CN102320554A - Process for preparing nano seam by virtue of template alignment impressing - Google Patents

Process for preparing nano seam by virtue of template alignment impressing Download PDF

Info

Publication number
CN102320554A
CN102320554A CN 201110191568 CN201110191568A CN102320554A CN 102320554 A CN102320554 A CN 102320554A CN 201110191568 CN201110191568 CN 201110191568 CN 201110191568 A CN201110191568 A CN 201110191568A CN 102320554 A CN102320554 A CN 102320554A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
nano
seam
process
alignment
impressing
Prior art date
Application number
CN 201110191568
Other languages
Chinese (zh)
Other versions
CN102320554B (en )
Inventor
丁玉成
刘红忠
李欣
李祥明
田洪淼
邵金友
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a process for preparing a nano seam by virtue of template alignment impressing. The process comprises the following steps of: firstly, preparing a three-layer structure comprising a rigid substrate layer, a flexible material layer and a rigid material layer; then carrying out alignment impressing by adopting a template, preparing corresponding impressing templates according to different nano seam structures, and applying an external pressure at a position required to produce the nano seam by virtue of the template by adopting an alignment process so as to carry out impressing; and finally carrying out secondary alignment pressing by utilizing a second flat plate to align nano seams on a film material in fracture dislocation, so as to further reduce the space between the nano seams, and carrying out alignment impressing by adopting a nano seam template to cause the flexible material layer to deform and the top rigid material film to break, so as to form a single nano seam or a nano seam array. The process provided by the invention can be used for effectively breaking through complex process flow and expensive processing equipment in the conventional nano seam preparation process, the nano seam structure can be prepared with low cost, and the process provided by the invention can be widely applied to the fields of SEDs (electron-emitter displays), molecular devices and the like.

Description

一种纳米缝的模板对准压印制备工艺 Nano seam imprint template aligned Preparation

技术领域 FIELD

[0001] 本发明属于微纳制造技术领域,具体涉及一种纳米缝的模板对准压印制备工艺。 [0001] The present invention belongs to the field of manufacturing micro-nano technology, particularly relates to a nano slit aligned Preparation imprinting template. 背景技术 Background technique

[0002] 纳米缝由于在量子尺度特殊的电子效应,在表面传导电子发射显示器SED,分子开关,分子晶体管等分子器件方面具有重要的应用。 [0002] Nanostitching special electronic effects due to the quantum scale, the surface conduction electron-emitting device according to aspects molecule SED display, molecular switches, molecular transistors and other important applications. 而纳米缝的制备工艺正是约束SED以及分子器件大规模应用及快速发展的重要因素。 The preparation process Nanostitching exactly SED and large-scale applications of molecular devices and an important factor in the rapid development constraints. 目前,常规的制备纳米缝的主要方法有扫描隧道显微镜法、微加工法、电迁移法以及电化学法等。 Currently, the main method of preparing nano conventional slit scanning tunneling microscopy, micromachining methods, and electrochemical methods electrotransport like. 其中的扫描隧道显微镜法、电迁移法以及电化学法需要复杂的控制系统来监测压力或是电导率的变化以控制纳米缝的形成;微加工法涉及到电子束光刻以及离子束刻蚀,加工设备精密昂贵,操作复杂。 Wherein the scanning tunneling microscopy, electrochemical electrotransport and requires a complicated control system to monitor the change in conductivity or pressure to control the formation of the nano seam; micromachining method relates to electron beam lithography and ion-beam etching, precision machining apparatus costly and complex. 总体而言,常规纳米缝制备方法需要昂贵的工作设备或是复杂的工艺流程,极大地限制了纳米缝的制备效率。 In general, a conventional method of preparation of nano sewing work requires expensive equipment or complex process, which greatly limits the production efficiency of nano seam.

发明内容 SUMMARY

[0003] 为了克服上述现有技术的缺点,本发明的目的在于提供一种纳米缝的模板对准压印制备工艺,不需要昂贵的工作设备或是复杂的工艺流程,能够在刚性材料薄膜上制备纳米缝。 [0003] In order to overcome the above disadvantages of the prior art, an object of the present invention to provide a nano-template alignment imprint slit preparation process does not require expensive equipment or complicated working process, the film can be in a rigid material nano seam.

[0004] 为达到上述目的,本发明采取的技术方案为: [0004] To achieve the above object, the present invention takes technical solutions:

[0005] 一种纳米缝的模板对准压印制备工艺,包括以下步骤: [0005] A nano-imprint slit aligned template preparation process, comprising the steps of:

[0006] 第一步,进行刚性衬底、柔性材料以及刚性材料三层结构的制备,刚性衬底位于底层,柔性材料位于中间层,刚性材料位于顶层,刚性衬底为熔融玻璃或金属板,柔性材料为SU8胶或环氧树脂,刚性材料为厚度是纳米级别的金属材料或半导体材料,根据单一纳米缝制备以及纳米缝阵列结构制备,顶层的刚性材料层可分为均一层和图形化层,均一层的顶层刚性材料薄膜是一个整体层,不存在图形化结构,一次压印形成一个纳米缝;图形化层的顶层刚性薄膜材料采用光刻、刻蚀工艺形成一定的图形结构,一次压印形成纳米缝阵列, [0006] The first step, for a rigid substrate, a flexible material, and the preparation of three-layer structure of a rigid material, located at the bottom of a rigid substrate, an intermediate layer of flexible material, a rigid material on the top floor, the molten glass is a rigid substrate or a metal plate, the flexible material is SU8 or epoxy glue, the thickness of rigid material is a metal or semiconductor material nanometer scale, in accordance with a single layer of rigid material sewn preparation of nano and nano-structure array preparation seam, the top layer can be divided into a uniform layer and patterned layer, a uniform layer of a top layer of a rigid material is integrally film layer, patterning structure does not exist, a nip forming a Nanostitching; rigid top layer of thin film material using photolithography and etching process to form a certain pattern structure, a forming nano-imprint slit array,

[0007] 第二步,采用模板进行对准压印,根据不同的纳米缝结构制备相应的压印模板,采用对准工艺使模板在需要产生纳米缝的位置处施加外在压力进行压印,单一纳米缝工艺仅需要第一平板,利用对准工艺保证平板边缘与产生纳米缝的位置处相平行,施压压印,即可在预期位置得到单一的纳米缝结构;纳米缝阵列结构制备中,压印模板为图形化模板,模板凸起与欲产生纳米缝位置对准,施压压印,可以得到阵列纳米缝结构, [0007] The second step, using the imprint template alignment, prepared according to the imprint template corresponding Nanostitching different structures using alignment process requires that the template is generated at the position of the external pressure applied to the seam nano imprinting, Nanostitching process requires only a single first plate, using the plate edge to ensure alignment process to produce nano-slit at a position parallel to, the embossing pressure can be obtained at the expected location of a single nano-seam construction; nano slit array structure , a graphical imprint template, template generating projection Nanostitching For positioning, the embossing pressure can be obtained Nanostitching array structure,

[0008] 第三步,利用第二平板二次对准施压,利用第二平板对整个顶层刚性材料薄膜纳米缝结构图形区施加压力,使断裂错位的薄膜材料上的纳米缝对齐,进一步减小纳米缝的间距。 [0008] In a third step, the second plate is aligned with the second pressure, the use of nano thin film material on a second pressure is applied to the entire top plate of rigid material film pattern region Nanostitching structure, displacement at break of aligned slits, a further reduction Nanostitching small pitch.

[0009] 由于本发明采用纳米缝的模板对准压印,导致柔性材料层变形,顶层刚性材料薄膜断裂,形成单个纳米缝或是纳米缝阵列,可以有效的突破常规纳米缝制备工艺中复杂的工艺流程以及昂贵的加工设备,能够低廉地制备纳米缝结构,可以广泛地应用在SED显示器以及分子器件等方面。 [0009] Since the present invention employs a slit aligned with the imprint template nanostructures, resulting in deformation of the flexible material layer, the top layer of a rigid material film breaks, forming a single slit or nano Nanostitching arrays, can effectively break a conventional sewing process Preparation nanometers complex the process and expensive processing equipment can be inexpensively nano seam construction can be widely applied in molecular SED display device and the like. 附图说明: BRIEF DESCRIPTION OF:

[0010] 图1为本发明刚性衬底、柔性材料以及刚性材料三层结构的示意图。 [0010] FIG. 1, a schematic view of a flexible material and rigid material three-layer structure of the present invention is a rigid substrate.

[0011] 图2为本发明顶部刚性材料层图形化的三层结构的示意图。 [0011] FIG. 2 is a schematic diagram of the three-layer structure patterning a top layer of rigid material of the present invention.

[0012] 图3为本发明采用第一平板在与产生单一纳米缝位置对准压印的示意图。 And generating a single positioning Nanostitching schematic embossed in [0012] FIG. 3 of the present invention using a first plate.

[0013] 图4为本发明采用图形化模板对准压印的示意图。 [0013] FIG. 4 is a schematic graphical imprint template aligned using the present invention.

[0014] 图5为本发明图形化模板对准压印得到的纳米缝阵列结构示意图。 [0014] FIG. 5 is a schematic structural diagram of a graphical imprint templates invention obtained Nanostitching aligned arrays.

[0015] 图6为本发明采用第二平板对整个图形化的结构区二次施压的示意图。 [0015] FIG. 6 illustrates a second plate structure for the entire patterned area of ​​the secondary pressure using the present invention.

[0016] 图7为本发明图形化错位纳米缝对齐得到的纳米缝结构示意图。 [0016] FIG. 7 is a schematic structural misalignment Nanostitching obtained Nanostitching aligned patterning of the present invention.

具体实施方式 detailed description

[0017] 下面结合附图对本发明详细描述。 [0017] The following detailed description of the present invention in conjunction with the accompanying drawings.

[0018] 一种纳米缝的模板对准压印制备工艺,包括以下步骤: [0018] A nano-imprint slit aligned template preparation process, comprising the steps of:

[0019] 第一步,进行刚性衬底1、柔性材料2以及刚性材料3三层结构的制备,刚性衬底1 位于底层,柔性材料2位于中间层,刚性材料3位于顶层,刚性衬底1为熔融玻璃或金属板, 柔性材料2为SU8胶或环氧树脂,刚性材料3为厚度是纳米级别的金属材料或是半导体材料,根据单一纳米缝制备以及阵列纳米缝结构制备,顶层的刚性材料层可分为均一层和图形化层,均一层的顶层刚性材料薄膜是一个整体层,不存在图形化结构,一次压印形成一个纳米缝;图形化层的顶层刚性薄膜材料采用光刻、刻蚀工艺形成一定的图形结构,一次压印形成纳米缝阵列, [0019] The first step, for a rigid substrate 1, 2, and preparing a flexible material, a rigid substrate layer structure 3 located at the bottom of a rigid material, an intermediate layer of flexible material 2, 3 is located in the top layer of a rigid material, the rigid substrate 1 molten glass or a metal plate, the flexible material 2 as SU8 or epoxy glue, the thickness of rigid material 3 is a metal material or a nanometer-level semiconductor material, a single rigid prepared according to preparation nanometers and an array of nano sewing seam construction, the top layer material layer may be divided into a uniform layer and pattern layer, a uniform layer of a top layer of a rigid material is integrally film layer, patterning structure does not exist, a nip forming a Nanostitching; rigid top layer of thin film material using photolithography, etching process of a certain pattern structure, a nano imprint slit arrays are formed,

[0020] 下面举例说明均一层三层结构的详细制备过程:选择熔融玻璃作为刚性衬底1, 在其上旋涂一层柔性材料2,柔性材料2为SU8胶,然后采用溅射或是蒸镀工艺制备一层纳米级别的刚性材料3,刚性材料3为金属铬层,如图1所示; [0020] The following examples illustrate in detail the preparation of a uniform layer of the three-layer structure: a rigid substrate selected as a molten glass, which is spin-coated on the flexible material 2, a flexible plastic material 2 as SU8, or sputtering and then evaporated in plating process for preparing nanoscale rigid material layer 3, is a rigid metallic chromium layer material 3, shown in Figure 1;

[0021] 图形化三层结构的详细制备过程:在均一层三层结构基础上,进一步采用光刻、刻蚀工艺,在金属铬层上加工出相应的周期性阵列结构,如图2所示, [0021] Details of the preparation process of the patterned three-layer structure: a layer of three-layer structure in all, based on a further photolithography, an etching process, and processing the corresponding periodic array of structures on the chromium layer, shown in Figure 2 ,

[0022] 第二步,采用模板进行对准压印,根据不同的纳米缝结构制备相应的压印模板,采用对准工艺使模板在需要产生纳米缝的位置处施加外在压力进行压印,单一纳米缝工艺仅需要第一平板4,利用对准工艺保证第一平板4边缘与产生纳米缝的位置处相平行,施压压印,即可在预期位置令柔性材料2变形,刚性材料3变形断裂错位,得到单一的纳米缝结构, 如图3所示;纳米缝阵列结构制备中,压印模板为图形化模板5,其凸起与欲产生纳米缝位置对准,施压压印,刚性材料3受压变形错位断裂,可以得到阵列纳米缝结构,如图4所示; 此时得到的纳米缝结构的特征尺寸为wl,如图5所示, [0022] The second step, using the imprint template alignment, prepared according to the imprint template corresponding Nanostitching different structures using alignment process requires that the template is generated at the position of the external pressure applied to the seam nano imprinting, Nanostitching process requires only a single first plate 4, using a first process to ensure the alignment plate 4 and the edge is generated at a position parallel to the seam nanometers, embossing pressure, so that the flexible material can be in the intended position 2 deformable, rigid material 3 strain fracture dislocation, to obtain a single nano seam construction, shown in Figure 3; nano slit array structure, patterned imprint template is a template 5, which is to be produced Nanostitching projections and positioning, pressure platen, 3 a rigid material fracture dislocation compressive deformation can be obtained by an array of nano-seam construction, shown in Figure 4; characteristic dimension Nanostitching structure obtained at this time is WL, shown in Figure 5,

[0023] 第三步,利用第二平板6 二次对准施压,利用第二平板6对整个顶层刚性材料薄膜纳米缝结构图形区施加压力,使断裂错位的薄膜材料上的纳米缝对齐,进一步减小纳米缝的间距,如图6所示;此时形成的纳米缝结构特征尺寸为w2,如图7所示,特征尺寸w2小于特征尺寸wl。 Nano on [0023] a third step, are aligned with the second secondary pressure plate 6, pressure is applied by the second plate 6 on the entire top layer of rigid material film pattern region Nanostitching structure, displacement at break of film material aligned slits, Nanostitching further reduce the spacing as shown in Figure 6; Nanostitching feature size w2 is formed in this case, as shown in FIG. 7, a characteristic dimension smaller than the characteristic dimension w2 wl.

[0024] 本发明充分利用了柔性材料与刚性材料的刚度不同,利用对准压印实现刚性薄膜材料的断裂,以此来实现单个纳米缝或是纳米缝阵列的制备,同时,采取第二平板二次压印,进一步减小纳米缝的间距,此种工艺方法避免了传统纳米缝制备工艺中的复杂流程以及昂贵的加工设备,操作简便易行,无需额外的探测系统,一次对准压印可实现单个纳米缝或是纳米缝阵列的制备。 [0024] The present invention makes full use of different stiffness of the flexible material and the rigid material, the platen achieved using the alignment film material fracture rigidity, or preparing a single Nanostitching Nanostitching arrays in order to achieve, at the same time, taking the second plate secondary embossing, to further reduce the basal spacing of the slits, to avoid such a process for the preparation process of the conventional sewing nanometers complex processes and expensive processing equipment, the operation is simple, no additional detection systems, time alignment of the pressure printing may be implemented or prepared single Nanostitching slit array nm.

Claims (1)

  1. 1. 一种纳米缝的模板对准压印制备工艺,其特征在于,包括以下步骤: 第一步,进行刚性衬底、柔性材料以及刚性材料三层结构的制备,刚性衬底位于底层, 柔性材料位于中间层,刚性材料位于顶层,刚性衬底为熔融玻璃或金属板,柔性材料为SU8 胶或环氧树脂,刚性材料为厚度是纳米级别的金属材料或半导体材料,根据单一纳米缝制备以及纳米缝阵列结构制备,顶层的刚性材料层可分为均一层和图形化层,均一层的顶层刚性材料薄膜是一个整体层,不存在图形化结构,一次压印形成一个纳米缝;图形化层的顶层刚性薄膜材料采用光刻、刻蚀工艺形成一定的图形结构,一次压印形成纳米缝阵列,第二步,采用模板进行对准压印,根据不同的纳米缝结构制备相应的压印模板,采用对准工艺使模板在需要产生纳米缝的位置处施加外在压力进行压印,单 A slit nano imprint template aligned preparation process, characterized by comprising the steps of: a first step for a rigid substrate, preparing a flexible substrate material, and a rigid three-layer structure on the ground floor of a rigid material, flexible an intermediate layer of material, located on the top of a rigid material, the molten glass is a rigid substrate or a metal plate, a flexible material is SU8 or epoxy glue, the thickness of rigid material is nanoscale metal or semiconductor material, based on a single nano-sewing apparatus and a layer of rigid material prepared Nanostitching array structure, the top layer can be divided into a uniform layer and pattern layer, a uniform layer of a top layer of a rigid material is integrally film layer patterned structure is not present, forming a nano-imprinting a slit; graphical a rigid top film material layer by photolithography, an etching process for forming a certain pattern structure, a nano imprint slit arrays are formed, the second step, using the imprint template alignment, the corresponding embossing structures prepared according to different Nanostitching template, template alignment process required to produce that the position of application of external pressure Nanostitching imprinting single 纳米缝工艺仅需要第一平板,利用对准工艺保证平板边缘与产生纳米缝的位置处相平行,施压压印,即可在预期位置得到单一的纳米缝结构;纳米缝阵列结构制备中,压印模板为图形化模板,模板凸起与欲产生纳米缝位置对准,施压压印,可以得到阵列纳米缝结构,第三步,利用第二平板二次对准施压,利用第二平板对整个顶层刚性材料薄膜纳米缝结构图形区施加压力,使断裂错位的薄膜材料上的纳米缝对齐,进一步减小纳米缝的间距。 Nanostitching process requires only the first plate, using a plate at a position to ensure alignment process producing nano edge seam parallel to, the pressing nip, to obtain a single nano-structure in the intended position of the seam; Nano slit array structure, a graphical imprint template, template projections to be produced and Nanostitching aligned position, the platen pressure, can be an array of nano-seam construction, a third step, the second plate is aligned with the second pressure by the second nano-film material on the entire top flat rigid pressure is applied to the thin film nano-material structures seam pattern region, so that the fracture dislocation seam alignment slit further reduce the basal spacing.
CN 201110191568 2011-07-11 2011-07-11 Process for preparing nano seam by virtue of template alignment impressing CN102320554B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110191568 CN102320554B (en) 2011-07-11 2011-07-11 Process for preparing nano seam by virtue of template alignment impressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110191568 CN102320554B (en) 2011-07-11 2011-07-11 Process for preparing nano seam by virtue of template alignment impressing

Publications (2)

Publication Number Publication Date
CN102320554A true true CN102320554A (en) 2012-01-18
CN102320554B CN102320554B (en) 2014-05-28

Family

ID=45448435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110191568 CN102320554B (en) 2011-07-11 2011-07-11 Process for preparing nano seam by virtue of template alignment impressing

Country Status (1)

Country Link
CN (1) CN102320554B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325779A (en) * 1979-04-17 1982-04-20 Beatrice Foods Co. Method for shaping and finishing a workpiece
US4576678A (en) * 1979-07-25 1986-03-18 Vlsi Technology Research Association Pattern forming method
US4606788A (en) * 1984-04-12 1986-08-19 Moran Peter L Methods of and apparatus for forming conductive patterns on a substrate
US5277749A (en) * 1991-10-17 1994-01-11 International Business Machines Corporation Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
CN102262991A (en) * 2011-07-11 2011-11-30 西安交通大学 A method of preparing electron emission sources sed display array Nanostitching

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325779A (en) * 1979-04-17 1982-04-20 Beatrice Foods Co. Method for shaping and finishing a workpiece
US4576678A (en) * 1979-07-25 1986-03-18 Vlsi Technology Research Association Pattern forming method
US4606788A (en) * 1984-04-12 1986-08-19 Moran Peter L Methods of and apparatus for forming conductive patterns on a substrate
US5277749A (en) * 1991-10-17 1994-01-11 International Business Machines Corporation Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
CN102262991A (en) * 2011-07-11 2011-11-30 西安交通大学 A method of preparing electron emission sources sed display array Nanostitching

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
万景: "三层结构纳米压印及其在模板复制和硅纳米线传感器制备中的应用", 《中国优秀硕士学位论文电子期刊库》, 25 May 2009 (2009-05-25), pages 31 - 49 *
刘红忠 等: "纳米压印光刻中的多步定位研究", 《西安交通大学学报》, 10 March 2006 (2006-03-10) *

Also Published As

Publication number Publication date Type
CN102320554B (en) 2014-05-28 grant

Similar Documents

Publication Publication Date Title
Khang et al. Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates
Zaumseil et al. Three-dimensional and multilayer nanostructures formed by nanotransfer printing
Bae et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes
US20040043148A1 (en) Method for fabricating carbon nanotube device
US20080160129A1 (en) Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template
Egger et al. Dynamic shadow mask technique: A universal tool for nanoscience
US20090200707A1 (en) Method of fabricating graphene structures on substrates
Shim et al. Hard-tip, soft-spring lithography
US20090212012A1 (en) Critical dimension control during template formation
CN101266919A (en) A method for selectively etching silicon nano line
Sun et al. Three-dimensional colloidal crystal-assisted lithography for two-dimensional patterned arrays
JP2007230229A (en) Imprint mold, manufacturing process of structure by imprint mold, and manufacturing process of member
Simeone et al. Progress in micro-and nanopatterning via electrochemical lithography
CN101872120A (en) Method for preparing patterned graphene
US20080229941A1 (en) Nano-imprinting apparatus and method
Deng et al. Micropatterning of block copolymer solutions
CN101996853A (en) Anisotropic etching method of graphite or graphene
Hong et al. Micropatterning of graphene sheets: recent advances in techniques and applications
Han et al. Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography
CN101750885A (en) Two-degree of freedom precise positioning work table
Yang et al. Multicomponent interposed carbon nanotube micropatterns by region-specific contact transfer and self-assembling
Yu et al. Triangular profile imprint molds in nanograting fabrication
JP2005007848A (en) Apparatus and method for forming pattern
CN101770182A (en) Three-degree of freedom flexible precision positioning workbench
US20090283000A1 (en) Intaglio printing plate, production method for intaglio printing plate, production method for electronic substrate, and production method for display device

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model