CN102323996B - 基于三维gis技术的输电线路可视化状态监测系统 - Google Patents

基于三维gis技术的输电线路可视化状态监测系统 Download PDF

Info

Publication number
CN102323996B
CN102323996B CN201110290732.5A CN201110290732A CN102323996B CN 102323996 B CN102323996 B CN 102323996B CN 201110290732 A CN201110290732 A CN 201110290732A CN 102323996 B CN102323996 B CN 102323996B
Authority
CN
China
Prior art keywords
data
summit
display module
geographic information
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110290732.5A
Other languages
English (en)
Other versions
CN102323996A (zh
Inventor
于维俭
汪丽川
邓雨荣
朱时阳
谢植飚
何民
陆小艺
叶家发
王乐
黄义纲
李弘�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGXI ELECTRIC POWER INDUSTRY INVESTIGATION DESIGN AND RESEARCH INSTITUTE
GUANGXI G-ENERGY INFORMATION ENGINEERING Co Ltd
Electric Power Research Institute of Guangxi Power Grid Co Ltd
Original Assignee
GUANGXI ELECTRIC POWER INDUSTRY INVESTIGATION DESIGN AND RESEARCH INSTITUTE
GUANGXI G-ENERGY INFORMATION ENGINEERING Co Ltd
Electric Power Research Institute of Guangxi Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGXI ELECTRIC POWER INDUSTRY INVESTIGATION DESIGN AND RESEARCH INSTITUTE, GUANGXI G-ENERGY INFORMATION ENGINEERING Co Ltd, Electric Power Research Institute of Guangxi Power Grid Co Ltd filed Critical GUANGXI ELECTRIC POWER INDUSTRY INVESTIGATION DESIGN AND RESEARCH INSTITUTE
Priority to CN201110290732.5A priority Critical patent/CN102323996B/zh
Publication of CN102323996A publication Critical patent/CN102323996A/zh
Application granted granted Critical
Publication of CN102323996B publication Critical patent/CN102323996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

本发明公开了基于三维GIS技术的输电线路可视化状态监测系统,该系统由地理信息数据展示模块,设备模型数据展示模块和状态监测数据展示模块三部分组成。该系统以三维GIS技术为基础,通过对海量空间信息的多角度、全方位展现,实现输电线路走廊的三维地景仿真和输电设备状态的三维展示,从而为提升电力设备运行管理的精细化、科学化、智能化水平提供信息支撑。

Description

基于三维GIS技术的输电线路可视化状态监测系统
技术领域
本发明属于输电线路状态监测领域,尤其涉及基于三维GIS技术的输电线路可视化状态监测系统。
背景技术
架空输电线路纵横交错分布在旷野上,其极易受到气候、地质、走廊周边人类活动等因素的影响。多年的运行经验表明,环境(包含自然环境和社会环境)因素导致的输电设备故障在全部故障中的占比高达90%以上,恶劣的运行环境是输电设备安全稳定运行所面临的最主要、最突出的问题。鉴于此,近年来,随着电子信息技术、传感器技术、图像处理技术和人工智能技术的快速发展,电力行业尝试开展了输电线路状态监测技术的应用,即通过实时、连续、在线监测输电设备本体的运行信息和输电走廊周边的环境状态,分析、评价输电线路的运行风险,从而指导设备运行部门开展有针对性的维护和防范。然而,当输电线路状态监测系统由单一、独立的监测单元发展成为多元、互联的综合信息系统后,纷繁的状态监测数据与海量的地理信息数据相交织,此时如何直观、生动、准确地展示这些数据,使各级运行、管理人员能全面把握辖区输电设备运行状态,成为一个亟需解决的技术难题。
为此,开发一种基于三维GIS技术的输电线路可视化状态监测系统,以三维GIS技术为基础,通过对海量空间信息的多角度、全方位展现,实现输电线路走廊的三维地景仿真和输电设备状态的三维展示,从而为提升电力设备运行管理的精细化、科学化、智能化水平提供信息支撑。
发明内容
本发明的目的是提供一种基于三维GIS技术的输电线路可视化状态监测系统。本发明以三维GIS技术为基础,采用金字塔结构对相关地形数据进行存储,结合基于多线程的动态LOD(Levels of Detail)技术,实现输电线路走廊的三维地景仿真,同时对相关在线监测设备实现三维可视化管理,展示状态监测数据,为提升电力设备运行管理的精细化、科学化、智能化水平提供信息支撑。
本发明解决上述技术问题的技术方案如下:
基于三维GIS技术的输电线路可视化状态监测系统由地理信息数据展示模块,设备模型数据展示模块和状态监测数据展示模块三部分组成。其中:地理信息数据展示模块采用了基于金字塔结构的数据存储技术和动态LOD技术,设备模型数据展示模块采用了渐近式传输与顶点式简化相结合的方式,实现高精度在线监测设备模型快速浏览;状态监测数据展示模块采用粒子系统实现状态监测数据展示。
1)地理信息数据展示模块
地理信息数据展示模块采用了基于金字塔结构的数据存储技术和动态LOD技术。实现大范围的地理信息数据展示与仿真需要实现大数据量的地景实时交互显示,故相关数据的存储与管理则为技术核心所在,具体做法是:在保证场景显示准确的前提下,使参与实时处理的地理信息数据降低到最少,以保证信息交互响应的效率。
本发明采用基于金字塔结构的数据存储为实现地理信息数据展示所需的海量空间信息数据。基于金字塔结构的数据存储为影像数据和高程数据等地理信息数据提供一种可适应快速调度的存储方法;为三维地形显示,输电线路走廊可视化做准备;在使用数据时,可以根据视点与地形的距离,快速获取相应分辨率影像数据和高程数据。基于金字塔结构的数据存储其具体的实现过程如下:
步骤一:输入高程数据,对高程数据进行预处理,建立快速索引,采用线性插值对高程数据进行计算;
步骤二:输入影像数据;
步骤三:计算影像数据的范围和分辨率;
步骤四:根据计算所得的影像数据的范围和分辨率,判断是否需要对其进行切割,若需要,则按预定的网格切割为瓦片;若不需要,则跳入步骤五;
步骤五;为每个瓦片进行相应的网格化处理;
步骤六:结合步骤一和步骤五的结果,为每个网格点计算相应的高程值;
步骤七:判断目前的网格是否还需要压缩,若需要则按四分裂对其进行合并压缩,然后跳入步骤三;若不需要则建立数据索引;
步骤八:将数据存储到相应的数据库。
实现地理信息数据展示,除完成数据存储外,还需要对数据进行相应简化,再将场景模型和纹理数据区分为多种细节层次,并按细节序列加以组织,以达到视点越接近细节越丰富的场景表达效果,最终实现输电线路走廊可视化。远视点的地形区域的绘制无需使用与近视点一样的精度,为加快可视化精度,对场景中各地形数据进行LOD分层,实现地形数据动态变化过程,此过程中,场景层次细节的变化应能与视点的变化一致,以达到不同层次间场景的连续平滑过渡。动态LOD技术的具体实现方式如下:
步骤一:收到相机(观察点)状态信息,进行视场计算与数据裁剪;
步骤二:计算网格中心与相机(观察点)的距离、偏角;
步骤三:取出最佳精度的瓦片,影像瓦片投影到显示屏的像素数量接近瓦片的实际像素数量为最佳精度;
步骤四:判断瓦片组合是否覆盖所有可见范围,若已完全覆盖,则直接跳入步骤六;若还未完全覆盖,取周围8个网格中心为新的标靶,对其进行可视性判断和重复性判断,然后筛选留下新的可见网格;
步骤五:判断是否还存在新网格,若存在则返回步骤二;若已不存在则跳入步骤六;
步骤六:所有瓦片移交绘制系统。
2)设备模型数据展示模块
本发明对于设备模型采用了渐近式传输与顶点式简化相结合的方式,实现高精度在线监测设备模型快速浏览。具体实现步骤如下:
步骤一:输入显示模型请求;
步骤二:形成设备模型顶点集P,并且建立所有表面三角形(设备模型通常是用一个闭合的空壳表现,而这个空壳是由很多三角形构成)的索引关系;
步骤三:寻找对体积影响最小的顶点Pi,本算法是建立在局部误差基础之上的,所以选择基于局部体积V的衡量函数作为简化误差的衡量标准,逐个顶点试验寻找出简化误差最小的顶点;
步骤四:将步骤三寻找到的顶点Pi删除;
步骤五:将顶点Pi所在区域重新三角化;
步骤六:判断顶点集P内所有顶点是否全部逐一进行删除,若尚未完成则寻找下一个顶点,然后接着跳入步骤三;若已删除完毕则对所有顶点按删除顺序进行倒序编码;
步骤七:倒序传递顶点数据;
步骤八:客户端解码,选择代表顶点的数量;
步骤九:显示模型。
其中,实现步骤三的具体子步骤如下:
子步骤一:初始化,顶点Pi是顶点集P中的一个元素,令i=0;
子步骤二:假设将顶点Pi移除;
子步骤三:将顶点Pi所在区域重新三角化;
子步骤四:形成一个新的锥形区域;
子步骤五:将新旧两个区域的体积进行计算比较;
子步骤六:根据子步骤五的计算结果,记录体积变化最小的顶点Pi
子步骤七:判断顶点集P内所有顶点是否全部试验完毕,若尚未完成则令i=i+1,然后跳入子步骤二;若已试验完毕,则输出体积变化最小的顶点Pi
此方法降低了模型的复杂度,减少图形系统需处理的多边形数目,保留模型的几何特征,并实现实时交互,很好的解决了传统网格算法计算量大的问题,节省了计算所需内存空间,实现了设备模型的快速浏览。
3)状态监测数据展示模块
状态监测数据的三维可视化技术,直观的展示了数据的客观现象(原始状态),为后期的数据分析和分析结果的可视化提供了基础。由于监测数据在不断更新和流动,所以用静态的物理模型无法满足要求,必须使用粒子系统技术模拟各种监测数据的实时变化状态。本系统采用粒子系统技术和模型渐进式加载技术,实现了台风模拟、下雨天气模拟、洪水漫延与淹没过程模拟、山火模拟、雷电模拟等应用。本文采用粒子系统实现状态监测数据展示的具体过程如下:
步骤一:接收到状态监测数据;
步骤二:向系统发出申请分配新粒子的请求;
步骤三:判断淘汰区是否有淘汰粒子,若有则将新粒子激活;若无则分配新粒子空间,然后再将新粒子激活;
步骤四:依据最近的监测数据做趋势分析计算;
步骤五:更新粒子状态,主要包括大小、形状、质量、速度、颜色、生命周期参数;
步骤六:判断粒子是否超过生命周期,若已超过生命周期,则做死亡处理,转存到淘汰缓冲区;若仍在生命周期,则转交图形绘制系统处理,即对存活的粒子进行绘制。
图形绘制系统,利用上述在生命周期内的粒子的物理模拟结果,创建各种动画特效,即实现状态监测数据的展示。
本发明与现有技术比较的优点有:
1.基于三维GIS技术的输电线路可视化状态监测系统,以三维GIS技术为基础,通过对海量空间信息的多角度、全方位展现,实现输电线路走廊的三维地景仿真和输电设备状态的三维展示。
2.该系统为提升电力设备运行管理的精细化、科学化、智能化水平提供信息支撑。
3.该系统将输电线路在线监测由原先所得的各项参数、二维图像转变为实时全面的动态参数和三维的立体影像,从而实现输电线路的立体化管理。
4.该系统运行稳定,可视化程度高,模拟图层清晰准确,操作简单,造价低廉,有良好的推广空间。
附图说明
图1是本发明的系统结构图。
图2是本发明的基于金字塔结构的数据存储的程序流程图。
图3是本发明的动态LOD技术的程序流程图。
图4-1是本发明的设备模型数据展示模块的程序流程图。
图4-2是本发明的设备模型数据展示模块的子程序——寻找对体积影响最小的顶点Pi的流程图。
图5是本发明的状态监测数据展示模块的程序流程图。
图中:地理信息数据展示模块1,设备模型数据展示模块2,状态监测数据展示模块3。
具体实施方式
以下通过具体实施方式,结合附图对本发明作进一步说明。
本发明的系统结构如图1所示,基于三维GIS技术的输电线路可视化状态监测系统由地理信息数据展示模块1,设备模型数据展示模块2和状态监测数据展示模块3三部分组成。其中:地理信息数据展示模块1采用了基于金字塔结构的数据存储技术和动态LOD技术,设备模型数据展示模块2采用了渐近式传输与顶点式简化相结合的方式,实现高精度在线监测设备模型快速浏览;状态监测数据展示模块3采用粒子系统实现状态监测数据展示。
实现大范围的地理信息数据展示与仿真即要实现大数据量的地景实时交互显示,相关数据的存储与管理则为技术核心所在,具体做法是:在保证场景显示准确的前提下,使参与实时处理的地理信息数据降低到最少,以保证信息交互响应的效率。
本发明为实现地理信息数据展示,采用基于金字塔结构的数据存储,其为影像数据和高程数据等地理信息数据提供一种可适应快速调度的存储方法,为三维地形显示,输电线路走廊可视化做准备。在构建地形金字塔时,首先把原始地形数据作为金字塔的底层(分辨率最高),即第0层,形成第0层瓦片矩阵。在第0层的基础上,按每2个像素合成为一个像素的方法生成第1层。如此下去,构成整个瓦片金字塔。在使用数据时,可以根据视点与地形的距离,快速获取相应分辨率影像数据和高程数据。
本发明的基于金字塔结构的数据存储的程序流程图如图2所示,其具体的存储过程如下:
步骤一:输入高程数据,对高程数据进行预处理,建立快速索引,采用线性插值对高程数据进行计算;
步骤二:输入影像数据;
步骤三:计算影像数据的范围和分辨率;
步骤四:根据计算所得的影像数据的范围和分辨率,判断是否需要对其进行切割,若需要,则按预定的网格切割为瓦片;若不需要,则跳入步骤五;
步骤五;为每个瓦片进行相应的网格化处理;
步骤六:结合步骤一和步骤五的结果,为每个网格点计算相应的高程值;
步骤七:判断目前的网格是否还需要压缩,若需要则按四分裂对其进行合并压缩,然后跳入步骤三;若不需要则建立数据索引;
步骤八:将数据存储到相应的数据库。
实现地理信息数据展示,完成数据存储外,还需要对数据进行相应简化,再将场景模型和纹理数据区分为多种细节层次,并按细节序列加以组织,以达到视点越近细节越丰富的场景表达效果,最终实现输电线路走廊可视化。远视点的地形区域的绘制无需使用与近视点一样的精度,为加快可视化精度,对场景中各地形数据进行LOD分层,实现地形数据动态变化过程,此过程中,场景层次细节的变化应能与视点的变化一致,以达到不同层次间场景的连续平滑过渡。
本发明的动态LOD技术的程序流程图如图3所示,动态LOD技术的具体实现方式如下:
步骤一:收到相机(观察点)状态信息,进行视场计算与数据裁剪;
步骤二:计算网格中心与相机(观察点)的距离、偏角;
步骤三:取出最佳精度的瓦片,影像瓦片投影到显示屏的像素数量接近瓦片的实际像素数量为最佳精度;
步骤四:判断瓦片组合是否覆盖所有可见范围,若已完全覆盖,则直接跳入步骤六;若还未完全覆盖,取周围8个网格中心为新的标靶,对其进行可视性判断和重复性判断,然后筛选留下新的可见网格;
步骤五:判断是否还存在新网格,若存在则返回步骤二;若已不存在则跳至步骤六;
步骤六:所有瓦片移交绘制系统。
本发明对于设备模型采用了渐近式传输与顶点式简化相结合的方式,实现高精度在线监测设备模型快速浏览。本发明的设备模型数据展示模块2的程序流程图如图4-1所示,具体实现步骤如下:
步骤一:输入显示模型请求;
步骤二:形成设备模型顶点集P,并且建立所有表面三角形(设备模型通常是用一个闭合的空壳表现,而这个空壳是由很多三角形构成)的索引关系;
步骤三:寻找对体积影响最小的顶点Pi,本算法是建立在局部误差基础之上的,所以选择基于局部体积V的衡量函数作为简化误差的衡量标准,逐个顶点试验寻找出简化误差最小的顶点;
步骤四:将步骤三寻找到的顶点Pi删除;
步骤五:将顶点Pi所在区域重新三角化;
步骤六:判断顶点集P内所有顶点是否全部逐一进行删除,若尚未完成则寻找下一个顶点,然后接着跳入步骤三;若已删除完毕则对所有顶点按删除顺序进行倒序编码;
步骤七:倒序传递顶点数据;
步骤八:客户端解码,选择代表顶点的数量;
步骤九:显示模型。
其中,实现步骤三的子步骤如图4-2所示,实现步骤三的具体子步骤如下:
子步骤一:初始化,顶点Pi是顶点集P中的一个元素,令i=0;
子步骤二:假设将顶点Pi移除;
子步骤三:将顶点Pi所在区域重新三角化;
子步骤四:形成一个新的锥形区域;
子步骤五:将新旧两个区域的体积进行计算比较;
子步骤六:根据子步骤五的计算结果,记录体积变化最小的顶点Pi
子步骤七:判断顶点集P内所有顶点是否全部试验完毕,若尚未完成则令i=i+1,然后跳入子步骤二;若已试验完毕,则输出体积变化最小的顶点Pi
此方法降低了模型的复杂度,减少图形系统需处理的多边形数目,保留模型的几何特征,并实现实时交互,很好的解决了传统网格算法计算量大的问题,节省了计算所需内存空间,实现了设备模型的快速浏览。
状态监测数据的三维可视化技术,直观的展示了数据的客观现象(原始状态),为后期的数据分析和分析结果的可视化提供了基础。由于监测数据在不断更新和流动,所以用静态的物理模型无法满足要求,必须使用粒子系统技术模拟各种监测数据的实时变化状态。本系统采用粒子系统技术和模型渐进式加载技术,实现了台风模拟、下雨天气模拟、洪水漫延与淹没过程模拟、山火模拟、雷电模拟等应用。
本发明的状态监测数据展示模块3的流程图如图5所示,本文采用粒子系统实现状态监测数据展示的具体过程如下:
步骤一:接收到状态监测数据;
步骤二:向系统发出申请分配新粒子的请求;
步骤三:判断淘汰区是否有淘汰粒子,若有则将新粒子激活;若无则分配新粒子空间,然后再将新粒子激活;
步骤四:依据最近的监测数据做趋势分析计算;
步骤五:更新粒子状态,主要包括大小,形状、质量、速度、颜色、生命周期参数;
步骤六:判断粒子是否超过生命周期,若已超过生命周期,则做死亡处理,转存到淘汰缓冲区;若仍在生命周期,则转交图形绘制系统处理,即对存活的粒子进行绘制。
图形绘制系统,利用上述在生命周期内的粒子的物理模拟结果,根据物理模拟更改粒子的位置与特性,创建各种动画特效,即实现状态监测数据的展示。根据物理模拟更改粒子的位置与特性,这些物理模拟可能象将速度加到当前位置或者调整速度抵消摩擦这样简单,也可能象将外力考虑进取计算正确的物理抛射轨迹那样复杂。

Claims (1)

1.基于三维GIS技术的输电线路可视化状态监测系统,其特征在于,系统由地理信息数据展示模块,设备模型数据展示模块和状态监测数据展示模块三部分组成,其中:地理信息数据展示模块采用了基于金字塔结构的数据存储技术和动态LOD技术,设备模型数据展示模块采用了渐近式传输与顶点式简化相结合的方式,实现高精度在线监测设备模型快速浏览;状态监测数据展示模块采用粒子系统实现状态监测数据展示;
1)地理信息数据展示模块
地理信息数据展示模块采用了基于金字塔结构的数据存储技术和动态LOD技术,实现大范围的地理信息数据展示与仿真需要实现大数据量的地景实时交互显示,故相关数据的存储与管理则为技术核心所在,具体做法是:在保证场景显示准确的前提下,使参与实时处理的地理信息数据降低到最少,以保证信息交互响应的效率;
采用基于金字塔结构的数据存储为实现地理信息数据展示所需的海量空间信息数据,基于金字塔结构的数据存储为地理信息数据提供一种可适应快速调度的存储方法;为三维地形显示,输电线路走廊可视化做准备;在使用数据时,可以根据视点与地形的距离,快速获取相应分辨率影像数据和高程数据;基于金字塔结构的数据存储具体的实现过程如下:
步骤一:输入高程数据,对高程数据进行预处理,建立快速索引,采用线性插值对高程数据进行计算;
步骤二:输入影像数据;
步骤三:计算影像数据的范围和分辨率;
步骤四:根据计算所得的影像数据的范围和分辨率,判断是否需要对其进行切割,若需要,则按预定的网格切割为瓦片;若不需要,则跳入步骤五;
步骤五:为每个瓦片进行相应的网格化处理;
步骤六:结合步骤一和步骤五的结果,为每个网格点计算相应的高程值;
步骤七:判断目前的网格是否还需要压缩,若需要则按四分裂对其进行合并压缩,然后跳入步骤三;若不需要则建立数据索引;
步骤八:将数据存储到相应的数据库;
实现地理信息数据展示,除完成数据存储外,还需要对数据进行相应简化,再将场景模型和纹理数据区分为多种细节层次,并按细节序列加以组织,以达到视点越接近细节越丰富的场景表达效果,最终实现输电线路走廊可视化;远视点的地形区域的绘制无需使用与近视点一样的精度,为加快可视化精度,对场景中各地形数据进行LOD分层,实现地形数据动态变化过程,此过程中,场景层次细节的变化应能与视点的变化一致,以达到不同层次间场景的连续平滑过渡;动态LOD技术的具体实现方式如下:
步骤一:收到相机即观察点状态信息,进行视场计算与数据裁剪;
步骤二:计算网格中心与相机即观察点的距离、偏角;
步骤三:取出最佳精度的瓦片,影像瓦片投影到显示屏的像素数量接近瓦片的实际像素数量为最佳精度;
步骤四:判断瓦片组合是否覆盖所有可见范围,若已完全覆盖,则直接跳入步骤六;若还未完全覆盖,取周围8个网格中心为新的标靶,对其进行可视性判断和重复性判断,然后筛选留下新的可见网格;
步骤五:判断是否还存在新网格,若存在则返回步骤二;若已不存在则跳入步骤六;
步骤六:所有瓦片移交绘制系统;
2)设备模型数据展示模块
对于设备模型采用了渐近式传输与顶点式简化相结合的方式,实现高精度在线监测设备模型快速浏览;具体实现步骤如下:
步骤一:输入显示模型请求;
步骤二:形成设备模型顶点集P,并且建立所有表面三角形的索引关系;
步骤三:寻找对体积影响最小的顶点Pi,渐近式传输与顶点式简化相结合算法是建立在局部误差基础之上的,所以选择基于局部体积V的衡量函数作为简化误差的衡量标准,逐个顶点试验寻找出简化误差最小的顶点;
步骤四:将步骤三寻找到的顶点Pi删除;
步骤五:将顶点Pi所在区域重新三角化;
步骤六:判断顶点集P内所有顶点是否已经全部逐一删除完毕,若尚未完成则寻找下一个顶点,然后接着跳入步骤三;若已删除完毕则对所有顶点按删除顺序进行倒序编码;
步骤七:倒序传递顶点数据;
步骤八:客户端解码,选择代表顶点的数量;
步骤九:显示模型;
其中,实现步骤三的具体子步骤如下:
子步骤一:初始化,顶点Pi是顶点集P中的一个元素,令i=0;
子步骤二:假设将顶点Pi移除;
子步骤三:将顶点Pi所在区域重新三角化;
子步骤四:形成一个新的锥形区域;
子步骤五:将新旧两个区域的体积进行计算比较;
子步骤六:根据子步骤五的计算结果,记录体积变化最小的顶点Pi
子步骤七:判断顶点集P内所有顶点是否全部试验完毕,若尚未完成则令i=i+1,然后跳入子步骤二;若已试验完毕,则输出体积变化最小的顶点Pi
此方法降低了模型的复杂度,减少图形系统需处理的多边形数目,保留模型的几何特征,并实现实时交互,很好的解决了传统网格算法计算量大的问题,节省了计算所需内存空间,实现了设备模型的快速浏览;
3)状态监测数据展示模块
状态监测数据的三维可视化技术,直观的展示了数据的客观现象即原始状态,为后期的数据分析和分析结果的可视化提供了基础;由于监测数据在不断更新和流动,所以用静态的物理模型无法满足要求,必须使用粒子系统技术模拟各种监测数据的实时变化状态;状态监测数据展示模块采用粒子系统技术和模型渐进式加载技术,实现了台风模拟、下雨天气模拟、洪水漫延与淹没过程模拟、山火模拟、雷电模拟的应用;所采用粒子系统实现状态监测数据展示的具体过程如下:
步骤一:接收到状态监测数据;
步骤二:向系统发出申请分配新粒子的请求;
步骤三:判断淘汰区是否有淘汰粒子,若有则将新粒子激活;若无则分配新粒子空间,然后再将新粒子激活;
步骤四:依据最近的监测数据做趋势分析计算;
步骤五:更新粒子状态,主要包括大小、形状、质量、速度、颜色、生命周期参数;
步骤六:判断粒子是否超过生命周期,若已超过生命周期,则做死亡处理,转存到淘汰缓冲区;若仍在生命周期,则转交图形绘制系统处理,即对存活的粒子进行绘制;
图形绘制系统,利用上述在生命周期内的粒子的物理模拟结果,创建各种动画特效,即实现状态监测数据的展示。
CN201110290732.5A 2011-09-29 2011-09-29 基于三维gis技术的输电线路可视化状态监测系统 Active CN102323996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110290732.5A CN102323996B (zh) 2011-09-29 2011-09-29 基于三维gis技术的输电线路可视化状态监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110290732.5A CN102323996B (zh) 2011-09-29 2011-09-29 基于三维gis技术的输电线路可视化状态监测系统

Publications (2)

Publication Number Publication Date
CN102323996A CN102323996A (zh) 2012-01-18
CN102323996B true CN102323996B (zh) 2014-01-22

Family

ID=45451737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110290732.5A Active CN102323996B (zh) 2011-09-29 2011-09-29 基于三维gis技术的输电线路可视化状态监测系统

Country Status (1)

Country Link
CN (1) CN102323996B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608437B (zh) * 2012-04-11 2014-07-16 北京航空航天大学 一种粒子发射模拟的电磁求解方法
CN102707916A (zh) * 2012-05-03 2012-10-03 南信大影像技术工程(苏州)有限公司 一种应用于化工园区三维管线管理系统的效果显示模块
CN102831307B (zh) * 2012-05-31 2013-11-13 山东电力集团公司青岛供电公司 基于三维gis技术的电网可视化系统及方法
CN102999573B (zh) * 2012-11-09 2015-10-28 中国铁道科学研究院电子计算技术研究所 条带状gis地图要素的缓存更新方法
CN103020871A (zh) * 2012-12-05 2013-04-03 陕西电力科学研究院 一种电力输电线路地理信息系统和灾害地理信息系统
CN103942912B (zh) * 2014-05-09 2015-04-15 国家电网公司 一种基于亮温值分析的输电线路山火精细化定位方法
CN104899922A (zh) * 2015-06-08 2015-09-09 安徽中兴继远信息技术股份有限公司 一种智能电网可视化应用的三维全息生成方法
CN106228587B (zh) * 2016-07-13 2018-10-30 国家海洋信息中心 基于gis图元的海洋风玫瑰图绘制方法
CN106408665A (zh) * 2016-10-25 2017-02-15 合肥东上多媒体科技有限公司 一种新的渐进网格生成方法
CN106777365B (zh) * 2017-01-23 2017-09-29 国网山东省电力公司电力科学研究院 输变电工程环境敏感区域智能识别与预测方法
CN107576311B (zh) * 2017-08-23 2020-01-21 长江水利委员会长江科学院 一种基于三维gis的水库巡检实时监测方法
CN107590861A (zh) * 2017-09-19 2018-01-16 北京许继电气有限公司 基于输电线路通道可视化系统的三维地球可视化方法
CN110019596B (zh) * 2017-09-30 2022-03-08 龙芯中科技术股份有限公司 待显示瓦片的确定方法、装置及终端设备
CN108470044A (zh) * 2018-02-28 2018-08-31 国网甘肃省电力公司兰州供电公司 一种基于三维gis技术的输电线路管理系统
CN108776691A (zh) * 2018-06-05 2018-11-09 四川凯普顿信息技术股份有限公司 一种空间图形聚集的优化方法与系统
CN109598440B (zh) * 2018-12-03 2021-11-26 北京唐冠天朗科技开发有限公司 一种企业全球布局信息同步投影的实现方法
CN109597672A (zh) * 2019-02-18 2019-04-09 北京瓴域航空技术研究院有限公司 无人机监控状态显示方法
CN110866693B (zh) * 2019-11-14 2022-05-17 国网湖北省电力有限公司电力科学研究院 一种基于gis模型的架空输电线路覆冰风险评估方法
CN114123483A (zh) * 2021-09-28 2022-03-01 国网江苏省电力有限公司连云港供电分公司 基于宏观与微观观察数据的输电区域自动识别与管控系统和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072992A (zh) * 2010-10-26 2011-05-25 国网电力科学研究院武汉南瑞有限责任公司 基于精细地形数据的输电线路绕击防雷性能评估方法
CN102118021A (zh) * 2010-01-05 2011-07-06 华北电力科学研究院有限责任公司 一种基于输电线路三维全景模型的故障处理方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118021A (zh) * 2010-01-05 2011-07-06 华北电力科学研究院有限责任公司 一种基于输电线路三维全景模型的故障处理方法及系统
CN102072992A (zh) * 2010-10-26 2011-05-25 国网电力科学研究院武汉南瑞有限责任公司 基于精细地形数据的输电线路绕击防雷性能评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
电力信息系统中三维GIS关键技术的应用研究;魏祖宽等;《计算机与现代化》;20100531(第177期);第83-88页 *
魏祖宽等.电力信息系统中三维GIS关键技术的应用研究.《计算机与现代化》.2010,(第177期),第83-88页.

Also Published As

Publication number Publication date
CN102323996A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
CN102323996B (zh) 基于三维gis技术的输电线路可视化状态监测系统
CN104766366B (zh) 一种三维虚拟现实演示的建立方法
Koller et al. Virtual GIS: A real-time 3D geographic information system
CN110471979B (zh) 基于多源仿真数据聚集与挖掘的电网信息展示仿真系统
CN101241603B (zh) 一种电磁场强度实时可视化方法
CN105261066B (zh) 一种三维地理信息系统实时绘制多线程分配与控制方法
CN102074049A (zh) 基于运动视点的大范围地形调度简化方法
CN106446351A (zh) 一种面向实时绘制的大规模场景组织与调度技术及仿真系统
CN106802993A (zh) 一种在三维场景下电网潮流运行的展现方法
CN107480826A (zh) 基于gis的输电线路覆冰预警三维系统的应用
CN105718643A (zh) 一种基于最优化视角的船舶生产设计审图器实现方法
CN106355640A (zh) 一种地上地下三维一体化空间的处理方法和系统
CN102426424A (zh) 基于分布式架构的临近空间飞行器视景仿真方法
CN106570926B (zh) 一种飞行视景仿真中高效的粒子云层绘制方法
CN115272637B (zh) 面向大区域的三维虚拟生态环境可视化集成和优化系统
CN112328722B (zh) 电力变电站三维gis和模型数据快速加载方法和系统
CN113887939A (zh) 一种基于bimgis的云端渲染蓄能水电厂数字化交付实现方法、系统、存储介质及设备
CN111221514B (zh) 基于OsgEarth的三维可视化组件实现方法及系统
Li et al. Three-dimensional dynamic simulation system for forest surface fire spreading prediction
CN114756937A (zh) 一种基于UE4引擎和Cesium框架的可视化系统及方法
CN115690344A (zh) 海绵城市沙盘及天气模拟系统
CN105117982A (zh) 一种基于杆塔实体的业务数据可视化展示方法
CN104299262A (zh) 一种基于速度场流线的三维云模拟方法
CN116778285A (zh) 用于构建数字孪生底座的大数据融合方法及系统
shiyun Level of detail optimization for real-time terrain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant