一种evm相位估计与补偿方法
CN101340420A (zh) 一种定时度量的方法和装置
CN104868962A (zh) 基于压缩感知的频谱检测方法及装置
CN103595682A (zh) 一种用于ofdm的帧同步方法、装置及接收机
CN101771635A (zh) 测试信号的生成方法及其矢量文件生成装置和方法
CN103297100B (zh) 一种用于ofdm系统的多普勒变化率估计方法与系统
CN103516652B (zh) 一种连续相位bpsk调制方法及其调制装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Block C, No. 7, Lane 205, Gaoji Road, Songjiang District, Shanghai, 201601

Patentee after: Chuangyuan Xinke (Shanghai) Technology Co.,Ltd.

Address before: 4th Floor, Building 28, No. 69, Guiqing Road, Xuhui District, Shanghai, 200233

Patentee before: TRANSCOM INSTRUMENTS Co.,Ltd.