带有绝缘埋层的图像传感器及其制作方法
技术领域
本发明是关于一种带有绝缘埋层的图像传感器及其制作方法,特别涉及一种具有抗高能粒子辐射能力的带有绝缘埋层的图像传感器及其制作方法。
背景技术
图像传感器是一种广泛应用于数码成像、航空航天以及医疗影像领域的电子元器件。电荷耦合器件(charge coupled device, CCD)图像传感器和互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)图像传感器是常见的两种图像传感器。CCD具有低的读出噪音和暗电流噪音,同时具有高光子转换效率,所以既提高了信噪比,有提高了灵敏度,很低光照强度的入射光也能被侦测到,其信号不会被掩盖。另外,CCD还具有高动态范围,提高系统环境的使用范围,不因亮度差异大而造成信号反差现象,但其的功耗比较大,供给电压不一致,与传统的CMOS工艺不匹配,集成度不高,所以成本偏高。与CCD相比,CMOS图像传感器对光线的灵敏度、信噪比都相对较差,导致它在成像质量上难以与CCD抗衡,所以以前主要用于成像质量要求不是很高的中低端市场。但是,随着新的CMOS技术不断改进,CMOS图像传感器在成像质量方面也越来越具有与CCD相抗衡的实力,而且它固有的诸如像元内放大、列并行结构,以及深亚微米CMOS处理等独特的优点更是CCD器件所无法比拟的。而且与CCD技术相比,CMOS技术集成度高、采用单电源和低电压供电、成本低和技术门槛低。低成本、单芯片、功耗低和设计简单等优点。目前的趋势就是CMOS图像传感器逐步取代CCD。
附图1A所示是现有技术中一种典型的图像传感器结构示意图,所示为一个像素单元,包括驱动电路区域I和光学传感区域II,其中驱动电路区域I是典型的4T型驱动电路,包括转移晶体管T1、复位晶体管T2、源跟随晶体管T3以及行选通开关晶体管T4,光学传感区域II包括一光敏二极管D1。上述各个晶体管以及与光敏二极管D1之间的连接关系、各个端口的外接信号以及工作原理请详细参考附图1所示电路结构以及现有技术中对图像传感器的介绍,此处不再赘述。
附图1B所示是附图1A所示的图像传感器的器件结构示意图,本示意图意在表示驱动电路区域I和光学传感区域II相互之间的位置关系,故其中除衬底100之外,仅在光学传感区域II之中进一步示出了光敏二极管D1的第一掺杂区域111和第二掺杂区域112,而驱动电路区域I仅以转移晶体管T1表示,包括栅极121、源极掺杂区域122、漏极掺杂区域123。在上述驱动电路区域I和光学传感区域II两个区域之间包括介质隔离结构130。对于衬底100表面的金属连接线等与本发明无特别关系的结构均已省略。
继续参考附图1B,第一掺杂区域111、源极掺杂区域122和漏极掺杂区域123应当具有相同的导电类型,且与衬底100的导电类型相反,而第二掺杂区域112应当与衬底的导电类型相同,例如对于N型的衬底100而言,第一掺杂区域111、源极掺杂区域122和漏极掺杂区域123应当是P型的,而第二掺杂区域112应当是N型的。
现有技术制作CMOS图像传感器的方法,由于体硅衬底与感光区已经外围电路直接接触,在宇宙射线的辐射下,会产生大量的空穴电子对并转移到外围电路和感光区,就会造成CMOS图像传感器直接失效或者成像质量急剧下降。为了使图像传感器能够稳定地应用在航空航天以及其他极端环境中,需要上述传感器进一步具有抵抗高能粒子辐射的能力。一种有效的方法是将附图1B所示的结构制作在SOI衬底上。SOI(silicon-on-insulator)指的是绝缘层上的硅,它是由“硅薄膜/绝缘层/硅衬底”三层构成。最上面的硅薄膜(简称硅膜)用来做CMOS等半导体器件,中间的绝缘层(简称埋氧层)用来隔离器件和硅衬底。SOI CMOS器件比体硅CMOS器件具有下列优点:寄生电容小、漏电低、具有高速和低功耗的特点;消除了体硅CMOS常见的闩锁效应;抑制了衬底的脉冲电流干扰,减少了软错误发生几率。工艺上SOI和体硅CMOS工艺兼容且制造步骤相对简单。这些优点使得它在航天等辐射环境具有广泛的应用前景。
附图1C所示是现有技术中一种带有绝缘埋层的图像传感器结构,同时参考附图1B,所述带有绝缘埋层的图像传感器结构的衬底进一步包括支撑衬底101、绝缘埋层102以及顶层半导体层103,其余结构均与附图1B类似。由于光敏二极管D1所接受的光是来自于衬底表面的,故第一掺杂区域111和第二掺杂区域112需要一定的深度来吸收入射光,故晶体管的源极掺杂区域122和漏极掺杂区域123必然与绝缘埋层102之间具有一距离,即驱动电路区域I只能制作成部分耗尽结构。显然这种部分耗尽结构并未实现驱动电路区域I和光学传感区域II之间的介质隔离,一旦有高能粒子穿越驱动电路区域I和光学传感区域II,仍然可以使图像传感器发生电学失效。
故,现有技术的缺点在于,当用SOI制作CMOS图像传感器时,由于SOI的硅膜厚度较薄,在其上制作感光二极管受到限制。较薄的硅膜限制了感光二极管耗尽层厚度,光吸收效率下降。增加硅膜的厚度则不能做全耗尽型SOI器件,或者降低部分耗尽型器件的抗辐射等性能。
发明内容
本发明所要解决的技术问题是,提供一种具有抗高能粒子辐射能力的带有绝缘埋层的图像传感器及其制作方法。
为了解决上述问题,本发明提供了一种带有绝缘埋层的图像传感器,所述图像传感器形成于支撑衬底表面,所述支撑衬底的材料是半导体材料,所述图像传感器包括驱动电路区域和光学传感区域,驱动电路区域的支撑衬底中具有顶层半导体层,顶层半导体层通过绝缘埋层与支撑衬底隔离;驱动电路区域中的晶体管形成于顶层半导体层中,光学传感区域中的光学传感器件形成于支撑衬底中并通过隔离层与支撑衬底电学隔离,所述隔离层的材料是P型半导体掺杂;所述驱动电路区域和光学传感区域彼此通过绝缘侧墙横向隔离。
作为可选的技术方案,所述绝缘侧墙以及绝缘埋层的材料各自独立地选自于氧化硅、氮化硅以及氮氧化硅中的任意一种。
作为可选的技术方案,所述隔离层的掺杂浓度远大于支撑衬底的掺杂浓度,为重掺杂的P+隔离层。
本发明进一步提供了一种上述带有绝缘埋层的图像传感器的制作方法,包括如下步骤:提供支撑衬底,所述支撑衬底表面依次具有连续的绝缘埋层和连续的顶层半导体层:去除光学传感区域的顶层半导体层和绝缘埋层,并进一步在支撑衬底中的对应位置形成凹槽;在凹槽的底部和侧壁上形成隔离层,隔离层为P型半导体掺杂;在隔离层表面形成光学传感器件;在驱动电路区域和光学传感区域之间形成绝缘侧墙;在驱动电路区域的顶层半导体层中形成晶体管。
作为可选的技术方案,形成所述隔离层的方法选自于外延、离子注入以及扩散掺杂中的一种。
作为可选的技术方案,形成所述隔离层的方法采用离子注入,注入能量范围是100KeV至800KeV,剂量范围是5×1012cm-2至5×1016cm-2。
作为可选的技术方案,所述形成光学传感器件的步骤进一步包括:在隔离层表面外延形成外延半导体层:向外延半导体层内注入第一掺杂离子,形成具有第一导电类型的第一掺杂区域:在第一掺杂区域中的部分区域注入第二掺杂离子,形成具有第二导电类型的第二掺杂区域。
作为可选的技术方案,所述支撑衬底和顶层半导体层的材料为单晶硅,所述绝缘侧墙以及绝缘埋层的材料各自独立地选自于氧化硅、氮化硅以及氮氧化硅中的任意一种。
作为可选的技术方案,所述去除光学传感区域的顶层半导体层和绝缘埋层,以及在支撑衬底中形成凹槽的工艺采用等离子体辅助刻蚀工艺。
本发明的优点在于,驱动电路区域的底部进一步设置了绝缘埋层,形成完全被绝缘介质围拢的驱动电路区域,提高了驱动电路区域的抗高能粒子辐射的能力,并且P型重掺杂的隔离层为光学传感区域提供了P+隔离结构,有效复合辐射产生的多余电子,提高了光学传感区域的抗高能粒子辐射的能力。故上述方法所制作的带有绝缘埋层的图像传感器能够更好地避免了高能粒子、特别是高能电子从衬底处穿越驱动电路区域和光学传感区域而造成传感器失效。
附图说明
附图1A所示是现有技术中一种典型的图像传感器的电路结构示意图。
附图1B所示是附图1A所示的图像传感器的器件结构示意图。
附图1C所示是现有技术中一种带有绝缘埋层的图像传感器结构示意图。
附图2所示是本发明的具体实施方式所述方法的实施步骤示意图。
附图3A至附图3F所示是本发明的具体实施方式所述方法的工艺示意图。
具体实施方式
接下来结合附图详细介绍本发明所述一种带有绝缘埋层的图像传感器及其制作方法的具体实施方式。
附图2所示是本具体实施方式的实施步骤示意图,包括:步骤S20,提供支撑衬底,所述支撑衬底表面依次具有连续的绝缘埋层和连续的顶层半导体层:步骤S21,去除光学传感区域的顶层半导体层和绝缘埋层,并进一步在支撑衬底中的对应位置形成凹槽;步骤S22,在凹槽的底部和侧壁上形成隔离层,隔离层的材料为P型半导体掺杂;步骤S23,在隔离层表面形成光学传感器件;步骤S24,在驱动电路区域和光学传感区域之间形成绝缘侧墙;步骤S25,在驱动电路区域的顶层半导体层中形成晶体管。
附图3A至附图3F所示是本具体实施方式的工艺示意图。
附图3A所示,参考步骤S20,提供支撑衬底301,所述支撑衬底301表面依次具有连续的绝缘埋层302和连续的顶层半导体层303。所述支撑衬底301和顶层半导体层303的材料例如可以是单晶硅,也可以是锗硅、碳化硅以及各种III-V族化合物半导体材料等,支撑衬底301和顶层半导体层303的导电类型可以是N型或者P型中的任意一种。绝缘埋层302的材料选自于氧化硅、氮化硅以及氮氧化硅中的任意一种。支撑衬底301和顶层半导体层303被划分为驱动电路区域I和光学传感区域II。顾名思义,驱动电路区域I在后续步骤中用于形成由多个晶体管(例如MOSFET)组成的驱动电路,而光学传感区域II在后续步骤中用于形成光学传感器件。此SOI材料可以是由注氧隔离技术(SIMOX,Seperation by Implantation of Oxygen)、注氢键合技术(智能剥离,Smart-Cut)、注氧键合技术或普通键合技术制成。
附图3B所示,参考步骤S21,去除光学传感区域II的顶层半导体层303和绝缘埋层302,并进一步在支撑衬底301中的对应位置形成凹槽310。为了获得陡直的侧壁,该去除顶层半导体层303和绝缘埋层302并进一步形成凹槽310的工艺优选采用等离子体辅助刻蚀工艺。凹槽310的深度范围是1μm至5μm。
附图3C所示,参考步骤S22,在凹槽310的底部和侧壁上形成隔离层330,隔离层330为P型半导体掺杂,且其掺杂浓度远大于支撑衬底301。形成隔离层330的方法选自于外延、离子注入以及扩散掺杂中的一种。外延方法是直接在凹槽310的表面生长含有掺杂物质的外延层作为隔离层330,扩散和离子注入的手段都是在凹槽310的侧壁上直接进行电学改性,附图3C所示为采用扩散或者离子注入的手段形成隔离层330的结构示意图。以P型单晶硅作为支撑衬底301为例,采用注入工艺形成隔离层330,可以选用硼离子作为注入离子形成P型的隔离层330,注入能量范围是100KeV至800KeV,剂量范围是5×1012cm-2至5×1016cm-2。
附图3D所示,参考步骤S23,在隔离层330表面形成光学传感器件。本具体实施方式以光敏二极管为例进行叙述。本具体实施方式中,形成光敏二极管步骤进一步包括:在隔离层表面外延形成外延半导体层393:向外延半导体层内注入第一掺杂离子,形成具有第一导电类型的第一掺杂区域391:在第一掺杂区域391中的部分区域注入第二掺杂离子392,形成具有第二导电类型的第二掺杂区域392。以外延半导体层393的材料是单晶硅为例,第一掺杂区域391可以选择通过注入磷等能够形成N型掺杂的离子形成,能量范围是400KeV至2000KeV,剂量范围是1×1012 cm-2至5×1013cm-2;第二掺杂区域392可以选择通过注入硼等能够形成P型掺杂的离子形成,能量范围是100KeV至400KeV,剂量范围是5×1013 cm-2至1×1014cm-2。
附图3E所示,参考步骤S24,在驱动电路区域I和光学传感区域II之间形成绝缘侧墙350。本步骤可以首先在支撑衬底301的驱动电路区域I和光学传感区域II的交界处形成隔离沟槽,为了获得陡直的侧壁,该形成隔离沟槽310的工艺优选采用等离子体辅助刻蚀工艺;然后在沟槽中填充绝缘介质,以形成绝缘侧墙350,绝缘侧墙350的厚度范围是0.01μm至0.5μm。绝缘侧墙350的材料选自于氧化硅、氮化硅以及氮氧化硅中的任意一种,形成上述材料的工艺可以采用气相沉积等工艺。此处叙述的为浅沟槽隔离结构,在其他的实施方式中也可以采用局部场氧化隔离结构代替。
附图3F所示,参考步骤S25,在驱动电路区域I的顶层半导体层303中形成晶体管。附图3F意在表示驱动电路区域I和光学传感区域II相互之间的位置关系,故仅在驱动电路区域I仅以某一晶体管的栅极121、源极掺杂区域122、漏极掺杂区域123来表示。驱动电路区域I中实际晶体管的数目以及彼此之间的位置以及连接关系请参考现有技术中附图1A所示的电路图,该电路图是一个典型的4T型驱动电路,在其他的实施方式中,驱动电路区域I也可以设置为3T型等其他形式的驱动电路。
上述步骤实施完毕后,还应当继续在驱动电路区域I和光学传感区域II的表面形成介质层以及金属连线,制作器件之间的电学连接以及引出电极,上述各个步骤均可采用本领域内常见的工艺,此处不再赘述。
从附图3G中可以看出,除了驱动电路区域I和光学传感区域II之间横向通过绝缘侧墙350实现电学隔离之外,驱动电路区域I的底部进一步设置了绝缘埋层302,形成完全被绝缘介质围拢的驱动电路区域I,提高了驱动电路区域I的抗高能粒子辐射的能力,并且隔离层330为光学传感区域II提供了P+电学隔离结构,有效复合辐射产生的多余高能电子,提高了光学传感区域II的抗高能粒子辐射的能力。故上述方法所制作的带有绝缘埋层的图像传感器能够更好地避免了高能粒子从衬底处穿越驱动电路区域I和光学传感区域II而造成传感器失效。
综上所述,虽然本发明已用较佳实施例揭露如上,然其并非用以限定本发明,本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视权利要求书所申请的专利范围所界定者为准。