CN102378811B - 装置 - Google Patents

装置 Download PDF

Info

Publication number
CN102378811B
CN102378811B CN201080014422.4A CN201080014422A CN102378811B CN 102378811 B CN102378811 B CN 102378811B CN 201080014422 A CN201080014422 A CN 201080014422A CN 102378811 B CN102378811 B CN 102378811B
Authority
CN
China
Prior art keywords
algae
light
bio
reactor
luminescent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080014422.4A
Other languages
English (en)
Other versions
CN102378811A (zh
Inventor
亚历山大·法尔伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zero Discharge Pty Ltd
Original Assignee
Zero Discharge Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009900346A external-priority patent/AU2009900346A0/en
Application filed by Zero Discharge Pty Ltd filed Critical Zero Discharge Pty Ltd
Publication of CN102378811A publication Critical patent/CN102378811A/zh
Application granted granted Critical
Publication of CN102378811B publication Critical patent/CN102378811B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/18Open ponds; Greenhouse type or underground installations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/26Constructional details, e.g. recesses, hinges flexible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED

Abstract

本发明涉及一种用于养殖藻类或蓝细菌的藻类容纳装置,该装置包括发光材料,以及涉及一种包括所述藻类容纳装置的生物反应器。本发明还提供与所述藻类容纳装置和生物反应器相关的方法和用途。

Description

装置
技术领域
本发明涉及一种藻类容纳装置和一种生物反应器,以及一种与其相关的养殖藻类或蓝细菌的用途和方法。 
背景技术
通过可持续的方法生产生物燃料是有助于把握未来更重要的能源经济的关键步骤。但除此之外,还必须以下述的方式使用这些燃料,即不产生有害物质,如二氧化碳,或者减少该有害物质的排放。 
生物燃料的生产已经取得了很多重要的进展。然而,虽然就物种的选择、生长介质,甚至遗传控制方面而论,藻类的商业化生产已经取得了极大的跳跃式的进步,但在有关藻类的工作池塘深度和收获方面,都存在不成比例的不足。藻类池塘的深度因太阳光穿透到池塘中的深度有限而受到限制。大量藻类的有效收获需要花费大量的能源和金钱。 
封闭的生物反应器是克服部分这些缺陷的一种手段。然而,这样的生物反应器严重受到成本和必需的基础设施的限制,尤其是对于生物燃料的应用。开放的池塘更加经济,特别是对于养殖藻类,但常常受到藻类池塘内有效光只能到达特定范围的限制。也就是说,光线只可能穿透某一深度,导致许多藻类得不到生长所需的最理想的照明强度,或者甚至根本没有得到用于其生长的光。 
另外,大部分藻类生长系统,例如封闭的生物反应器或者开放的池塘,在水的表面都会遭受由于过度曝露在阳光下而导致的光抑制。在一个开放的池塘中,这种光抑制将发生在离水表面的几厘米范围之内,导致在此几乎没有藻类能够生长。只有当入射的太阳光强度已经由于被在表面受到光抑制的藻类吸收而极大地削弱时,在中间深度的藻类才开始生长。 
此外,藻类依赖于光合的色素,例如叶绿素,所述色素选择性地吸收特定波长的光,而对其他波长的光较少利用,从而进一步降低了整个入射太阳光辐射的效用。结果,藻类系统表现出低的太阳光光合效率。根据多数估算结果,当前藻类生物反应器的平均光合效率在2-7%,而且太阳光光合效率的最大理论得率为11%。 
因此,需要一种改善的生物反应器来解决以前生物反应器的各种缺点,包括生物反应器的设计、成本和在这种生物反应器中有效光与藻类光合系统之间的固有生物学不兼容性。 
应当理解的是,在澳大利亚或者任何其它国家,这里对任何现有技术的引文都不能认为是承认这种技术是本领域中公知常识的一部分。 
发明内容
本发明的第一个方面提供了一种用于养殖藻类或蓝细菌的藻类容纳装置,所述藻类容纳装置包括或用作第一光导,并包括发射适合于养殖藻类或蓝细菌的可见光的第一发光材料,所述藻类容纳装置是管状而且是三角形的,其底边位于远离光源的位置,而顶点位于接近所述光源的位置。 
本发明的第二个方面提供了一种包括本发明第一个方面所述的藻类容纳装置的生物反应器。 
本发明的第三个方面提供了一种包括多个本发明第一个方面所述的藻类容纳装置的生物反应器。 
本发明的第四个方面提供了用于养殖藻类或蓝细菌的本发明第一个方面所述的藻类容纳装置或者本发明第二个或第三个方面所述的生物反应器的用途。 
本发明的第五个方面提供了一种在本发明第一个方面所述的藻类容纳装置中或者在本发明第二或第三个方面所述的生物反应器中养殖藻类或蓝细菌的方法。 
本发明的第六个方面提供了一种改善用于养殖藻类或蓝细菌的生物反应器的方法,包括在所述生物反应器中设置如本发明第一个方面所述的藻类容纳装置。 
附图说明
图1表示叶绿素及其类似化合物的吸收光谱。 
图1a表示叶绿素a和叶绿素b的吸收光谱,以及吸收绿光的发光物质的吸收光谱示意图。图1a同时表示发光物质对应的发射光谱示意图,图中显示了红光的发射与叶绿素的吸收具有部分重叠。 
图1b表示与图1a对应的吸收光谱,但没有发光材料的吸收和发射光谱的示意图。同样还显示了β-胡萝卜素、藻红素和藻青素的吸收光谱。藻红素和藻青素都是在蓝细菌中用于吸收光线进行光合作用的藻胆色素。 
图1c表示叶绿素a、叶绿素b和胡萝卜素的吸收光谱(上)和相关的光合作用的光谱(下)。 
图2提供了多个化学方程式,描述通过与胺(单乙醇胺,MEA)反应洗涤二氧化碳的过程,以及一旦加热即释放出二氧化碳的可逆反应的过程。 
图3提供工作中的藻类生物反应器的一个具体实施方式的示意图,包括多个含有发光材料的基片(Substrate),由此藻类可以在基片上生长,并且一旦曝露在阳光中,所述藻类可以在生物反应器内太阳光不能穿透的深度下的黑暗中,或者在夜晚期间,连续地生长。 
图4提供藻类容纳装置的一个具体实施方式的示意图,以及包括所述藻类容纳装置的生物反应器的一个具体实施方式的示意图。 
图4a表示包括多个藻类容纳装置的开放池塘生物反应器的正交剖面图。 
图4b表示藻类容纳装置的横截面图。 
图4c表示包括多个藻类容纳装置的另一种水道型生物反应器的俯视图。 
图4d显示当藻类在阳光下的藻类容纳装置中生长时的阴影和发光效应。 
图4e表示光导位于藻类容纳装置的顶部的藻类容纳装置的正交视图。 
图4f表示根据图4d和4f的多个藻类容纳装置的立体图,每一个藻类容纳装置都包括光导。同样表示的还有发射自所述光导边缘的橙色光。 
图4g表示图4e所述光导的具体实施方式的纵向截面图。 
图5表示纯水的光学吸收的曲线图,以及表示所述吸收在500nm(约0.0005cm-1)至600nm(接近0.005cm-1)之间如何增加至10倍。这可以理解为2m的传输路径长度其吸收大约为1。 
图6提供棱镜光导的正交视图(图6a),以及6b-6b处剖面的截面图(图6b)。 
具体实施方式
传统开放式池塘藻类系统为了充分地曝露在阳光中,其深度很浅,因此需要很大的面积以满足藻类的生长需求。生物反应器需要的面积较小,且允许藻类生长的容积较大,但在深度上需要面对光的有效性受到限制的问题。 
本装置和方法通过提高在生物反应器中生长的藻类的太阳光效率,来克服该限制。因此,可以使更多的藻类在较小容积的生长培养基中生长。并且,生物反应器的深度可以达到比当前设计的大十倍,从而可以减少10倍陆地面积的需求。更重要的是,由于系统中光线的光谱经过优化,藻类将能够在所述生物反应器中以更高的浓度生长。此外,与当前的生物反应器相比,将需要更少的材料和更少的透明管道。 
因此,本发明提供了下述优点: 
-通过将吸收水平低的光转化成吸收水平高的光,提高了光合效率; 
-在光源可穿透的深度之下维持藻类或蓝细菌的生长; 
-将开放系统的效率提高到接近封闭系统的效率; 
-改善封闭系统的效率; 
-可以在晚上维持藻类或蓝细菌的生长; 
-通过将池塘替换为生物反应器来减少陆地的使用; 
-利用来自于工业和农业的二氧化碳进行光合作用;以及 
-易于收获。 
根据本发明生长的藻类或蓝细菌可以用于制造生物燃料、饲料、食品、食品添加剂、生物活性剂例如药品和抗生素、生物塑料、工业化工原料或者特种化工原料。 
在部分具体实施方式中,所述发光材料配置在基片中或涂布在基片上。因此,所述基片可以向藻类或蓝细菌发射光线。在部分具体实施方式中,所述基片给藻类或蓝细菌提供了生长的表面。 
在一个具体实施方式中,所述生物反应器包括给藻类或蓝细菌提供生长表面的基片。所述基片可以包含发光材料。 
在部分具体实施方式中,所述藻类在靠近发光材料或与所述发光材料接触的水中或者生长培养基中生长。 
在一个具体实施方式中,所述发光材料可以是光导的一部分,其将光线向下均匀地洒布到片状、管状或其它有用的几何形状的水柱中,在这里藻类可以在生长培养基中生长。所述光导根据本领域公知的方法和材料,以适合于所述藻类容纳装置或生物反应器的最佳方式工作。 
在本发明第一至第八个方面的部分具体实施方式中,所述第一波长或波长范围包括紫外光或可见光,而所述第二波长或波长范围包括可见光。在另一个具体实施方式中,所述第一波长或波长范围包括绿色可见光,而所述第二波长或波长范围包括红色可见光。通常,所述第一波长或波长范围包括约500nm-约600nm,而所述第二波长或波长范围包括约600nm-约700nm。 
根据大多数的估计,藻类系统的太阳光光合效率的最大理论得率为11%。在叶绿素的吸收波长下,即420nm和650nm(图1),将太阳光能量转化成葡萄糖的光合作用可以提供高达40%的效率。然而,在光谱的其它波长,光合作用的效率小于1%,从而整个光谱的平均效率在5%至10%之间。在所有与大规模生产藻类的生物反应器相关的低效率中,高达90%都与下述原因有关,即接收到的太阳辐射能在强度和波长方面与用于藻类生长的生物学最优条件不相容。本发明通过发光转化将未利用的光转化成可吸收的光,促进选择性光吸收,并因此可以提高在生物反应器或开放池塘中太阳光的光合作用效率,从而解决这种不相容性。 
将未利用的光转化成可吸收光的发光转化使藻类或蓝细菌可以在晚上生长,或者在光线无法自然穿透的深度下生长。 
在本发明第一至第八个方面的其它具体实施方式中,所述第一波长或波长范围包括紫外光,而所述第二波长或波长范围包括紫色或蓝色的可见光。一般,所述第一波长或波长范围包括约250nm-约400nm的光,而所述第二波长或波长范围包括约400nm-约500nm的光。 
在本发明第一至第八个方面的另一些具体实施方式中,所述第一波长或波长范围包括紫外光或蓝光,而所述第二波长或波长范围包括绿色、黄色、橙色或红色的可见光。所述第一波长或波长范围包括约250nm-约400nm的光,而所述第二波长或波长范围包括约450nm-约650nm的光。 
在本发明第一至第八个方面的还有一些具体实施方式中,所述发光材料包括: 
-硫酸钙磷光体(Calcium Sulfate Phosphor);硫酸锌磷光体(Zinc Sulfate Phosphor);铝酸锶磷光体(Strontium Aluminate Phosphor);铝酸钙磷光体(Calcium Aluminate Phosphor);CaSrS磷光体(CaSrS Phosphor);CaS磷光体(CaS Phosphor);或铝酸钇石榴石(Yttrium Aluminium Garnet,YAG,Y3Al5O12),铝酸铽石榴石(Terbium Aluminium Garnet,YAG,Tb3Al5O12),或者乙基黄原酸锌(Zex)。 
作为选择,所述发光材料可以包括: 
-掺杂至少一种稀土元素活化剂的卤素取代的铝酸碱土金属盐,或者 
-aL.bM.cAl.dSi.pPO.:fR的组合物,其中L选自Na和/或K;M为选自Sr、Ca、Mg和Ba中的一种或多种的二价金属;Al、Si、P和O分别表示各自代表的元素;R选自一种或多种稀土元素活化剂;其中变量a、b、c、d、p和f分别为:0.0<a<0.1;0.0<b<0.3;0.0<c<0.4;0.0<d<0.3;0.0<p<0.5;以及0.0<f≤0.25,附带条件是变量d和p的至少之一大于0,而变量a和b的至少之一大于0。 
除此以外,所述发光材料可以包括: 
-锑活化的氟磷酸钙(Antimony-Activated Calcium Fluorophosphate)、铅活化的钨酸钙(Lead-Activated Calcium Tungstate)、锡活化的正磷酸锶镁(Tin-Activated Strontium Magnesium Orthophosphate),或者锰活化的氟锗酸镁(Manganese-Activated Magnesium Fluorogermanate); 
-由三价铕活化的氧化钇和/或氧化钆,并具有下列分子式: 
(YaGd1-a)2O3:Eu3+,优选a=1; 
-选自下列分子式的化合物的铈和铽活化的铝酸盐、硅酸盐、磷酸盐和硼酸盐 
CeMgAl11O19:Tb 
Y2SiO5:Ce,Tb 
LaPO4:Ce,Tb 
LaMgB5O10:Ce,Tb;或者 
-β-氧化铝结构的碱土六方晶系铝酸盐,或者碱土氯代磷酸盐,每一种都通过二价铕活化并具有下列分子式: 
BaMgAl10O17:Eu2+
BaMg1.7Al20O32.7:Eu2+
BaMg2Al24O39:Eu2+
(Sr,Ca,Ba)10Cl2(PO4)6:Eu2+。 
根据本发明第一和第八个方面的部分具体实施方式,所述发光材料配置在基片中或涂布在基片上。所述基片给藻类或蓝细菌提供了生长的表面。所述发光材料可以配置在基片中,或涂布在基片的一个或多个表面上。在一些具体实施方式中,所述基片可以包括一种以上的发光材料。如果存在多于一个的基片,每一个基片可以包括不同的发光材料,或者每一个基片可以包括一种以上的发光材料。如果存在一种以上的发光材料,所述发光材料可以是单独分开的,或者是混合的。 
在部分具体实施方式中,所述基片包括介电材料。所述介电材料可以包括聚合物、玻璃或石英。所述聚合物可以包括丙烯酸酯(acrylate)或聚碳酸酯(Polycarbonate)。在一个具体实施方式中,所述聚合物是聚甲基丙烯酸甲酯(Polymethyl Methacrylate)。使用石英和某些聚合物是有益的,因为它们传导UV光。 
在一个具体实施方式中,所述基片为发光材料。 
在一个具体实施方式中,所述生物反应器包括一个储存或存储单元,它包括在所述生物反应器中在晚上或者在光线无法照射的深度下使用的发光材料。在一个具体实施方式中,这样的发光材料将具有很长的发光时间,并为使用本领域公知的任何数量有机碳源的藻类的异养生长、夜间生长提供必要的低光照水平。 
在部分具体实施方式中,所述发光材料从太阳光中吸收第一波长或波长范围的光。或者,所述发光材料可以吸收源自于人造光源,例如荧光的第一波长或波长范围的光。 
在特定的具体实施方式中,所述生物反应器使用工业来源的二氧化碳。工业来源的二氧化碳可以是燃烧后的二氧化碳、燃烧前的二氧化碳,或者废气,无论是否经过处理。可以使用溶剂、膜、沸石或冷却剂来分离燃烧后的二氧化碳。在某些具体实施方式中,所述溶剂是胺。典型地,所述溶剂是单乙醇胺(MEA,Monoethanolamine)或三乙醇胺(TEA, Triethanolamine)。在另一个具体实施方式中,可以使用整体煤气化联合循环(IGCC,Integrated Gasification Combined Cycle)来分离燃烧前的二氧化碳。在某些具体实施方式中,IGCC生产出氢气或合成气。 
在另一个具体实施方式中,二氧化碳以未处理的废气形式被接收,然后被保持在碱性pH值的藻类生长培养基吸收,在所述培养基中藻类吸收无机碳作为阴离子碳酸盐,其中,因具有吸收碳酸钙的能力而闻名的藻类物种,例如颗石藻(Coccolithophores),在生物反应器或池塘中生长。 
在另一个具体实施方式中,二氧化碳以未处理的废气形式被接收,该废气来自使用氧燃烧(Oxygen Fired Combustion)的发电站,那里的废气可以含有高达95%的二氧化碳。这样的系统可以使用或不使用循环的废气来稀释纯氧。 
在其它具体实施方式中,所述生物反应器可以使用农业来源的二氧化碳。例如,可以将牛奶场排出的废水在沼气池中处理,以产生沼气,通常是甲烷和二氧化碳的混合物。沼气燃烧的排放物可以用作光合作用的二氧化碳源以及用作沼气本身中的二氧化碳成分。也可以选择使用人类的废水或污水,不管是否经过处理。 
本领域技术人员将对适合的生物反应器或者可以适当地改装的生物反应器的公开感到欣慰。 
在部分具体实施方式中,可以对所述基片进行过滤。过滤能够使所述基片分离出来,以便简单地收获所述藻类。在一个具体实施方式中,所述藻类或蓝细菌可以从基片上收获。收获包括揩擦、刮削、洗涤、漂洗、干燥或部分干燥所述藻类或蓝细菌,或者改变所述培养基的pH值,以破坏藻类的粘结。 
在一个具体实施方式中,当藻类生长在水中,且没有粘结到表面时,可以通过对其进行初步的浓缩,然后再聚集和过滤或离心来完成藻类的收获。初步的浓缩可以通过在可控的密封装置内使用声波的驻波使藻类浓缩到驻波的电极上来实现。浓缩藻类柱可以以较低的藻类浓度从水中转移或分离出来。这样的浓缩物随后可以以本领域公知的方式进行聚集、过滤或者离心。 
如在本说明书中使用的,单数形式的“一”和“所述”也包括复数的情况,除非在正文中清楚地表明不是如此。因此,例如参考“一发光材料”,包括单独一种发光材料,也包括两种或多种发光材料,诸如此类。 
本文所使用的“丙烯酸酯(Acrylate)”指的是由单体的丙烯酸或其具有一个或多个功能基团的衍生物获得的聚合物、均聚物或共聚物。衍生物例如包括,丙烯酸甲酯(Methyl  Acrylate)、丙烯酸乙酯(Ethyl Acrylate)、甲基丙烯酸酯(Methacrylate)、甲基丙烯酸甲酯(Methyl Methacrylate)。 
本文所使用的“藻类(单数)”和“藻类(复数)”分别表示该词的单数和复数形式。“藻类”缺乏许多可以在植物中所特有的器官,但包括包裹在膜内的核,以及结合在一层或多层膜中的叶绿体。“藻类”是包括叶绿素的真核生物,所述叶绿素吸收太阳光通过光合作用来进行自养。叶绿素包括叶绿素a、叶绿素b和叶绿素c。叶绿素a、b和c的每一个在电磁波谱上都有两个主要吸收峰:一个在420nm附近,一个在650nm附近(分别为蓝光和红光;图1)。叶绿素对紫外(UV)光、绿光、黄光、橙光或红外光的吸光度较小。“藻类”包括黄藻(Axodines)、黄藻(Bolidomonas)、褐藻(Brown algae)、轮藻(Charophyta,)、隐藻(Cryptomonads,)、硅藻(Diatoms)、甲藻(Dinoflagellates)、裸藻(Euglenids)、隐藻(Eustigmatophytes)、灰色藻(Glaucophytes)、金藻(Golden algae,)、绿藻(Green algae)、黄藻(Heterokonts)、海金藻(Pelagophyceae)、褐枝藻(Phaetothamniophyceae)、Pinguiophyceae、定鞭藻(Prymnesiophyta)、绿色鞭毛藻(Raphidophytes)、红藻(Red algae)、黄群藻(Synurids)和黄-绿藻(Yellow-green algae)。特别是微型藻类(Microscopic algae)和浮游植物(Phytoplankton)尤其在考虑范围内。在藻类中的光合色素包括叶绿素a和叶绿素b。光合的藻类的生长和维护相对比较简单,成本比较合算。藻类可以通过利用二氧化碳和太阳光,再加上微量的营养素进行光合作用而生长。作为选择或补充,它们也可以依靠其它碳源,例如葡萄糖或蔗糖,或者废水以非自养的方式生长。它们通常被视为是对环境无害,且对人类操作者安全的。 
本文所使用的“藻类容纳装置”是指支持藻类或蓝细菌在其中生长的生物学活性环境的任何容器。除了实际工程因素的要求,以及包括管子,或者管状的三角形袋子以外,“藻类容纳装置”没有预定的长度。“藻类容纳装置”可以是刚性的或是挠性的。在一个具体实施方式中,“藻类容纳装置”是基片。 
本文所使用的“生物反应器”是指比“藻类容纳装置”更大的任何设备或系统,该“藻类容纳装置”支持藻类或蓝细菌在其中生长的生物学活性环境。“生物反应器”可以是开放系统或封闭系统。因此,“生物反应器”可以包括池塘、湖泊或水道。或者,“生物反应器”可以是容器。这些容器式的“生物反应器”通常是圆柱状的,尺寸范围在几升到几立方米之间,通常用不锈钢制造。作为选择,“生物反应器”可以采用混凝土或聚合物来制造。要作为生物反应器来使用,就需要碳源、能量源和微量的营养素。对于藻类或蓝细菌的光合作用,碳源是二氧化碳,能量源是光,通常是太阳光。 
在后附的权利要求书和本说明书中,除了上下文中因表达的语言或必要的暗示而采用别的方式之外,词汇“包括”或其变体,例如“包含”等都用作开放式的表达方式,即指明所表达特征是存在的,但并不排除本发明各种具体实施方式中还存在或添加的其它特征。 
本文所使用的“蓝细菌(单)”和“蓝细菌(复)”分别表示该词的单数和复数形式。“蓝细菌”是原核的光合生物,也称之为蓝绿藻,但不是真正的藻类。与藻类利用叶绿素进行光合作用不同,“蓝细菌”一般利用藻胆素吸收光来进行光合作用。在“蓝细菌”中的藻胆素包括藻红素、藻青素和别藻蓝素。藻胆素主要吸收电磁波谱中从约500nm至约650nm的绿色/黄色/橙色(和近红色)区域的光线,叶绿素很少吸收这个区间的光。 
术语“介电材料”指的是非导电的物质。 
本文所使用的术语“导管”或“光导管”与术语“光导”可以互换使用,指的是任何材料或由多种材料,不管是固体的、还是液体的,所构成的构件,设计用来通过内反射或全内反射来传输光线。所述内反射取决于所涉及的材料的折射率,该材料包括那些透明或半透明材料。光学纤维是最常使用的导管的例子,但是导管也可以包括更大的体系,例如任何未指明宽度或长度的片材或柱状物。 
本文所使用的“掺杂”指的是在纯净物中有意引入杂质(“掺杂物”)以改变其光学性质的过程,例如发光性能,即发荧光或发磷光。“掺杂物”包括稀土元素。 
本文所使用的“发射”指的是从发光材料中放出或发出光能量。 
本文所使用的术语“激发”指的是对所述发光材料造成改变,或者施加影响,特别是指所述发光材料对光能量的吸收。“激发态”指的是通过吸收光能量使所述发光材料充满能量,使之准备就绪之后发射出较长波长可见光的状态。 
术语“发荧光的”或“发荧光”和术语“发磷光的”或“发磷光”分别指一种发光,其中的能量,通常是光能量被所述材料在一个波长或某波长范围之内吸收,随后以更长波长的能量或更低的能量发射出来。因为磷光的发射比荧光持续更长的时间,基于所述材料发射光的时间长短,可以清楚地区分出“荧光”和“磷光”,但根据光子物理学中的从光诱导的激发状态到松弛状态的截然不同的路径能更精确地确定。这些光子物理学上的差别已定义清楚,且是公知的。 
本文所使用的术语“生长培养基”指的是能够维持藻类或蓝细菌生长的微量营养素的任何混合物。生长培养基的一个例子是一种包括下列组分的溶液(每一组分的浓度单位是mg/L):NaNO3,250;CaCl2·2H2O,25;MgSO4·7H2O,75;K2HPO4,75;KH2PO4,175;NaCl 25;KOH,31;FeSO4·7H2O,5.0;H3BO3,11.4;ZnSO4·7H2O,8.8;MnCl2·4H2O, 1.44;MoO3,0.7;CuSO4·5H2O,1.57;Co[NO3]2·6H2O,0.50和EDTA,50。作为选择,生长培养基可以包括经过处理的或未经过处理的废水或海水。 
术语“聚合物”指的是由许多的称之为单体的更小单元重复地键合所构成的大分子。术语“聚合物”既包括由单一结构的单体组成的均聚物,也包括由超过一种结构的单体组成的共聚物。 
本文所使用的“基片”指的是可以给发光材料提供载体,和/或给藻类或蓝细菌提供生长表面的任何实体。因此,例如在容器式的生物反应器中,所述基片包括所述生物反应器的壁和基底。在某些具体实施方式中,“基片”指的是与所述生物反应器中的给发光材料提供载体和/或给藻类或蓝细菌提供生长表面的壁和基底所不同的实体。在某些具体实施方式中,所述藻类容纳装置或生物反应器改装成可防止由于直接与藻类接触而造成所述基片的堵塞。在所述生物反应器中可以存在多于一种的“基片”。在一个特定的具体实施方式中,所述“基片”是发光材料。 
术语“UV”光或“紫外光”指的是太阳电磁波谱中从400nm-100nm的部分,其细分为UVA、UVB和UVC。 
术语“可见光”指的是电磁波谱或光子的裸眼可见的部分,且其与“紫外”或“UV”光性质截然不同。这部分的电磁波谱通常都认为落在约400nm至约750nm的波段范围之内。 
根据本发明,任何发光材料,只要其能够被第一波长或波长范围的光激发,或者吸收该光,然后能够发射出比第一波长或波长范围的光波长更长的第二波长或波长范围的光,而且发射出的光适合用于藻类或蓝细菌的生长,都可以使用。特别是,第二波长或波长范围的光应当可以被藻类或蓝细菌的光合蛋白或色素所吸收,所述的光合蛋白或色素包括叶绿素a、叶绿素b、叶绿素c和藻胆素,例如藻红素、藻青素和别藻蓝素。 
选择所用发光材料的主要考虑因素就是所述材料发射光的波长。 
所述发光材料应该基于需要什么类型的发光,即是发荧光还是发磷光来进行选择。 
量子效率也是选择发光材料需要考虑的特征。量子效率应该大到足以产生适合用于光合作用的可见光。 
所述发光材料应当吸收在电磁波谱上的绿色区域范围内的光(约500nm至约600nm),这是所述光谱中大部分没有被藻类中的叶绿素色素利用的一部分光。所述发光材料将吸收并利用该能量来发光或发射出在约600nm至约700nm范围之间的红光,在一个具体实施方式中发射出的光在650nm附近,所述藻类可以很好地利用该光进行光合作用,从而使其生长。 
所述发光材料也可以利用叶绿素在电磁波谱的420nm附近的吸收峰。在这种情况下,所 述发光材料应当吸收在约250nm至约400nm范围之间的UV光,并发射出在约400nm至约500nm范围之间的可见光,在一个具体实施方式中发射出的光在420nm附近,这样的光同样可用于光合作用。 
在某些具体实施方式中,所述发光材料将吸收UV和/或蓝色区域的光,一般在约250nm至约500nm范围之间,并发射出绿色、黄色、橙色或红色区域的光,一般在约500nm至约650nm范围之间,该光线随后可以被蓝细菌中的藻胆素吸收并用于光合作用。 
在一个具体实施方式中,可以存在超过一种的发光材料。例如,使用两种发光材料,一种吸收UV光并发射出蓝光,另一种吸收绿光并发射出红光,这可以使整个太阳光谱上的更多部分可以用于藻类的光合作用。因此,除了红外(IR,Infrared)部分之外,本发明允许利用几乎全部所述太阳光谱来进行光合作用,尽管在寒冷的气候下也可以使用IR部分来维持藻类的生长。 
所述发光材料一般包括所有具有下述功能的无机、有机和有机金属材料:能够将输入的吸收的光子转化成不同能量的输出光子,且所述输出包括具有足够的亮度和强度以进行光合作用的可见光。所述发光材料可以涂布在所述基片上,和/或可以配置或容纳在所述基片中。 
在一个具体实施方式中,所述发光材料可以是任何无机发光化合物。在一个具体实施方式中,所述无机发光化合物可以包括稀土搀杂的无机结晶体,或者稀土掺杂的硫化锌。在另一个具体实施方式中,所述发光材料可以是任何有机发光化合物。在再有一个具体实施方式中,所述发光材料可以包括量子点(Quantum Dot)。在一个具体实施方式中,所述发光材料可以是任何有机金属发光化合物。 
所述发光材料例如可以是市售的发光颜料或发光染料。 
所使用的发光(发磷光的)材料的例子包括但不限于,硫酸钙磷光体(Calcium Sulfate Phosphors)(主晶体:CaS;活化剂:Bi);硫酸锌磷光体(Zinc Sulfate Phosphors)(主晶体:ZnS;活化剂:Cu,例如“GSS”,由Nemoto有限公司(Nemoto & Co.,Ltd.)制造);铝酸锶(Strontium Aluminate)或铝酸钙(Calcium Aluminate)磷光体(主晶体:铝酸锶或铝酸钙;活化剂:Eu、Dy、Nd等;例如VGS-FAP或VGS3-FAP系列,由Visionglow国际合伙有限公司(Visionglow International Pty Ltd)制造;例如 G-300系列、BG-300系列和V-300系列,由Nemoto有限公司(Nemoto & Co.,Ltd.)制造;“ULTRAGLOW”系列的NP-2810、NP-2820和NP-2830,由Nichia股份有限公司制造;“R-bright”B和YG,由Lead有限公司(Lead Co.,Ltd.)制造;“Chemibright Powder”的G-40-C、G-100-B、G-100-C、GB-80-B和B-50-B,由Lumica股份有限公司(Lumica Corporation)制造);含有CaSrS作为主晶体、Bi 作为活化剂的磷光体;以及含有CaS作为主晶体、Eu或者Tm作为活化剂的磷光体。适合的磷光材料的例子也包括,钇铝石榴石(Yttrium Aluminium Garnet,YAG,Y3Al5O12)、铽铝石榴石(Terbium Aluminium Garnet,TAG,Tb3Al5O12)以及乙基黄原酸锌(Zex),这些发光材料可以发射出波长在530-590nm范围内的黄光。 
所使用的发光(发荧光的)材料的例子包括但不限于,若丹明B(Rhodamine B)、若丹明6G(Rhodamine 6G)、若丹明S(Rhodamine S)、曙红(Eosine)、碱性黄HG(Basic yellow HG)、酸性黄FF(Brilliant sulfoflavine FF)、硫黄素(Thioflavine)和荧光素(Fluorescein)。 
适合的荧光材料的例子也包括1,2-联苯乙烯(Stilbene)、苯并恶唑(Benzooxazole)、9-占吨酮(9-Oxo-Xanthene)、N-甲基-1,8-萘基酰亚胺(N-methyl-1,8-Naphthyl-Imide)、3-(4-氯代苯基)吡唑啉(3-(4-Chlorophenyl)Pyrazoline)、吡唑啉(Pyrazoline)、咪唑(Imidazole)、1,2,4-三唑(1,2,4-Triazole)、1,3-氧氮杂环戊烷-2-酮(Oxazolidine-2-One)、1,8-萘基酰亚胺(1,8-naphthyl-imide)、4,4′-二(2-甲氧基苯乙烯基)-1,1′-联苯(4,4′-bis(2-methoxystyryl)-1,1′-biphenyl)、4,4′-二(2-(1-芘基)乙烯基)-1,1′-联苯(4,4′-bis(2-(1-pyrenyl)ethenyl)-1,1′-biphenyl,)、4,4′-二(2-(9-菲基)乙烯基)-1,1′-联苯(4,4′-bis(2-(9-phenanthrenyl)ethenyl)-1,1′-biphenyl)、4,4′-二(2-(9-葸基)乙烯基)-1,1′-联苯(4,4′-bis(2-(9-anthracenyl)ethenyl)-1,1′-biphenyl)、4,4′-二(2-(1-葸醌基)乙烯基)-1,1′-联苯(4,4′-bis(2-(1-anthraquinonyl)ethenyl)-1,1′-biphenyl)、4,4′-二{2-(2-芴基)乙烯基}-1,1′-联苯(4,4′-bis{2-(2-fluorenyl)ethenyl}-1,1′-biphenyl)、1,4-二(2-氰基苯乙烯基)苯(1,4-bis(2-cyanostyryl)benzene)、1,4-二(2-苯并恶唑基)萘(1,4-bis(2-benzoxazoly)naphthalene)、2,5-二(5-叔丁基-2-苯并恶唑基)噻吩(2,5-bis(5-tertbutyl-2-benzoxazolyl)thiophene)、2,5-二(2-苯并恶唑基)噻吩(2,5-bis(2-benzoxazolyl)thiophene)、4,4-二(苯并恶唑基)-1,2-二苯乙烯(4,4-bis(benzoxazoyl)stilbene)、4,4′-二(5-甲基-2-苯并恶唑基)-1,2-二苯乙烯(4,4′-bis(5-methyl-2-benzoxazolyl)stilbene)、1,2-二(5-甲基-2-苯并恶唑基)乙烯(1,2-bis(5-methyl-2-benzoxazolyl)ethylene)、5,6-苯并香豆素-3-羧酸乙酯(ethyl5,6-benzocoumarin-3-carboxylate)、3-苯基-5,6-苯并香豆素(3-phenyl-5,6-benzocoumarin)、N-甲基-4,5-二乙氧基-1,8-萘基酰亚胺(N-methyl-4,5-diethoxy-1,8-naphthyl-imide)、N-甲基-4-甲氧基-1,8-萘基酰亚胺(N-methyl-4-methoxy-1,8-naphthyl-imide)、3-(4-氯代苯基)-1,5-二苯基-2-吡唑啉(3-(4-chlorophenyl)-1,5-diphenyl-2-pyrazoline)、3-(4-氯代苯基)-1-苯基-吡唑(3-(4-chlorophenyl)-1-phenyl-pyrazole)、4-甲基-7-二乙基氨基香豆素 (4-methyl-7-diethylaminocoumarin)、1-(对甲磺酰基苯基)-3-(对氯苯基)-2-吡唑啉(1-(p-methanesulfonylphenyl)-3-(p-chlorophenyl)-2-pyrazoline)、1-(对亚磺酰氨基苯基)-3-(对氯苯基)-2-吡唑啉(1-(p-sulfonamidophenyl)-3-(p-chlorophenyl)-2-pyrazoline)、芘(pyrene)、多种二萘嵌苯(perylenes)的衍生物以及它们的任何组合。上面列出的所述荧光材料可以基本上完全吸收整个UV、可见和近红外波长范围的光,并随后重新发出波长更长、亮度很高的光。 
如果在发光材料的结构中包括1,2-联苯乙烯(stilbene)或者联苯乙烯联苯(distyrylbiphenyl)的部分,则任何发色基团,例如甲氧基苯基基团(methoxyphenyl group)、葸基基团(anthracene group)、芘基基团(pyrene group)或者9,10-葸醌基团(9,1O-anthraquinonegroup)可以对称地键合到这样的1,2-联苯乙烯(stilbene)或者联苯乙烯联苯(distyrylbiphenyl)的部分上以增强亮度。这样的发光材料的例子包括但不限于,4,4′-二(2-甲氧基苯乙烯基)联苯(4,4′-bis(2-methoxystyryl)biphenyl)、4,4′-二{2-(9-葸基)乙基}联苯(4,4′-bis{2-(9-anthracenyl)ethylenyl}biphenyl)、4,4′-二{2-(1-芘基)乙基}联苯(4,4′-bis{2-(1-pyrenyl)ethylenyl}biphenyl)和4,4′-二{2-(1-葸醌基)乙基}联苯(4,4′-bis{2-(1-anthraquinonyl)ethylenyl}biphenyl)。当使用4,4′-二(2-甲氧基苯乙烯基)联苯(4,4′-bis(2-methoxystyryl)biphenyl)作为发荧光的材料时,其可以通过UV光激发,随后发射出波长范围在450nm-490nm的蓝光。当使用4,4′-二{2-(9-葸基)乙基}联苯(4,4′-bis{2-(9-anthracenyl)ethylenyl}biphenyl)作为发荧光的材料时,其可以被UV光激发,随后发射出波长范围在520nm-550nm的淡黄绿色光。当使用4,4′-二{2-(1-芘基)乙基}联苯(4,4′-bis{2-(1-pyrenyl)ethylenyl}biphenyl)作为发光材料时,其可以被UV光激发,随后发射出波长范围在450nm-490nm的蓝光。当使用4,4′-二{2-(1-葸醌基)乙基}联苯(4,4′-bis{2-(1-anthraquinonyl)ethylenyl}biphenyl)作为发荧光的材料时,其可以被UV光激发,随后发射出波长范围在580nm-660nm的红光。为了提高亮度,可以将蓝色磷光体与4,4′-二(2-甲氧基苯乙烯基)联苯(4,4′-bis(2-methoxystyryl)biphenyl)或者4,4′-二{2-(1-芘基)乙基}联苯(4,4′-bis{2-(1-pyrenyl)ethylenyl}biphenyl)一起使用,以将发射的光转化成蓝光;可以将淡黄绿色磷光体与4,4′-二{2-(9-葸基)乙基}联苯(4,4′-bis{2-(9-anthracenyl)ethylenyl}biphenyl)一起使用,以将发射的光转化成淡黄绿色的光;以及可以将红色磷光体与4,4′-二{2-(1-葸醌基)乙基}联苯(4,4′-bis{2-(1-anthraquinonyl)ethylenyl}biphenyl)一起使用,以将发射的光转化成红光。 
嵌入在所述基片中的发光材料的颗粒尺寸没有特别的限制,虽然可以包括平均直径为10 nm至10μm的颗粒。如果所述发光材料的平均颗粒直径小于10nm,则表现出差的耐久性和显著降低的亮度。如果所述发光材料的平均颗粒直径大于10μm,会导致更严重的可见光散射。当采用不依赖其品格进行发光的非矿物质发光材料时,如在大多数荧光染料的情况,所述材料可以完全分散或溶解在所述基片中,作为单个分子吸收光并随后发光。 
任何可以发射适合于激发所述发光材料的波长光的光源,都可以用作能量源。所述能量源可以是太阳、白炽灯设备、卤素灯设备或荧光设备。所述设备可以是发荧光的灯泡或灯管。在某些具体实施方式中,所述光线来自于太阳光。 
所述发光材料可以在藻类吸收光线之前吸收光线,因为藻类的生长有可能阻碍所述发光材料对光线的吸收。所述发光材料可以具有一个持续时间足够长的发射期,使藻类能够在所述发光减弱之前达到最佳的吸收。 
所述发光材料可以配置在所述基片中或涂布在其上。 
藻类或蓝细菌可以在表面上生长。所述表面可以由发光材料提供。或者,所述表面可以由基片提供。 
所述基片可以是满足能曝露在光线中并提供藻类生长表面的任何形状。因此,形状的选择很大程度上取决于这些考虑因素。 
所述基片可以是规则或不规则的形状。三维尺寸可以相同或不相同,可以成比例或不成比例。所述基片例如可以是实心、中空、多孔或薄层的。所述基片可以包括多于一种材料。 
如果存在多于一种的基片,所述基片不要求是同质的;所述基片可以包括任何形状或尺寸的组合,或者单个基片的复合物。 
选择本发明所用基片的主要考虑因素包括:大的表面积、能传播UV光、对太阳光或UV光稳定、在水中近似中等的浮力以及耐用性。 
所述基片可以紧密相邻地排列,使藻类能够在相对小的容积内浓密地生长。所述基片可以排列成紧密压缩的多层或者一个阵列。另一种选择是,所述基片可以不处于任何固定的方向上,而是可以自由地在所述生物反应器中循环流动。所述基片可以是整体连续的表面,或者是任意尺寸、形状、或其组合的自由移动的片状物。所述基片可以通过任何适当的机械作用驱使而循环流动,从而可以曝露在固定的光源,例如太阳光或光导管中。循环流动例如可以通过起泡器、注射器、泵、叶片、螺旋桨、喷嘴、喷头、搅拌机或混合器来实现。 
所述基片可以包括介电材料。所述介电材料可以包括聚合物、玻璃或石英。在一个具体实施方式中,所述聚合物包括丙烯酸酯(Acrylate)或聚碳酸酯(Polycarbonate)。在一个具体实施方式中,所述聚合物是聚甲基丙烯酸甲酯(Polymethyl Methacrylate)或聚碳酸酯 (Polycarbonate)。在一个具体实施方式中,所述聚合物是聚甲基丙烯酸甲酯(Polymethyl Methacrylate)。 
在一个具体实施方式中,所述发光材料配置在聚合物中。在另一个具体实施方式中,所述发光材料涂布在聚合物基片上。所述聚合物可以包括:丙烯酸类(acrylic)、尿烷(urethane)、酯(ester)、甲基丙烯酸酯(methacrylate)、噻吩(thiophene);任何共轭键聚合物的共聚物;可透光的聚合物;紫外光吸收能力低的聚合物;导热的聚合物;或者导电的聚合物。在另一个具体实施方式中,所述聚合物可以是:基于苯胺的(aniline based)聚合物、基于吡咯的(pyrrole based)聚合物、基于乙炔的(acetylene based)聚合物或基于呋喃的(furan based)聚合物。 
在另一个具体实施方式中,所述聚合物可以包括聚氨基甲酸乙酯(polyurethane)、聚酯(polyester)、聚酰胺(polyamide)、聚脲(polyurea)、聚碳酸酯(polycarbonate)和聚甲基丙烯酸甲酯(polymethyl methacrylate)。在本发明中所述聚合物的单体组成可以是甲基丙烯酸酯骨架(methacrylate-based)、碳酸酯骨架(carbonate-based)、丙烯酰胺骨架(acrylamide-based)、甲基丙烯酰胺骨架(methacrylamide-based)或苯乙烯骨架(styrene-based)的单体。 
可以使用的乙烯基聚合物的单体组成包括丙烯酸酯类(acrylic esters),具体例如丙烯酸甲酯(methyl acrylate)、丙烯酸乙酯(ethyl acrylate)、丙烯酸正丙酯(n-propyl acrylate)、丙烯酸异丙酯(isopropyl acrylate)、丙烯酸正丁酯(n-butyl acrylate)、丙烯酸异丁酯(isobutyl acrylate)、丙烯酸仲丁酯(sec-butyl acrylate)、丙烯酸叔丁酯(tert-butyl acrylate)、丙烯酸戊酯(amyl acrylate)、丙烯酸己酯(hexyl acrylate)、丙烯酸-2-乙基己酯(2-ethylhexyl acrylate)、丙烯酸辛酯(octyl acrylate)、丙烯酸叔辛酯(tert-octyl acrylate)、丙烯酸-2-氯乙酯(2-chloroethyl acrylate)、丙烯酸-2-溴乙酯(2-bromoethyl acrylate)、丙烯酸-4-氯丁酯(4-chlorobutyl acrylate)、丙烯酸氰乙酯(cyanoethyl acrylate)、丙烯酸-2-乙酰氧基乙酯(2-acetoxyethyl acrylate)、丙烯酸二甲氨基乙酯(dimethylaminoethyl acrylate)、丙烯酸苄酯(benzyl acrylate)、丙烯酸甲氧基苄酯(methoxybenzyl acrylate)、丙烯酸-2-氯环己酯(2-chlorocyclohexyl acrylate)、丙烯酸环己酯(cyclohexyl acrylate)、丙烯酸糠酯(furfuryl acrylate)、丙烯酸四氢糠酯(tetrahydrofurfuryl acrylate)、丙烯酸苯酯(phenyl acrylate)、丙烯酸-5-羟基苯酯(5-hydroxypentyl acrylate)、丙烯酸-2-甲氧基乙酯(2-methoxyethyl acrylate)、丙烯酸-3-甲氧基丁酯(3-methoxybutyl acrylate)、丙烯酸-2-乙氧基丁酯(2-ethoxybutyl acrylate)、丙烯酸-2-乙氧基乙酯(2-ethoxyethyl acrylate)、丙烯酸-2-异丙氧酯(2-isopropoxy acrylate)、丙烯酸-2-丁氧基乙酯(2-butoxyethyl acrylate)、丙烯酸-2-(2-甲氧基乙氧基)乙酯(2-(2-methoxyethoxy)ethyl acrylate)、丙烯酸-2-(2-甲氧基乙氧基)乙酯(2-(2-methoxyethoxy)ethyl acrylate)、丙烯酸-2-(2-丁氧基乙氧基)乙酯 (2-(2-butoxyethoxy)ethyl acrylate)、丙烯酸-ω-甲氧基聚乙二醇酯(ω-methoxypolyethylene glycol acrylate)(加成摩尔数:9)、丙烯酸-1-溴-2-甲氧基乙酯(1-bromo-2-methoxyethyl acrylate)和丙烯酸-1,1-二氯-2-乙氧基乙酯(1,1-dichloro-2-ethoxyethyl acrylate)。 
此外,可以使用下列单体。甲基丙烯酸酯类(Methacrylic esters),具体可例举:甲基丙烯酸甲酯(methyl methacrylate)、甲基丙烯酸乙酯(ethyl methacrylate)、甲基丙烯酸正丙酯(n-propyl methacrylate)、甲基丙烯酸异丙酯(isopropyl methacrylate)、甲基丙烯酸正丁酯(n-butyl methacrylate)、甲基丙烯酸异丁酯(isobutyl methacrylate)、甲基丙烯酸仲丁酯(sec-butylmethacrylate)、甲基丙烯酸叔丁酯(tert-butylmethacrylate)、甲基丙烯酸戊酯(amylmethacrylate)、甲基丙烯酸己酯(hexylmethacrylate)、甲基丙烯酸环己酯(cyclohexylmethacrylate)、甲基丙烯酸苄酯(benzyl methacrylate)、甲基丙烯酸氯苄酯(chlorobenzyl methacrylate)、甲基丙烯酸辛酯(octyl methacrylate)、甲基丙烯酸硬脂酰酯(stearylmethacrylate)、甲基丙烯酸硫代丙酯(sulfopropylmethacrylate)、甲基丙烯酸-N-乙基-N-苯基氨基乙酯(N-ethyl-N-phenylaminoethyl methacrylate)、甲基丙烯酸-2-(3-苯基丙氧基)乙酯(2-(3-phenylpropyloxy)ethyl methacrylate)、甲基丙烯酸二甲氨基苯氧基乙酯(dimethylaminophenoxyethyl methacrylate)、甲基丙烯酸糠酯(furfuryl methacrylate)、甲基丙烯酸四氢糠酯(tetrahydrofurfuryl methacrylate)、甲基丙烯酸苯酯(phenyl methacrylate)、甲基丙烯酸甲苯酯(cresyl methacrylate)、甲基丙烯酸萘酯(naphthyl methacrylate)、甲基丙烯酸-2-羟乙酯(2-hydroxyethyl methacrylate)、甲基丙烯酸-4-羟基丁酯(4-hydroxybutyl methacrylate)、三乙二醇单甲基丙烯酸酯(triethylene glycol monomethacrylate)、二丙二醇单甲基丙烯酸酯(dipropylene glycol monomethacrylate)、甲基丙烯酸-2-甲氧基乙酯(2-methoxyethyl methacrylate)、甲基丙烯酸-3-甲氧基丁酯(3-methoxybutyl methacrylate)、甲基丙烯酸-2-乙酰氧基乙酯(2-acetoxyethvl methacrylate)、甲基丙烯酸-2-乙酰乙酰氧基乙酯(2-acetoacetoxyethyl methacrylate)、甲基丙烯酸-2-乙氧基乙酯(2-ethoxyethyl methacrylate)、甲基丙烯酸-2-异丙氧基乙酯(2-isopropoxyethyl methacrylate)、甲基丙烯酸-2-丁氧基乙酯(2-butoxyethyl methacrylate)、甲基丙烯酸-2-(2-甲氧基乙氧基)乙酯(2-(2-methoxyethoxy)ethyl methacrylate)、甲基丙烯酸-2-(2-乙氧基乙氧基)乙酯(2-(2-ethoxyethoxy)ethyl methacrylate)、甲基丙烯酸-2-(2-丁氧基乙氧基)乙酯(2-(2-butoxyethoxy)ethyl methacrylate)、ω-甲氧基聚乙二醇甲基丙烯酸酯(ω-methoxypolyethylene glycol methacrylate)(加成摩尔数:6)、甲基丙烯酸丙烯酰酯(acryl methacrylate)和甲基丙烯酸的二甲氨基乙基甲基氯化物盐(methacrylic acid dimethylaminoethylmethyl chloride salt)。 
乙烯基酯类(Vinylesters),具体可以例举如:乙酸乙烯酯(vinylacetate)、丙酸乙烯酯(vinyl propionate)、丁酸乙烯酯(vinyl butyrate)、异丁酸乙烯酯(vinyl isobutyrate)、己酸乙烯酯(vinyl caproate)、氯乙酸乙烯酯(vinyl chloroacetate)、乙酸乙烯基甲氧酯(vinylmethoxy acetate)、乙酸乙烯基苯酯(vinylphenyl acetate)、苯甲酸乙烯酯(vinyl benzoate)和水杨酸乙烯酯(vinyl salicylate)。 
丙烯酰胺类(Acrylamides),可以例举如:丙烯酰胺(acrylamide)、甲基丙烯酰胺(methylacrylamide)、乙基丙烯酰胺(ethylacrylamide)、丙基丙烯酰胺(propylacrylamide)、异丙基丙烯酰胺(isopropylacrylamide)、正丁基丙烯酰胺(n-butylacrylamide)、仲丁基丙烯酰胺(sec-butylacrylamide)、叔丁基丙烯酰胺(tert-butylacrylamide)、环己基丙烯酰胺(cyclohexylacrylamide)、苯甲基丙烯酰胺(benzylacrylamide)、羟甲基丙烯酰胺(hydroxymethylacrylamide)、甲氧基乙基丙烯酰胺(methoxyethylacrylamide)、二甲氨基乙基丙烯酰胺(dimethylaminoethylacrylamide)、苯基丙烯酰胺(phenylacrylamide)、二甲基丙烯酰胺(dimethylacrylamide)、二乙基丙烯酰胺(diethylacrylamide)、β-氰乙基丙烯酰胺(β-cyanoethylacrylamide)、N-(2-乙酰基乙酰氧基乙基)丙烯酰胺(N-(2-acetoacetoxyethyl)acrylamide)和二丙酮基丙烯酰胺(diacetoneacrylamide)。 
甲基丙烯酰胺类(Methacrylamides)可以例举如:甲基丙烯酰胺(methacrylamide)、甲基甲基丙烯酰胺(methylmethacrylamide)、乙基甲基丙烯酰胺(ethylmethacrylamide)、丙基甲基丙烯酰胺(propylmethacrylamide)、异丙基甲基丙烯酰胺(isopropylmethacrylamide)、正丁基甲基丙烯酰胺(n-butylmethacrylamide)、仲丁基甲基丙烯酰胺(sec-butylmethacrylamide)、叔丁基甲基丙烯酰胺(tert-butylmethacrylamide)、环己基甲基丙烯酰胺(cyclohexylmethacrylamide)、苯甲基甲基丙烯酰胺(benzylmethacrylamide)、羟基甲基丙烯酰胺(hydroxymethacrylamide)、氯代苯甲基甲基丙烯酰胺(chlorobenzylmethacrylamide)、辛基甲基丙烯酰胺(octylmethacrylamide)、硬脂酰基甲基丙烯酰胺(stearylmethacrylamide)、硫代丙基甲基丙烯酰胺(sulfopropylmethacrylamide)、N-乙基-N-苯基氨基乙基甲基丙烯酰胺(N-ethyl-N-phenylaminoethylmethacrylamide)、2-(3-苯基丙氧基)乙基甲基丙烯酰胺(2-(3-phenylpropyloxy)ethylmethacrylamide)、二甲基氨基苯氧基乙基甲基丙烯酰胺(dimethylaminophenoxyethylmethacrylamide)、糠基甲基丙烯酰胺(furfurylmethacrylamide)、四氢糠基甲基丙烯酰胺(tetrahydrofurfurylmethacrylamide)、苯基甲基丙烯酰胺(phenylmethacrylamide)、甲苯基甲基丙烯酰胺(cresylmethacrylamide、萘基甲基丙烯酰胺(naphthylmethacrylamide)、2-羟乙基甲基丙烯酰胺(2-hydroxyethylmethacrylamide)、4-羟丁基甲基丙烯酰胺(4-hydroxybutylmethacrylamide)、三乙二醇单甲基丙烯酰胺(triethylene glycol monomethacrylamide)、二丙二醇单甲基丙烯酰胺(dipropylene glycol monomethacrylamide)、2-甲氧基乙基甲基丙烯酰胺(2-methoxyethylmethacrylamide)、3-甲氧基丁基甲基丙烯酰胺(3-methoxybutylmethacrylamide)、2-乙酰氧基乙基甲基丙烯酰胺(2-acetoxyethylmethacrylamide)、2-乙酰基乙酰氧基乙基甲基丙烯酰胺(2-acetoacetoxyethylmethacrylamide)、2-乙氧基乙基甲基丙烯酰胺(2-ethoxyethylmethacrylamide)、2-异丙氧基乙基甲基丙烯酰胺(2-isopropoxyethylmethacrylamide)、2-丁氧基乙基甲基丙烯酰胺(2-butoxyethylmethacrylamide)、2-(2-甲氧基乙氧基)乙基甲基丙烯酰胺(2-(2-methoxyethoxy)ethylmethacrylamide)、2-(2-乙氧基乙氧基)乙基甲基丙烯酰胺(2-(2-ethoxyethoxy)ethylmethacrylamide)、2-(2-丁氧基乙氧基)乙基甲基丙烯酰胺(2-(2-butoxyethoxy)ethylmethacrylamide)、ω-甲氧基聚乙二醇甲基丙烯酰胺(ω-methoxypolyethylene glycol methacrylamide)(加成摩尔数:6)、丙烯酰基甲基丙烯酰胺(acrylmethacrylamide)、二甲基氨基甲基丙烯酰胺(dimethylaminomethacrylamide)、二乙基氨基甲基丙烯酰胺(diethylaminomethacrylamide)、β-氰乙基甲基丙烯酰胺(β-cyanoethylmethacrylamide)和N-(2-乙酰基乙酰氧基乙基)甲基丙烯酰胺(N-(2-acetoacetoxyethyl)methacrylamide)。 
烯烃类(Olefins),可以例举如:二环戊二烯(dicyclopentadiene)、乙烯(ethylene)、丙烯(propylene)、1-丁烯(1-butene)、1-戊烯(1-pentene)、氯乙烯(vinyl chloride)、偏二氯乙烯(vinylidene chloride)、异戊二烯(isoprene)、氯丁二烯(chloroprene)、丁二烯(butadiene)和2,3-二甲基丁二烯(2,3-dimethylbutadiene)。 
苯乙烯类(Styrenes),可以例举如:苯乙烯(styrene)、甲基苯乙烯(methylstyrene)、二甲基苯乙烯(dimethylstyrene)、三甲基苯乙烯(trimethylstyrene)、乙基苯乙烯(ethylstyrene)、异丙基苯乙烯(isopropylstyrene)、氯甲基苯乙烯(chloromethylstyrene)、甲氧基苯乙烯(methoxystyrene)、乙酰氧基苯乙烯(acetoxystyrene)、氯代苯乙烯(chlorostyrene)、二氯代苯乙烯(dichlorostyrene)、溴代苯乙烯(bromostyrene)和乙烯基苯甲酸甲酯(vinylbenzoic acid methyl ester)。 
乙烯基醚类(Vinyl ethers)可以例举如:甲基乙烯基醚(methylvinyl ether)、丁基乙烯基醚(butylvinyl ether)、己基乙烯基醚(hexylvinyl ether)、甲氧基乙基乙烯基醚(methoxyethylvinyl ether)和二甲基氨基乙基乙烯基醚(dimethylaminoethylvinyl ether)。 
其它的例子可以例举如:巴豆酸丁酯(butyl crotonate)、巴豆酸己酯(hexyl crotonate)、衣康酸二丁酯(dibutyl itaconate)、马来酸二甲酯(dimethyl maleate)、马来酸二丁酯(dibutyl maleate)、富马酸二甲酯(dimethyl fumarate)、富马酸二丁酯(dibutyl fumarate)、甲基乙烯基酮(methyl vinyl ketone)、苯基乙烯基酮(phenyl vinyl ketone)、甲氧乙基乙烯基酮(methoxyethyl vinyl ketone)、丙烯酸缩水甘油酯(glycidyl acrylate)、甲基丙烯酸缩水甘油酯(glycidyl methacrylate)、N-乙烯基恶唑烷酮(N-vinyloxazolidone)、N-乙烯基吡咯烷酮(N-vinylpyrrolidone)、丙烯腈(acrylonitrile)、甲基丙烯腈(methacrylonitrile)、亚甲基丙二腈(Methylene Moronnitrile)和乙烯叉(Vinylidene)。 
根据使用目的(例如,改善硬度、柔韧性、拉伸强度和光牢固度),可以使用两种或多种单体作为共聚单体,从而制得共聚物。 
对于将所述各组分加入或混合到聚合物中的方法没有限定。例如,可采用将半透明聚合物的粉末、薄片或粒料与上述组分充分混合,随后通过挤出机熔融混合的方法。对于半透明的热塑性聚合物,可以采用将上述组分加入到未硬化的液体状态的起始原料中并充分混合和分散的方法。此时,可以加入常用的添加剂,例如热稳定剂、抗氧化剂、脱模剂、抗静电剂和阻燃剂。可以根据常规的方法进行模塑成型。也就是说,对于热塑性聚合物的情况,可以使用熔融挤出法制造塑料包层管(Covered Pipe),通过对熔融挤出得到的管子进行拉伸和淬火来制造收缩管(Shrink Pipe),通过注射成型、挤出成型,必要时甚至用真空浇铸成型来制造包层(Cover)。对于热固化聚合物的情况,铸模成型是比较有利的。 
生物反应器设计
在一个具体实施方式中,分别使用抛物柱面反射器、棱镜和光导管,通过采集光线、分流红外光和发散光线来将太阳光导入生物反应器中。抛物柱面反射器确保有效地采集太阳光的能量,不存在由于反射导致的损失,这种损失通常发生在开放池塘系统中水的表面之外。这样的安排应确保最效地采集太阳光的能量,避免由于反射导致的损失,这种损失通常发生在开放池塘系统中水的表面之外。一旦光线被分流,所采集的能量中的红外部分可以作为太阳热能的来源而使用。 
在一个具体实施方式中,太阳能采集碟可以配置UV和IR过滤器以防止UV和加热辐射的损害。然而,如果需要升高藻类生长培养基的温度,也可以先移去IR过滤器以控制IR的辐射,直到水的温度达到了适合藻类生长的最佳温度时为止。 
作为选择,也可以使用菲涅耳透镜、反射镜或反射镜的组合来采集光线。最简单形式,的菲涅耳透镜是玻璃或塑料片,在该片上有细刮痕线或脊。菲涅耳透镜可以是平的或形成一定的曲率,以使光线更好地在生物反应器中聚焦。储存或存储单元(Bank Or Storage Cell)也 在被考虑的范围内,它包括又一个发光材料来源,该发光材料可以在白天的数小时内吸收光能而在晚上用来维持低水平的藻类生长。 
采集光线并分流IR能量后,可以采用本领域公知的光导管来发散光线。这样的光导管允许光线更深地穿透到生物反应器中,并且增大了可以发射用于光合作用的光线的表面积。 
光导管或光导可以是实心的或中空的。实心的光导管可以包括光纤。中空的光导管可以充填液体。填充液体的光导管是本领域公知的,例如美国专利US4,927,231、US5,857,052和US6,507,688中所公开的。 
可以将本领域公知的光导管的尺寸放大以用于生物反应器中,。 
可以对本领域公知的光导管进行改良,例如,除了将光线从光导管的一端传输到另一端之外,还可以使光线沿着其长度方向发散。例如,可以蚀刻半透明的光导管,以有助于光线从光导管的漫射。此外,光导管可以包括漫射装置,例如美国专利US4,420,796中所公开的。 
光导管,例如填充液体的光导,可以包括双层壁。填充液体的光导可以包括一个塑料外壁和一个塑料内壁,这两个壁彼此分隔开,并被填充了空气、真空或任何数量的折射率低于内部液体的透明物质。另一种选择是在间隔开的两个壁之间所形成的空隙中填充气体,例如美国专利US4,420,796中所述的氮气、二氧化碳或氩气等惰性气体。在这样的光导管中,所述空气或其它气体提供了将光导入光导管的适当折射率。 
用在液体光导管中的液体可以包括任何适合于传导光线的液体,例如水、二甲亚砜或乙二醇。所述液体可以包括盐溶液。 
光导或光导管可以倾斜一定角度,以最大程度地利用季节性的太阳入射光。例如,所述光导管可以相对于地面倾斜约70°,以确保在冬天的北纬或南纬的37°附近可以发生内反射,在该处,水的折射率n=1.33,空气的折射率约为1,定义系统在所述光导管中传输太阳光的能力和相对于水平线的最小日照角约为30°。 
在一个具体实施方式中,将光采集碟面的表面积与光导管的表面积进行了比较。例如,如果由太阳能采集器捕获的太阳光的面积为7m2,光导管的内表面积可以通过所述光导管的内圆周长乘以其长度来测量;例如,直径为0.25m、长度为9m的光导管具有约7m2的表面积,与上述的太阳能采集器相似。因此,略去反射造成的损失不计,具有这样尺寸的光导管可以沿着其长度方向发射光,其强度与入射到所述采集器碟面的太阳光的光强相等。在另一个实施例中,略去反射造成的损失不计,直径为0.25m、长度为18m的光导管沿着其长度方向发射的光的强度为入射到所述采集器碟面的太阳光的光强的一半 
藻类最佳的生长速率出现在光强为200-600ft-c(Foot-Candle,英尺-烛光)或者2,000-6,000 lux(勒克斯,1ft-c约相当于10lux)的情况下,在更小或更大的光强下生长都会减缓。强烈的正午阳光的光强在100,000lux左右,其低值在32,000lux。所述太阳光的光强比藻类生长必需的最大值还要大约5-17倍。这意味着在一个具体实施方式中,所述光导管的表面积可能远远大于所述光采集碟面的面积。然而,实际上,光导管中光的强度沿着从光导管的表面朝向所述生物反应器内壁的方向急速下降。实际上,光导管的表面积为光采集碟面的3-4倍就可以发出足够的光用于藻类的最佳生长。因此,相对于上述具体实施方式,所述光导管的直径可以是0.35m,而长度可以是30m。 
在另一个具体实施方式中,所述光导管是大的片材。例如,7m2的采集碟面可以与4m×3.5m的光导板连接,所述光导板在两侧均匀地发出光线,总表面积共28m2,是所述光采集碟面表面积的四倍。 
在另一个具体实施方式中,所述光导是由3MTM以及其他公司所开发,被称之为“棱镜光导”,这种类型的光导具有如下优点:所制成的产品的宽度有很大的选择范围,在所述光导的内部空间中填满了空气、气体或是真空。外壁由具有高折射率的材料,例如任何塑料、聚合物或如这里所描述的用于一般光导的液体制成。所述外壁有脊状直线图案,产生90°的棱镜形状,该形状有时候也可以修改成更小的角度以达到不同的光传输效果。 
在一个具体实施方式中,所述生物反应器可以具有一个平滑的、反射光的内表面或内衬。所述反射内衬可以是白色的,同样所述内衬也可以是塑料的。所述反射内衬可以通过反射照射到所述生物反应器内壁的光线来使供藻类生长的光线最大化。 
在白天,在没有藻类存在的地方,即在生物反应器外部,将储存或存储单元曝露在光线下,一般是太阳光下,将有效地给所述储存或存储单元“充电”,从而可以将其加入到生物反应器中,在黑暗的时候为持续的光合作用提供光线以维持藻类的低水平生长。在黑暗的数小时期间,藻类进行呼吸作用,所述呼吸作用将耗尽全部生物质。在夜晚期间,进一步使用发光材料可以弥补部分这样的损失,并提供健康的藻类种群用于下一批次的生产。 
此外,生长培养基的深度可能比太阳光穿透的深度深得多。因此,与用在晚上同样,储存或存储单元可以用在更深的深度。当被藻类粘结的基片靠近表面附近时,假使所述基片的表面没有完全被藻类所覆盖,太阳光将同时被藻类和发光材料所吸收。在没有太阳光的深度更深的地方,所述发光材料将发射出用于光合作用的光,从而连续不断地给藻类提供光合作用最必要的波长范围的光。所述基片能够给藻类提供持续几个小时的光。 
当生长培养基曝露在空气中时,其表面曝露在空气中,空气中的一部分二氧化碳可以溶解在所述生长培养基中。翻转或混合所述生长培养基,增加所述生长培养基曝露在空气中的 机会,并促进二氧化碳溶入生长培养基中。也可以采用将二氧化碳导入生长培养基中的其它方法,如本领域技术人员所认可的方法,包括二氧化碳起泡器或喷嘴(或多个起泡器或多个喷嘴),在生物反应器的一个或多个出气口将二氧化碳气体导入所述生长培养基中。二氧化碳起泡器或喷嘴也可以起到混合和搅拌装置的作用。此外,也可以采用其它的方法,包括提高在所述生物反应器上方的空气中二氧化碳的浓度,例如通过在所述生物反应器上方形成一个密封的外壳,并在所述生长培养基的表面上方同时又在所述外壳以内的区域内注入二氧化碳气体。 
收获
藻类对表面具有很强的粘结力。在一个具体实施方式中,所述藻类会在所述发光材料的表面生长。在另一个具体实施方式中,所述藻类会在所述基片的表面上生长。在表面上养殖藻类的优点在于生物质本身就是存在于表面上的浓缩状态的厚层。 
当存在超过一种基片时,可以容易地将所述基片过滤,从而使收获变得非常便利。在一个具体实施方式中,可以将过滤后表面覆盖藻类的基片移除,用水冲洗除去来自培养基中的盐分,随后可以采用多种方法从基片上除去藻类,其中的一种方法是改变生长培养基的pH值以破坏藻类对所述基片的粘结,或者先干燥所述基片,然后除去粉末形式的所述藻类。也可以使用高压水喷嘴从所述基片上除去藻类。不再粘有藻类的基片,可以送回到系统中,以支撑下一批次的藻类生长。 
收获可以通过例如机械的揩擦、高压水来实现,或者通过使藻类在所述片材上干燥以收集半干燥的固体藻类。收获步骤可以包括揩擦、刮擦、冲洗、漂洗、干燥、部分干燥、摇动、振动或改变pH值等。 
在一个具体实施方式中,所述生物反应器在基片上养殖藻类,可以收获水含量有限的厚块藻类,从而避免了昂贵的过滤和离心过程。例如通过只除去必要数量的水,以将所述藻类生物质用作直接气化的原料,可以减少由藻类生物质制造生物燃料的能源花费。 
碳源
用作碳源时,二氧化碳可以得自大气中。或者,二氧化碳也可以源自特定的来源。这些来源包括工业、农业或人类的来源。 
工业-PCC和IGCC 
本发明可以与当前由于洁净煤技术而发展起来的二氧化碳捕获技术相适应。这些技术主要包括使用胺溶剂的燃烧后捕获(PCC,Poar Combustion Capture)技术和整体煤气化联合循环(IGCC,Integrated Gasification Combined Cycle)工艺,制造作为“合成气”主要组分的氢 气。 
这些洁净煤技术在分离废气排放物中的二氧化碳组分方面非常重要,但它们本身不提供螯合或处理捕获的二氧化碳的方法。重要的是,IGCC提供一种在燃烧燃料方面热力学效率更高的方法,并且可充分利用存储在藻类生物质中的能量。 
二氧化碳的燃烧后捕获主要使用胺类溶液来实现,典型的为单乙醇胺(MEA),其定量地与来自相对冷的气体流中的所有二氧化碳反应。随后通过加热胺类溶液使该反应、特别是螯合反应逆转,从而释放出纯二氧化碳气流。该化学反应如图2所示。 
通过胺捕获二氧化碳是在标准大气压、在水溶液中处理大量的、浓缩体积的二氧化碳的一种便利方法。二氧化碳通常在水中具有相对低的溶解度,特别是在温水(30℃)中。有多种胺可以用在该过程中,例如单乙醇胺(TEA)。所述的胺大部分是可重复使用的、也是生物可降解的,而且便宜。在这里考虑的是,在生长培养基中使用对藻类无毒的胺,就可以将高浓度的二氧化碳注射入所述生物反应器中,以给所述藻类提供便利的无机碳源。这样的培养基既可以作为二氧化碳的螯合剂,也可以作为藻类生物质的产生器(Generator)。藻类可以从所述胺溶剂中吸收二氧化碳。 
因此,本发明将生产出可以用作气化原料的藻类生物质,从而取代电力生产所必需的部分煤炭。此外,在IGCC中使用藻类原料将可以由可再生资源大规模地制造地球上最环保的燃料——氢气。 
工业-未处理的废气 
使用未处理的废气排放物作为二氧化碳源,并因此作为藻类生长的无机碳源,受到了下列因素的阻碍:大量酸性含硫和含氮组分、固体颗粒物,以及最重要的是,废气的余热,其温度通常接近或超过80℃。直至今日,温度和污染物阻碍了没有预处理的废气排放物的使用,尽管在可以用于大规模藻类生长的大量浓缩二氧化碳的来源中,废气排放物是很少的几个切实可行的来源之一。 
农业 
设想,排放的废物,例如牛奶场的排放废水,可以在沼气池(Bio-Digester)中处理以产生沼气。甲烷可以通过产甲烷细菌对排放废水进行生物分解来制得。此外,沼气燃烧的排放物可以用作光合作用的二氧化碳源。由此得到的藻类生物质可以用作生物燃料的原料,或者用于牲畜的富含蛋白质的饲料。 
随后,处理过的排放废水可以用作包含微量营养素、用于生长的生长培养基。最终,通过藻类生长消耗了营养素的水可以用于农庄牧场的灌溉。 
另一选择是,可以使用人类废水或污物。 
在图3表示的一个具体实施方式中,生物反应器10包括一个具有壁12和底部14,用来容纳生长培养基16的圆形容器生物反应器。生物反应器10包括进口20,其允许将新鲜的生长培养基和初始的藻类(未示出)导入生物反应器10。二氧化碳可以通过进口20进入生物反应器10。藻类22在多个基片24的表面生长。基片24包含发光材料(未示出)。基片24通过混合器26在生物反应器10内循环流动。在间歇的时间间隔中,在基片24上生长的藻类在生长培养基16的上表面30附近曝露在光线28中,从而使所述发光材料可以吸收光能量,以用于随后对藻类22发射。光线28源自于太阳32,太阳光34采用抛物柱面反射器36采集。红外辐射线38采用棱镜40分流。在预定的时间内,生长在基片24上的藻类22通过出口42从生物反应器10中移出,并输送到过滤器44,以将藻类22和基片24与生长培养基16分离,以便随后从基片24上收获藻类22。在一个具体实施方式中,光线28由设置在生物反应器10内的支撑48上的导管46发散,使在生长培养基16中光线28无法穿透的深处的发光材料和藻类22更多地曝露在光线中。 
在图4所示的一个具体实施方式中,所述生物反应器包括一系列的挠性塑料容器50,例如管或三角形的袋,除了受到实际工程因素的限制之外,其没有预定的长度(图4a)。所述塑料容器50并排地、以统一的深度沿着开放池塘52的池底水平地放置,其深度深于只有30cm-50cm深的传统的藻类池塘。容器50注满了生长培养基。所述藻类会在这些塑料容器50的内部生长,而所述容器间的倒置三角形空间54中仍是洁净水以允许光线通过。如图4b所示,所述塑料容器50包括发光基片60,并会发出对光合作用有用的波长的光。具有间断的孔58、用来输送富含CO2(二氧化碳)的气体的管道56位于所述藻类容纳装置50的基底51上并产生一气泡流,既给生长培养基注入用于光合生长的气体营养素,也产生一种洗涤的作用,这将减少在所述聚合物材料表面上的生物积垢。气体同时在水中产生对流型的移动,以帮助藻类混合,使它们接近或远离所述基片表面,并因此使所述藻类与光源接近或远离。如在藻类生物学领域公知的,在光合作用中的光和暗反应(Light And Dark Reactions)需要所述藻类花费很大部分的时间远离所述光源,以防止光抑制。 
所述系统可以设计成开放的池塘52,或者更加具有流动性的水道型设计(参见图4c水道设计),目前这已经被证明为最有效的开放式设计。在水道型设计中,容器50沿着直线部分67放置,曲线部分68将朝向空中开口,所述容器将作为容纳各种基础设施,例如桨轮(或者其它的本领域公知的用于水循环的装置)、收获设备、水交换装置、营养素添加和气体交换装置的空间。在这样的设计中,在开放型设计的曲线部分68的水中充满了可以收获的藻类。 在这样的构造中,容器50的端部开口,以允许藻类填充这些部分。在容器50之间的清洁水54将会被密封,以防止所述清洁水被藻类污染。或者,曲线部分68可以不含藻类,在该处,清洁的空间54延伸到这些开口的部分。应当经常过滤所述清洁水,以得到最好的透光性。此外,清洁水将吸收太阳光谱中的大部分IR,结果变得更热。可以排放和替换清洁水,以作为整个系统的恒温器,从而过量的热可以从系统中转移出去。在冬天的几个月,根据特定物种的需要,清洁水可以作为隔热体,将所述藻类的温度保持在设定的最低温度之上。 
所述发光基片60由一空气层62环绕,通过设置更高折射率的界面,即折射率大约为1.33的水,与一个低折射率的界面相邻,即折射率约为1的空气,以产生一定程度的总内反射,在所述藻类生长培养基的范围内捕获部分发出的光。这可以使所述藻类容纳装置50成为一个大光导。所述空气层62由所述发光基片60外的透明聚合物片材64支持。同样比较有利的是,给容器50衬上一层薄的、消耗性的聚合物内衬66,以防止贵重的基片直接与藻类生物质接触而结垢,从而可以延长更昂贵的发光基片的使用寿命。 
当太阳光照射到池塘52的表面53时,光线向下通过在所述藻类容纳装置50之间的洁净空间54,或者穿过所述发光基片60直接照射到所述藻类上,或者在被所述藻类生物质吸收之前,首先被配置在基片上的发光材料吸收,随后通过发光被转化成可以用于光合作用的较低波长的光。太阳光是否被发光材料吸收,主要取决于所述光线的特定波长,其中没有落在配置的发光材料的主要吸收波长范围之内的某些波长的光穿过所述发光基片60,而其它的则经过吸收/发射的过程。整个容器50的系统可以根据基本方向来定向,可以南北方向放置,可以东西方向放置,或者可以在中间的任何方向放置。如图4d所示,在任何取向情况下,当太阳不在头顶上方或附近时,在容器50的一侧将会投下一条阴影69,同时在另一侧是被照亮的70。对于地球上所有的纬度位置,这种低角度太阳光的时期存在于白天的大多数时间。当太阳光72照射到所述容器50的非遮挡侧时,由所述发光基片60发出的光将部分地向外74辐射,并导致相邻容器的遮挡侧69被有用波长的光照亮。随着太阳跨过天空而移动,在早晨和晚上的时间之间,这些侧面将在被遮挡和照亮之间变换。 
产生大量的在600nm-700nm之间的红光是特别重要的,因为该波长可被光合生物特别有效地利用。同样,在更深的池塘系统中,水对入射红光的吸收是一个重要的因素(图5),其中清洁的水通道在超过2米的路径上将吸收大约90%的650nm的红光。更短波长的光,例如橙光、黄光、绿光和蓝光(575nm-400nm)穿过水的损失小得多,并可以在它们已经穿过水柱在更深的深度时向下转化成红光。 
与容纳所述系统的池塘52的表面积相比,所述系统的形状导致有效的藻类表面积提高到 两倍以上。所述容器50制作得越高,有效面积越大。这导致照射到表面积比标准开放池塘更大的所述系统的表面的阳光被稀释。因此,可以得到更低强度的光,观察到的光抑制现象更少。此外,包括藻类的所述基片能够将自然的太阳光转化成对光合作用更优化的波长的光谱,以实现更高的太阳能量转化率,该数值通过每平方米面积的累积生物量的增加来测量。由此,该系统可以得到更高的藻类浓度,以及藻类可以在更深的深度生长。在生物质浓度较高的情况下,其生长(例如,生物质的翻倍)将导致收益成指数级的增长。此外,较高的生物质浓度使在收获系统中耗费的能量更小,所述收获系统中从生物质的浓缩开始,随后进行脱水。 
如在图4e和4f中所示,可以在所述藻类容纳装置50的顶部加入荧光集中器或荧光光导76。这样的光导的加入必须权衡其成本/利润分析,该分析结果可能是正的或者是负的,这取决于额外得到的生物量,以及其固有的价值。在一个具体实施方式中,附加的光导76在吸收了400nm-540nm的光后,发出在540nm-600nm的橙光77。该具有更高能量波长的橙光77在水53的表面附近产生,由于其波长小于600nm,所述橙光将可以有效地、以最小吸收损失的方式穿过清洁水通道54。当所述橙光77产生时,其可以从光导76的边缘78发射出,所述光导76稍微向下弯曲,以将光线导入所述清洁水通道54中。 
一旦所述橙光77到达所述藻类容纳装置50的表面,其大部分被配置在所述发光基片60上的发光材料吸收,并进一步转化成能量更低的红光,以使光合作用有效进行。为了节省费用,所述容器50的位于光导76下方的部分80可以配置或不配置发光材料,因为上方的所述光导过滤了绿色波长的光,它可以轻易地接收到优化的光。 
附加的光导76将有助于藻类容纳装置50很深的(大于1米)底部82的照明。在这样的系统中,容器50的所述底部82即使在面朝太阳的方向,在低角度太阳光的几个小时内仍然保持阴影69。光导76将与容器50配合使用,光导将绿光转化成橙光,而容器将橙光转化成红光。 
如图4g所示,光导76包括聚合物片材84,该聚合物片材84嵌入了荧光染料以形成荧光太阳光收集器,如本领域公知的,所述荧光太阳光收集器的发光聚向于边缘78。由于光导76要与水接触,因此通过添加两片额外的透明聚合物薄片材88,用上方和下方的空气层86来包围所述聚合物片材是比较恰当的。所有在临界角范围内的光线通过全内反射被捕获在所述片材中,并朝向边缘78传导,其中所述临界角由所述聚合物和围绕其的空气的折射率限定。对于大多数塑料,与垂线相夹的该角度约为42°,而所有与垂线夹角小于这个角度的光线从所述片材的顶面90和底面91射出。对于大多数应用的情况,从表面90、91射出被视为是一种损失,而从所述片材底面91射出的光将直接传导到所述藻类生物质92中,这是本发明的 一个优点。 
大多数荧光染料的有限斯托克斯偏移(Stoke Shift)会导致其对光的吸收,对于大多数的荧光收集器来说,当发射波长与该吸收稍有重叠时,荧光的再吸收是一个显著的损失。当光导的厚度与限定光路的长度的比值非常小时,由于再吸收造成的损失将变得很显著,其中所述的光路是指光在所述片材内为到达边缘所必须行进的光路。除了限制光导的总长度以减少收集效率的损失(Collection Efficiency Losses)之外,也可以使用折射率与光导聚合物材料类似的便宜材料94,以增加光导的厚度,从而增加厚度与长度的比值。 
该材料可以是液体或固体的,但最经济的选择是液体,例如盐水溶液(例如浓缩的CaCl2),或者溶剂,例如(二甲基亚砜)DMSO、n-乙二醇(其中,n=1,2,3,4等)、丙三醇,以及其它本领域公知的液体或液体的混合物。同样,包含发光材料84的层也可以是液体的,例如合成液体、石蜡油或基于硅的油类。 
可以采用其它形式的光导,例如棱镜光导(图6),其优点在于用作光导管时,允许有大的空气间隔96,其中光在聚合物材料98中的传输几乎不花费时间。这样的光导可以从3MTM 公司购得。 
包含所述藻类容纳装置50的基片可以由耐用的挠性聚合物组成,其中可以配置一种或多种发光材料。所述发光材料为溶解的染料的形式,例如吸收350nm-600nm宽光谱的光,并发射出600nm-700nm的光的有机染料。通过使用染料的混合物同样可实现上述目的,所述染料的混合物能够使基片均匀地收集更宽波长范围的光。所述基片也可以包括荧光材料,吸收UV和蓝光,发射出400nm-475nm的光以满足光合作用对蓝光的需求。然而应当注意的是,蓝光能够以很小的吸收损失穿透水柱,从而包含在天然太阳光谱中的蓝光可以到达系统中甚至更深水位的基片,而不需要添加发射蓝光的材料。基片产生红色和蓝色光射线的能力将有助于照亮前面描述的被遮挡的相邻容器。 
当在同一基片层中将染料混合时,将会遇到一个预吸收的固有问题,其中由发蓝光的染料产生的高能量波长的光线将被所述基片中的其它染料吸收,而不能被发射出去被藻类有效地利用。为了帮助缓和这个问题,引入漫射颗粒以将光线吸出基片,使基片具有云雾状的外观而不是半透明的外观。这样的技术在本领域被称之为光提取技术,通常使用例如硅酸盐颗粒和其它小颗粒来实现。发光(荧光或磷光)颗粒可以达到使光漫射的目的,同时也可以起到它们原有的作为发光材料的作用。在基片中加入磷光材料,例如发出亮绿色的磷光体,将可以吸收所述光谱中的UV和蓝光部分的光,并且在好几个小时的时间里缓慢地释放光线。即使在太阳已经消失以后,该发光也能延长至晚间的数小时后,并将系统的有效生长时间延 长了数小时。大多数磷光材料发蓝光和绿光,而缺少具有同样亮度和良好性能的、作为更普通的蓝-绿配对物的发红光的磷光材料。与红色荧光染料一起配置到基片中时,更稳固、更强的发绿光的磷光体是有效的。由所述磷光体产生的绿光随后被基片中的发红光的染料吸收,并在没有太阳光的情况下产生红光,以生成藻类生长的所需的红光。 
本领域技术人员应该理解的是,可以对本发明做出许多修改而不偏离本发明的精神和范畴。 

Claims (8)

1.一种包括多个藻类容纳装置的生物反应器,每个藻类容纳装置包括第一光导,其中:
所述第一光导包括第一发光材料;并且,
所述第一光导将光线引导到位于所述第一光导下方的第二发光材料;并且,
所述第一发光材料发射540nm到600nm之间的可见光,该可见光适合于被所述第二发光材料吸收;并且,
第二光导形成于相邻的容纳装置之间;
其中位于所述第一光导下方的每个藻类容纳装置包括第二发光材料,所述第二发光材料吸收所述第一发光材料发射的540nm到600nm之间的可见光。
2.如权利要求1所述的生物反应器,其中所述第二光导是充满液体的光导。
3.如权利要求2所述的生物反应器,其中所述充满液体的光导充满了清洁的水。
4.如权利要求1所述的生物反应器,进一步包括保持导光边界的双层壁。
5.如权利要求1所述的生物反应器,其中每个藻类容纳装置是三角形的,其底边位于远离光源的位置,而顶点位于接近所述光源的位置。
6.如权利要求1所述的生物反应器,其中每个藻类容纳装置是管状而且是三角形的,其底边位于远离光源的位置,而顶点位于接近所述光源的位置。
7.如权利要求1所述的生物反应器,进一步包括沼气池。
8.一种养殖藻类或蓝细菌的方法,包括在如权利要求1-7中任一项所述的生物反应器中养殖所述藻类或蓝细菌。
CN201080014422.4A 2009-01-30 2010-01-29 装置 Expired - Fee Related CN102378811B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2009900346A AU2009900346A0 (en) 2009-01-30 Method and apparatus for growing algae or cyanobacteria
AU2009900346 2009-01-30
AU2009904028 2009-08-24
AU2009904028A AU2009904028A0 (en) 2009-08-24 Method and apparatus for growing algae or cyanobacteria
PCT/AU2010/000090 WO2010085853A1 (en) 2009-01-30 2010-01-29 Method and apparatus for cultivation of algae and cyanobacteria

Publications (2)

Publication Number Publication Date
CN102378811A CN102378811A (zh) 2012-03-14
CN102378811B true CN102378811B (zh) 2015-04-01

Family

ID=42395057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080014422.4A Expired - Fee Related CN102378811B (zh) 2009-01-30 2010-01-29 装置

Country Status (4)

Country Link
EP (1) EP2391705B1 (zh)
CN (1) CN102378811B (zh)
NZ (1) NZ594885A (zh)
WO (1) WO2010085853A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551769B2 (en) 2009-01-30 2013-10-08 Zero Discharge Pty Ltd. Method and apparatus for cultivation of algae and cyanobacteria
JP5490560B2 (ja) * 2010-02-16 2014-05-14 富士フイルム株式会社 導光フィルム及び該導光フィルムを用いた植物育成方法
CN103314096B (zh) 2010-11-15 2015-03-25 康奈尔大学 光流体光生物反应器装置、方法和应用
WO2012071619A1 (en) * 2010-12-03 2012-06-07 University Of Technology, Sydney A light guide device and apparatus for transmitting light into a culture solution
US20120202281A1 (en) * 2011-02-07 2012-08-09 Pond Biofuels Inc. Light energy supply for photobioreactor system
GB201102059D0 (en) * 2011-02-07 2011-03-23 Microsharp Corp Ltd Photobioreactor illumination system
DE102011113440A1 (de) * 2011-09-14 2013-03-14 Forschungszentrum Jülich GmbH Verfahren zum Betrieb eines Photobioreaktors sowie Photobioreaktor
EP2768941A4 (en) * 2011-10-19 2015-06-10 Kellogg Brown & Root Llc photobioreactor
US20130102076A1 (en) * 2011-10-24 2013-04-25 Jason D. LICAMELE Systems and methods for growing photosynthetic organisms
WO2013075116A2 (en) 2011-11-17 2013-05-23 Heliae Development, Llc Omega 7 rich compositions and methods of isolating omega 7 fatty acids
CN108605562A (zh) * 2012-04-05 2018-10-02 纳米技术有限公司 增强光合作用生物体中的生长的量子点led
US20140366439A1 (en) * 2013-06-14 2014-12-18 Solartrack, Llc Apparatuses, systems and methods for enhancing plant growth
FR3014113B1 (fr) * 2013-12-04 2016-01-01 Commissariat Energie Atomique Systeme de culture de micro-organismes photosynthetiques a rendement ameliore
WO2015105773A1 (en) * 2014-01-07 2015-07-16 Sabic Global Technologies B.V. Solar energy funneling using thermoplastics for algae and cyanobacteria growth
UA119322C2 (uk) * 2014-03-28 2019-06-10 Універсітет Варміньско-Мазурскій В Ольштине ФОТОБІОРЕАКТОР ДЛЯ БІОСЕКВЕСТРАЦІЇ СО<sub>2</sub> З ІММОБІЛІЗОВАНОЮ БІОМАСОЮ ВОДОРОСТЕЙ АБО ЦІАНОБАКТЕРІЙ
FR3033799B1 (fr) * 2015-03-20 2019-05-31 Inria Institut National De Recherche En Informatique Et En Automatique Bioreacteur pour microalgues
US20160319269A1 (en) * 2015-04-29 2016-11-03 Sabic Global Technologies, B.V. Light Inducible Promoters and Methods of Using Same
DE102017218001B4 (de) * 2017-10-10 2022-06-02 GICON GROßMANN INGENIEUR CONSULT GMBH Verfahren und System zur heterotrophen und mixotrophen Kultivierung von Mikroalgen
CN114563362B (zh) * 2022-01-29 2022-11-04 大连海事大学 一种船舶压载水微藻含量的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952443A (en) * 1985-08-02 1990-08-28 Philippe Gravisse Covering element with a light cascade effect for agricultural applications
CN1982433A (zh) * 2005-12-12 2007-06-20 中国科学院过程工程研究所 功能转光膜在微藻培养中的应用
WO2008079724A2 (en) * 2006-12-28 2008-07-03 Solix Biofuels, Inc. Improved diffuse light extended surface area water-supported photobioreactor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139705A (en) * 1981-02-24 1982-08-28 Takashi Mori Optical radiator
JP3085393B2 (ja) * 1990-08-03 2000-09-04 株式会社日立製作所 光合成生物の培養方法および培養装置
JPH04166017A (ja) * 1990-10-30 1992-06-11 Asahi Glass Co Ltd 光合成促進方法
JPH04287678A (ja) * 1991-03-19 1992-10-13 Hitachi Ltd バイオリアクタ
JP3950526B2 (ja) * 1997-10-17 2007-08-01 次郎 近藤 光合成培養装置及び集合光合成培養装置
GB2330589B (en) * 1997-10-22 2002-03-06 Stephen Skill Apparatus and method for culture of photosensitive organisms
WO1999031536A2 (de) * 1997-12-15 1999-06-24 Nath Guenther Lichtleiter mit flüssigem kern
JP2000060533A (ja) * 1998-08-20 2000-02-29 Matsushita Electric Ind Co Ltd 太陽光導光光学系を備えた培養槽とその使用方法
DE19916597A1 (de) * 1999-04-13 2000-10-19 Fraunhofer Ges Forschung Photobioreaktor mit verbessertem Lichteintrag durch Oberflächenvergrößerung, Wellenlängenschieber oder Lichttransport
DE10322111A1 (de) * 2003-05-10 2004-12-02 Backhaus, Jan O., Prof. Dr. Outdoor-Photobioreaktor
MX2008002633A (es) * 2005-08-25 2008-09-26 A2Be Carbon Capture Llc Metodo, aparato y sistema para produccion de biodiesel a partir de algas.
ES2401035T3 (es) * 2007-03-19 2013-04-16 Feyecon B.V. Fotobiorreactor con distribuidor de luz y método para la producción de cultivo fotosintético
KR20100017975A (ko) * 2007-06-01 2010-02-16 와커 헤미 아게 광반응기
DE102007000815A1 (de) * 2007-10-04 2009-04-09 Wacker Chemie Ag Freiluftphotobioreaktor
US20090155864A1 (en) * 2007-12-14 2009-06-18 Alan Joseph Bauer Systems, methods, and devices for employing solar energy to produce biofuels
US20100087006A1 (en) * 2008-09-18 2010-04-08 TransAlgae Ltd Use of fluorescent protein in cyanobacteria and algae for improving photosynthesis and preventing cell damage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952443A (en) * 1985-08-02 1990-08-28 Philippe Gravisse Covering element with a light cascade effect for agricultural applications
CN1982433A (zh) * 2005-12-12 2007-06-20 中国科学院过程工程研究所 功能转光膜在微藻培养中的应用
WO2008079724A2 (en) * 2006-12-28 2008-07-03 Solix Biofuels, Inc. Improved diffuse light extended surface area water-supported photobioreactor

Also Published As

Publication number Publication date
EP2391705A1 (en) 2011-12-07
EP2391705A4 (en) 2014-01-01
CN102378811A (zh) 2012-03-14
NZ594885A (en) 2013-03-28
WO2010085853A1 (en) 2010-08-05
EP2391705B1 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
CN102378811B (zh) 装置
US8551769B2 (en) Method and apparatus for cultivation of algae and cyanobacteria
KR101782143B1 (ko) 광합성 유기체의 성장을 향상시키는 양자점 발광다이오드
CN102203233B (zh) 藻类生长系统
US20110281295A1 (en) Method and device for culturing algae
US20130052719A1 (en) Photobioreactor for mass culture of microalgae, and method for culturing microalgae by using same
CN107428579A (zh) 使用大型藻类的生物反应器
CN102337215A (zh) 培养雨生红球藻及生产虾青素的方法
CN101020820A (zh) 仿生态稀土有机配合物转光剂及其制备方法、含有该转光剂的农用转光剂及其制备方法
AU2011218633B9 (en) Method and apparatus for cultivation of algae and cyanobacteria
CN100503773C (zh) 特异性稀土有机配合物蓝光转光剂、含有蓝光转光剂的转光农膜及两者的制备方法
CN101712929B (zh) 利用发光颗粒进行微藻光生物培养的方法
JP2012000026A (ja) 光合成微生物の付着培養方法
AU2011211390A1 (en) Apparatus and Method II
WO2020046206A1 (en) Composite materials containing phosphors for enhanced photosynthesis
WO2012107748A1 (en) Photobioreactor illumination system
Bertrand et al. Structure and dynamics of photosynthetic picoplankton across the saltwater transition zone of the St. Lawrence River
Wakabayashi et al. Seasonal variation of phototrophic picoplankton in Lake Biwa (1994–1998)
CN105779271A (zh) 一种阶梯落差式微藻光反应器
CN205616876U (zh) 一种阶梯落差式微藻光反应器
Danaee et al. Assessment of phosphorescent paint effects on microalgae cultivation
WO2015083026A1 (fr) Systeme de culture de micro-organismes photosynthetiques a rendement ameliore
CN101020822A (zh) 具有生态生理特征的稀土转光剂及其制备方法、含有该转光剂的转光膜及其制备方法
CN117417741A (zh) 一种能发射长波长的荧光材料及其制备方法和光转化膜
CN1648172A (zh) 稀土包膜转光材料制备工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150401

Termination date: 20160129

EXPY Termination of patent right or utility model