CN102306897B - Ultra narrow linewidth low noise high power single frequency fiber laser - Google Patents
Ultra narrow linewidth low noise high power single frequency fiber laser Download PDFInfo
- Publication number
- CN102306897B CN102306897B CN2011102415208A CN201110241520A CN102306897B CN 102306897 B CN102306897 B CN 102306897B CN 2011102415208 A CN2011102415208 A CN 2011102415208A CN 201110241520 A CN201110241520 A CN 201110241520A CN 102306897 B CN102306897 B CN 102306897B
- Authority
- CN
- China
- Prior art keywords
- polarization
- maintaining
- fiber
- laser
- reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 284
- 230000008878 coupling Effects 0.000 claims abstract description 32
- 238000010168 coupling process Methods 0.000 claims abstract description 32
- 238000005859 coupling reaction Methods 0.000 claims abstract description 32
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 239000013307 optical fiber Substances 0.000 claims description 48
- 230000010287 polarization Effects 0.000 claims description 41
- 239000011521 glass Substances 0.000 claims description 21
- 239000005365 phosphate glass Substances 0.000 claims description 18
- 238000001228 spectrum Methods 0.000 claims description 17
- 238000005086 pumping Methods 0.000 claims description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 13
- 238000005498 polishing Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 9
- 238000005253 cladding Methods 0.000 claims description 8
- 238000002310 reflectometry Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 7
- 150000002910 rare earth metals Chemical class 0.000 claims description 7
- 229910021644 lanthanide ion Inorganic materials 0.000 claims description 4
- 229910001428 transition metal ion Inorganic materials 0.000 claims description 4
- 230000011514 reflex Effects 0.000 claims 9
- 238000000985 reflectance spectrum Methods 0.000 claims 5
- 150000003016 phosphoric acids Chemical class 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005538 encapsulation Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000011162 core material Substances 0.000 description 29
- 239000010409 thin film Substances 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 12
- 238000001914 filtration Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 9
- -1 rare earth ion Chemical class 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 229910052769 Ytterbium Inorganic materials 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 208000025174 PANDAS Diseases 0.000 description 4
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000007526 fusion splicing Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 229910052691 Erbium Inorganic materials 0.000 description 3
- 240000004718 Panda Species 0.000 description 3
- 235000016496 Panda oleosa Nutrition 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012681 fiber drawing Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- KWMNWMQPPKKDII-UHFFFAOYSA-N erbium ytterbium Chemical compound [Er].[Yb] KWMNWMQPPKKDII-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
本发明公开了一种超窄线宽低噪声高功率的单频光纤激光器,包括单模半导体激光泵浦源、保偏波分复用器、耦合输出保偏光纤光栅、高反射保偏光纤光栅、波片、高增益光纤、低反射窄线宽光纤光栅、二色镜、热沉、密封气室和光纤夹具和保偏光纤隔离器;保偏波分复用器的公共端与耦合输出保偏光纤光栅连接,所述耦合输出保偏光纤光栅和高反射保偏光纤光栅都刻写在同一条保偏光纤上或分别刻写在两条保偏光纤上且连接时快慢轴方向一致,高反射保偏光纤光栅经由波片与高增益光纤连接,高增益光纤再与低反射窄线宽光纤光栅、二色镜顺次连接本发明在短直腔结构中构建折叠复合腔及双虚拟环形腔,并能产生超窄线宽且保偏输出的单频光纤激光。
The invention discloses a single-frequency fiber laser with ultra-narrow line width, low noise and high power, which includes a single-mode semiconductor laser pump source, a polarization-maintaining wavelength division multiplexer, a coupling output polarization-maintaining fiber grating, and a high-reflection polarization-maintaining fiber grating , wave plate, high-gain fiber, low-reflection narrow-linewidth fiber grating, dichroic mirror, heat sink, sealed air chamber, fiber fixture, and polarization-maintaining fiber isolator; the common end of the polarization-maintaining wavelength division multiplexer and the coupling output protection Polarization-maintaining fiber grating connection, the coupled output polarization-maintaining fiber-bragg grating and high-reflection polarization-maintaining fiber-optic grating are written on the same polarization-maintaining fiber or on two polarization-maintaining fibers respectively, and the fast and slow axes are in the same direction when connected, and the high-reflection-maintaining The polarizing fiber grating is connected to the high-gain fiber through the wave plate, and the high-gain fiber is connected to the low-reflection narrow-linewidth fiber grating and the dichromatic mirror in sequence. A single-frequency fiber laser capable of producing ultra-narrow linewidth and polarization-maintaining output.
Description
技术领域 technical field
本发明涉及光纤激光器,特别是涉及超窄线宽低噪声高功率的单频光纤激光器,激光器线宽小于几百Hz级、输出功率高达几百mW量级。 The invention relates to a fiber laser, in particular to a single-frequency fiber laser with ultra-narrow line width, low noise and high power. The line width of the laser is less than hundreds of Hz, and the output power is as high as hundreds of mW.
背景技术 Background technique
超低噪声单频激光因其光谱线宽非常狭窄,激光相干特性极其优异等优势,在相干光通信、光原子钟、重力波探测、量子保密通信等超高精尖端领域有着广阔的应用前景。要提高光纤激光的探测距离或精度,需要使用高相干性能的激光,因而要求激光具有超窄线宽,如要求几百Hz量级线宽、mW级的单频光纤激光作为种子源。一般石英掺杂光纤很难实现较高功率(> 100mW),超窄线宽(< 200Hz)的单频激光输出。 Ultra-low-noise single-frequency lasers have broad application prospects in ultra-high-precision cutting-edge fields such as coherent optical communications, optical atomic clocks, gravitational wave detection, and quantum secure communications because of their narrow spectral linewidth and excellent laser coherence characteristics. To improve the detection distance or accuracy of fiber laser, it is necessary to use laser with high coherence performance, so the laser is required to have an ultra-narrow linewidth, such as a single-frequency fiber laser with a linewidth of several hundred Hz and a mW level is required as a seed source. Generally, it is difficult to achieve high power (> 100mW) and ultra-narrow linewidth (< 200Hz) single-frequency laser output with silica-doped fibers.
目前研究超窄线宽单频光纤激光,采用稀土离子高掺杂的石英光纤作为激光介质,短直F-P腔或DBR腔结构,一般只能输出几mW单频激光,采用多组分玻璃光纤作为单频激光的增益介质,则可实现输出功率100mW以上、线宽小于2 KHz的单频光纤激光,如采用2cm长的铒镱共掺磷酸盐玻璃光纤,实现了输出功率大于300 mW、线宽小于2 KHz、波长为1.5μm的单频光纤激光[Optics Express, 2010,18(2) :1249]。2004年,美国亚历山大大学和NP光子公司在超窄线宽单频光纤激光研究方面申请了稀土掺杂磷酸盐玻璃单模光纤激光器[专利号:US 6816514 B2]和高功率窄线宽单频光纤激光器[公开号:US 2004/0240508 A1]两个专利,它是基于(30~80)P2O5-(5~30)L2O3(L2O3:Al2O,B2O3,Y2O3,La2O3以及它们的混合物)-(5~30)MO(MO:BaO,BeO,MgO,SrO,CaO,ZnO,PbO以及它们的混合物)这种基质的稀土掺杂磷酸盐玻璃单模光纤,并对部分腔型结构进行了权利要求。2008年,华南理工大学在超窄线宽单频光纤激光研究方面申请了一种低噪声窄线宽高功率的单纵模光纤激光器[专利号:200810220661.X ]专利,对其腔型结构及保偏的稀土掺杂磷酸盐玻璃单模光纤进行了权利要求。以上文献及发明专利提供的窄线宽单频光纤激光器,其增益光纤均存在空间烧孔效应,且只能实现kHz量级的线宽输出。本发明申请提出了一种新型的谐振腔型结构,通过偏振旋转技术解决增益光纤中的空间烧孔效应,光纤光栅加上全反射镜构成腔内滤波器并分别与前后一对保偏光纤光栅构成折叠型复合谐振腔,有利于提高谐振腔的腔内寿命,从而达到减小激光线宽(达百Hz量级)的目的。 At present, the ultra-narrow linewidth single-frequency fiber laser is studied, and the rare earth ion highly doped quartz fiber is used as the laser medium. The short straight FP cavity or DBR cavity structure can only output a few mW single-frequency laser, and the multi-component glass fiber is used as the laser medium. The gain medium of a single-frequency laser can realize a single-frequency fiber laser with an output power of more than 100 mW and a line width of less than 2 KHz. A single-frequency fiber laser with a wavelength of less than 2 KHz and a wavelength of 1.5 μm [Optics Express, 2010, 18(2): 1249]. In 2004, Alexander University and NP Photonics applied for a rare earth-doped phosphate glass single-mode fiber laser [patent number: US 6816514 B2] and a high-power narrow-linewidth single-frequency fiber laser in the research of ultra-narrow linewidth single-frequency fiber laser. Laser [publication number: US 2004/0240508 A1] two patents, which are based on (30-80) P 2 O 5 -(5-30) L 2 O 3 (L 2 O 3 : Al 2 O, B 2 O 3 , Y 2 O 3 , La 2 O 3 and their mixtures)-(5~30) MO (MO: BaO, BeO, MgO, SrO, CaO, ZnO, PbO and their mixtures) the rare earth doped matrix Heterophosphate glass single-mode optical fiber, and claims a partial cavity structure. In 2008, South China University of Technology applied for a low-noise narrow-linewidth high-power single-longitudinal-mode fiber laser [Patent No.: 200810220661.X] patent for ultra-narrow linewidth single-frequency fiber laser research. A polarization maintaining rare earth doped phosphate glass single mode optical fiber is claimed. The narrow-linewidth single-frequency fiber lasers provided by the above documents and invention patents all have spatial hole-burning effects in their gain fibers, and can only achieve kHz-level linewidth output. The application of the present invention proposes a new type of resonant cavity structure, which solves the spatial hole burning effect in the gain fiber through polarization rotation technology. The fiber grating plus the total reflection mirror constitutes an intracavity filter and is connected with a pair of polarization-maintaining fiber gratings at the front and rear respectively. Constructing a folded compound resonant cavity is beneficial to improving the cavity life of the resonant cavity, so as to achieve the purpose of reducing the laser line width (up to hundreds of Hz).
发明内容 Contents of the invention
本发明的目的在于克服现有技术的缺点,提供一种超窄线宽低噪声高功率单频光纤激光器,本发明在短直腔结构中构建折叠复合腔及双虚拟环形腔,并能产生超窄线宽(小于百Hz量级)且保偏输出的单频光纤激光。 The purpose of the present invention is to overcome the shortcomings of the prior art and provide a single-frequency fiber laser with ultra-narrow linewidth, low noise and high power. Single-frequency fiber laser with narrow linewidth (less than hundreds of Hz) and polarization-maintaining output.
本发明的的目的通过如下技术方案实现: The purpose of the present invention is achieved through the following technical solutions:
一种超窄线宽低噪声高功率的单频光纤激光器,包括单模半导体激光泵浦源、保偏波分复用器、耦合输出保偏光纤光栅、高反射保偏光纤光栅、波片、高增益光纤、低反射窄线宽光纤光栅、二色镜、热沉、密封气室和光纤夹具和保偏光纤隔离器,所述单模半导体激光泵浦源与保偏波分复用器的泵浦输入端连接,保偏波分复用器的公共端与耦合输出保偏光纤光栅连接,所述耦合输出保偏光纤光栅和高反射保偏光纤光栅都刻写在同一条保偏光纤上或分别刻写在两条保偏光纤上且连接时快慢轴方向一致,高反射保偏光纤光栅经由波片与高增益光纤连接,高增益光纤再与低反射窄线宽光纤光栅、二色镜顺次连接,其中,耦合输出保偏光纤光栅、高反射保偏光纤光栅、波片、高增益光纤、低反射窄线宽光纤光栅和二色镜共同组成单频激光谐振腔,并固定封装在自动温度控制的热沉中,同时在热沉上用一密闭气室封装整个单频激光谐振腔,整个单频激光谐振腔的尾纤由一光纤夹具固定在一密闭气室的前端壳面,单频激光谐振腔产生的单频激光经由保偏波分复用器的信号端耦合输出,再经由一保偏光纤隔离器输出;所述高增益光纤的纤芯掺杂高浓度的发光离子,所述发光离子为镧系离子、过渡金属离子中一种或多种的组合体,所述发光离子掺杂浓度大于1×1019ions/cm3且在其纤芯中是均匀掺杂。 A single-frequency fiber laser with ultra-narrow linewidth, low noise and high power, including a single-mode semiconductor laser pump source, a polarization-maintaining wavelength division multiplexer, a coupling output polarization-maintaining fiber grating, a high-reflection polarization-maintaining fiber grating, a wave plate, High-gain fiber, low-reflection narrow-linewidth fiber grating, dichroic mirror, heat sink, sealed air chamber, fiber fixture and polarization-maintaining fiber isolator, the single-mode semiconductor laser pump source and polarization-maintaining wavelength division multiplexer The pump input end is connected, and the common end of the polarization-maintaining wavelength division multiplexer is connected to the coupling output polarization-maintaining fiber grating, and the coupling output polarization-maintaining fiber grating and the high-reflection polarization-maintaining fiber grating are both written on the same polarization-maintaining fiber or They are respectively written on two polarization-maintaining fibers and the fast and slow axes are in the same direction when connected. The high-reflection polarization-maintaining fiber grating is connected to the high-gain fiber through a wave plate, and the high-gain fiber is connected to a low-reflection narrow-linewidth fiber grating and a dichromatic mirror in sequence. connection, wherein the coupled output polarization-maintaining fiber grating, high-reflection polarization-maintaining fiber grating, wave plate, high-gain fiber, low-reflection narrow-linewidth fiber grating and dichromatic mirror together form a single-frequency laser resonator, and are fixed and packaged at an automatic temperature In the controlled heat sink, the entire single-frequency laser resonator is packaged with a sealed air chamber on the heat sink at the same time, and the pigtail of the entire single-frequency laser resonator is fixed on the front shell surface of a sealed air chamber by an optical fiber clamp. The single-frequency laser generated by the laser resonator is coupled and output through the signal end of the polarization-maintaining wavelength division multiplexer, and then output through a polarization-maintaining fiber isolator; the core of the high-gain fiber is doped with high-concentration luminescent ions, and the The luminescent ions are a combination of one or more of lanthanide ions and transition metal ions, and the doping concentration of the luminescent ions is greater than 1×10 19 ions/cm 3 and uniformly doped in the fiber core.
上述一种超窄线宽低噪声高功率的单频光纤激光器,所述高增益光纤是普通的稀土掺杂磷酸盐单模玻璃光纤或保偏的稀土掺杂磷酸盐单模玻璃光纤。 In the above-mentioned single-frequency fiber laser with ultra-narrow linewidth, low noise and high power, the high-gain fiber is a common rare-earth-doped phosphate single-mode glass fiber or a polarization-maintaining rare-earth-doped phosphate single-mode glass fiber.
上述一种超窄线宽低噪声高功率的单频光纤激光器,其纤芯成分为磷酸盐玻璃,组成为70P2O5-8Al2O3-15BaO-4La2O3-3Nd2O3;高增益光纤的单位长度增益大于1 dB/cm,光纤长度为0.5~5cm。 The above-mentioned single-frequency fiber laser with ultra-narrow linewidth, low noise and high power has a core composition of phosphate glass, which is composed of 70P 2 O 5 -8Al 2 O 3 -15BaO-4La 2 O 3 -3Nd 2 O 3 ; The gain per unit length of the high-gain fiber is greater than 1 dB/cm, and the fiber length is 0.5 to 5 cm.
上述一种超窄线宽低噪声高功率的单频光纤激光器,所述波片是四分之一波片或四分之三波片。 In the aforementioned ultra-narrow linewidth, low-noise, and high-power single-frequency fiber laser, the wave plate is a quarter wave plate or a three-quarter wave plate.
上述一种超窄线宽低噪声高功率的单频光纤激光器,所述高反射保偏光纤光栅的快轴或慢轴与波片的轴线成45o夹角。 In the aforementioned ultra-narrow linewidth, low-noise, and high-power single-frequency fiber laser, the fast axis or slow axis of the high-reflection polarization-maintaining fiber grating forms an included angle of 45 ° with the axis of the wave plate.
上述一种超窄线宽低噪声高功率的单频光纤激光器,所述耦合输出保偏光纤光栅的快轴或慢轴中心反射波长是与高反射保偏光纤光栅的慢轴或快轴中心反射波长匹配的,即耦合输出保偏光纤光栅的快轴中心反射波长反射谱位于高反射保偏光纤光栅的慢轴中心反射波长反射谱内,或耦合输出保偏光纤光栅的慢轴中心反射波长反射谱位于高反射保偏光纤光栅的快轴中心反射波长反射谱内。 The above-mentioned single-frequency fiber laser with ultra-narrow linewidth, low noise and high power, the fast axis or slow axis center reflection wavelength of the coupled output polarization maintaining fiber grating is the same as the slow axis or fast axis center reflection wavelength of the high reflection polarization maintaining fiber grating The wavelength is matched, that is, the fast axis center reflection wavelength reflection spectrum of the coupling out polarization maintaining fiber grating is located in the slow axis center reflection wavelength reflection spectrum of the high reflection polarization maintaining fiber grating, or the slow axis center reflection wavelength reflection spectrum of the coupling out polarization maintaining fiber grating The spectrum is located within the reflection spectrum of the fast axis center reflection wavelength of the high reflection polarization maintaining fiber grating.
上述一种超窄线宽低噪声高功率的单频光纤激光器,所述耦合输出保偏光纤光栅的慢轴或快轴中心反射波长为激光输出波长,3dB 反射谱宽小于0.15 nm,中心波长反射率为10~90%;所述高反射保偏光纤光栅的快轴或慢轴中心反射波长为激光输出波长,3dB 反射谱宽大于0.15 nm,中心波长反射率大于90%;所述低反射窄线宽光纤光栅的中心反射波长为激光输出波长,3dB 反射谱宽小于0.15 nm,中心波长反射率为10~50%。 The above-mentioned single-frequency fiber laser with ultra-narrow linewidth, low noise and high power, the slow-axis or fast-axis central reflection wavelength of the polarization-maintaining fiber grating is the laser output wavelength, the 3dB reflection spectral width is less than 0.15 nm, and the central wavelength reflection wavelength is less than 0.15 nm. The rate is 10-90%; the fast axis or slow axis central reflection wavelength of the high reflection polarization maintaining fiber grating is the laser output wavelength, the 3dB reflection spectrum width is greater than 0.15 nm, and the central wavelength reflectivity is greater than 90%; the low reflection narrow The central reflection wavelength of the linewidth fiber grating is the laser output wavelength, the 3dB reflection spectral width is less than 0.15 nm, and the central wavelength reflectance is 10-50%.
上述一种超窄线宽低噪声高功率的单频光纤激光器,所述二色镜为直接在低反射窄线宽光纤光栅研磨抛光后的一侧端面镀上薄膜形成,所述薄膜对激光信号波长反射率大于95%,对泵浦波长透射率大于90%。 The above-mentioned single-frequency fiber laser with ultra-narrow linewidth, low noise and high power, the dichroic mirror is formed by coating a thin film directly on the end face of the low-reflection narrow-linewidth fiber grating after grinding and polishing, and the thin film has a great influence on the laser signal. The wavelength reflectance is greater than 95%, and the transmittance to the pump wavelength is greater than 90%.
上述一种超窄线宽低噪声高功率的单频光纤激光器,所述镧系离子为Er3+, Yb3+, Tm3+,Gd3+,Tb3+,Dy3+,Ho3+或 Lu3+;所述过渡金属离子为Cu2+,Co2+,Cr3+,Fe2+或Mn2+。 The above-mentioned single-frequency fiber laser with ultra-narrow linewidth, low noise and high power, the lanthanide ions are Er 3+ , Yb 3+ , Tm 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ or Lu 3+ ; the transition metal ion is Cu 2+ , Co 2+ , Cr 3+ , Fe 2+ or Mn 2+ .
所述二色镜为在腔镜表面镀上薄膜或为直接在低反射窄线宽光纤光栅研磨抛光后的一侧端面镀上薄膜,所述薄膜对激光信号波长反射率大于95%,对泵浦波长透射率大于90%。 The dichroic mirror is coated with a thin film on the surface of the cavity mirror or directly coated with a thin film on one end face of the low-reflection narrow-linewidth fiber grating after grinding and polishing. The reflectivity of the thin film to the laser signal wavelength is greater than 95%, and the pump Pu wavelength transmittance greater than 90%.
所述耦合输出保偏光纤光栅与高反射保偏光纤光栅的连接,可以是在同一条保偏光纤上刻写这两种光栅,也可以通过光纤熔接或通过研磨抛光其相应光纤端面后直接对接耦合且它们快慢轴需对齐,两种光栅栅区之间的距离小于5cm。所述四分之一波片是对应的波长是为激光输出波长。所述高增益光纤纤芯直径为3~10μm,包层直径为60~800μm。 The connection between the coupled output polarization-maintaining fiber grating and the high-reflection polarization-maintaining fiber grating can be written on the same polarization-maintaining fiber, or can be directly butt-coupled after optical fiber fusion or grinding and polishing of the corresponding fiber end face. And their fast and slow axes need to be aligned, and the distance between the two grating areas is less than 5cm. The corresponding wavelength of the quarter-wave plate is the laser output wavelength. The core diameter of the high-gain optical fiber is 3-10 μm, and the cladding diameter is 60-800 μm.
本发明利用磷酸盐玻璃纤芯材料的高掺杂和高增益特性,设计制作磷酸盐玻璃单模光纤作为激光介质材料,采用短直腔结构,利用耦合输出保偏光纤光栅、低反射窄线宽光纤光栅的选频作用,在泵浦光源的持续抽运下,高反射保偏光纤光栅快轴(或慢轴)反射的线偏振光经由四分之一波片旋转为右旋圆偏振光在高增益光纤纤芯中得到放大,经低反射窄线宽光纤光栅加上全反射腔镜组成的滤波器后滤波反射后,变为与原传播方向相反的右旋圆偏振光,再回到高增益光纤纤芯中得到进一步放大,此时,圆偏振光在腔内形成一个虚拟环光路,然后通过四分之一波片变为慢轴(或快轴)线偏振光,在耦合输出保偏光纤光栅的慢轴(或快轴)得到透射输出及部分反射,一部分光透射输出形成保偏单频激光,另一部分反射回来的线偏振光经历了与高反射保偏光纤光栅快轴(或慢轴)反射的线偏振光一样的偏振旋转、右旋圆偏振光的放大、滤波、全反射反向、右旋圆偏振光的再次放大,同样在腔内形成另一个虚拟环光路,最后再偏振旋转为快轴(或慢轴)的线偏振光,然后由高反射保偏光纤光栅快轴(或慢轴)再次反射,如此形成了内含两个虚拟环的一个谐振周期,可有效解决高增益光纤中由于行波导致的烧孔效应。另外,低反射窄线宽光纤光栅与高反射保偏光纤光栅、耦合输出保偏光纤光栅共同在腔内又形成了一个谐振腔,与原谐振腔共同构成了直腔型复合腔,从而,显著增强了腔内光子的寿命,达到降低激光线宽的目的。特别是,既结合稀土掺杂磷酸盐玻璃单模光纤的单位长度高增益特性、利用耦合输出保偏光纤光栅及低反射窄线宽光纤光栅的窄线宽实现单一纵模选择,又可以利用低反射窄线宽光纤光栅与全反射二色镜构成的超短内腔选择的纵模与外腔选择的纵模重合,达到更精细的单一频率选择。本发明基于上述技术优势,可以实现超窄线宽、低噪声、高功率、偏振保持的单频激光输出。 The invention utilizes the high doping and high gain characteristics of the phosphate glass core material, designs and manufactures the phosphate glass single-mode fiber as the laser medium material, adopts a short straight cavity structure, utilizes the coupling output polarization maintaining fiber grating, low reflection and narrow line width The frequency selection function of the fiber Bragg grating, under the continuous pumping of the pump light source, the linearly polarized light reflected by the fast axis (or slow axis) of the high-reflection polarization-maintaining fiber Bragg grating is rotated by a quarter-wave plate to right-handed circularly polarized light in the It is amplified in the high-gain fiber core, and after filtered and reflected by a filter composed of a low-reflection narrow-linewidth fiber grating and a total reflection cavity mirror, it becomes right-handed circularly polarized light opposite to the original propagation direction, and then returns to high The gain fiber core is further amplified. At this time, the circularly polarized light forms a virtual ring light path in the cavity, and then passes through the quarter-wave plate to become slow-axis (or fast-axis) linearly polarized light. The slow axis (or fast axis) of the fiber Bragg grating is transmitted and partially reflected, and a part of the light is transmitted and output to form a polarization-maintaining single-frequency laser. axis) the same polarization rotation as linearly polarized light reflected, right-handed circularly polarized light amplification, filtering, total reflection reverse, right-handed circularly polarized light re-amplification, also form another virtual ring light path in the cavity, and finally repolarized The linearly polarized light rotated to the fast axis (or slow axis) is then reflected again by the fast axis (or slow axis) of the highly reflective polarization-maintaining fiber Bragg grating, thus forming a resonance period containing two virtual rings, which can effectively solve the high Hole burning in gain fibers due to traveling waves. In addition, the low-reflection narrow-linewidth fiber grating, the high-reflection polarization-maintaining fiber grating, and the coupled output polarization-maintaining fiber grating together form a resonant cavity in the cavity, and together with the original resonant cavity, they form a straight-cavity composite cavity, thus significantly The lifetime of photons in the cavity is enhanced, and the purpose of reducing the laser line width is achieved. In particular, it not only combines the high gain per unit length characteristics of rare earth-doped phosphate glass single-mode fiber, and realizes single longitudinal mode selection by coupling out polarization-maintaining fiber grating and narrow linewidth of low-reflection narrow-linewidth fiber grating, but also can utilize low The longitudinal mode selected by the ultra-short inner cavity and the longitudinal mode selected by the outer cavity, which are composed of reflective narrow linewidth fiber grating and total reflection dichroic mirror, can achieve finer single frequency selection. Based on the above-mentioned technical advantages, the present invention can realize single-frequency laser output with ultra-narrow line width, low noise, high power and polarization maintenance.
与现有技术相比,本发明的技术效果是:厘米量级的高增益稀土掺杂磷酸盐玻璃单模光纤作为激光的增益介质,由耦合输出保偏光纤光栅和高反射保偏光纤光栅组成谐振腔结构的前后腔镜,在单模半导体激光泵浦源的连续激励下,纤芯中的高掺杂稀土粒子发生反转,产生受激发射的信号光,利用四分之一波片对由耦合输出保偏光纤光栅和高反射保偏光纤光栅产生的线偏振光进行旋转并形成圆偏振光,从而形成了内含两个虚拟环形光路的一个谐振周期,可有效解决高增益光纤中由于行波导致的烧孔效应,从而有利于改善单频激光的噪声特性。另外,低反射窄线宽光纤光栅与高反射保偏光纤光栅、耦合输出保偏光纤光栅共同在腔内又形成了一个谐振腔,与原谐振腔共同构成了直腔型复合腔,腔长的增加可显著提高腔内光子的寿命,达到降低激光线宽的目的,从而保证了超窄线宽(百Hz量级)单频激光的实现。特别是,既结合稀土掺杂磷酸盐玻璃单模光纤的单位长度高增益特性、利用耦合输出保偏光纤光栅及低反射窄线宽光纤光栅的窄线宽实现单一纵模选择,又可以利用低反射窄线宽光纤光栅与全反射二色镜构成的超短内腔选择的纵模与外腔选择的纵模重合,达到更精细的单一频率选择,且不容易发生跳模现象。本发明基于上述技术优势,可以实现低噪声、超窄线宽、无跳模的单频激光输出的技术效果。 Compared with the prior art, the technical effect of the present invention is: a centimeter-level high-gain rare-earth-doped phosphate glass single-mode fiber is used as the gain medium of the laser, and is composed of a coupling output polarization-maintaining fiber grating and a high-reflection polarization-maintaining fiber grating The front and rear cavity mirrors of the resonant cavity structure, under the continuous excitation of the single-mode semiconductor laser pump source, the highly doped rare earth particles in the fiber core are reversed to generate signal light for stimulated emission. The linearly polarized light generated by coupling out the polarization-maintaining fiber grating and the high-reflection polarization-maintaining fiber grating rotates and forms circularly polarized light, thus forming a resonant period containing two virtual ring optical paths, which can effectively solve the problem of high-gain fibers due to The hole-burning effect caused by traveling waves is beneficial to improve the noise characteristics of single-frequency lasers. In addition, the low-reflection narrow-linewidth fiber grating, the high-reflection polarization-maintaining fiber grating, and the coupled output polarization-maintaining fiber grating together form a resonant cavity in the cavity, which together with the original resonant cavity constitutes a straight-cavity composite cavity. The increase can significantly improve the lifetime of photons in the cavity and achieve the purpose of reducing the laser linewidth, thereby ensuring the realization of ultra-narrow linewidth (hundred Hz level) single-frequency laser. In particular, it not only combines the high gain per unit length characteristics of rare earth-doped phosphate glass single-mode fiber, and realizes single longitudinal mode selection by coupling out polarization-maintaining fiber grating and narrow linewidth of low-reflection narrow-linewidth fiber grating, but also can utilize low The longitudinal mode selected by the ultra-short inner cavity and the longitudinal mode selected by the outer cavity of the ultra-short inner cavity composed of reflective narrow linewidth fiber grating and total reflection dichroic mirror coincide to achieve finer single frequency selection, and mode hopping is not easy to occur. Based on the above-mentioned technical advantages, the present invention can realize the technical effects of low noise, ultra-narrow line width and no mode-hopping single-frequency laser output.
附图说明 Description of drawings
图1 为本发明单频光纤激光器原理示意图; Fig. 1 is a schematic diagram of the principle of a single-frequency fiber laser of the present invention;
图2 为四分之一波片主轴与高反射保偏光纤光栅快慢轴的位置示意图; Figure 2 is a schematic diagram of the positions of the quarter-wave plate principal axis and the fast and slow axes of the high-reflection polarization-maintaining fiber grating;
图3 为光纤光栅反射光谱设计示意图。 Figure 3 is a schematic diagram of the design of the reflection spectrum of the fiber grating.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步的描述,需要说明的是本发明要求保护的范围并不局限于实施例表述的范围。 The present invention will be further described below in conjunction with the accompanying drawings and examples. It should be noted that the protection scope of the present invention is not limited to the range expressed in the examples.
如图1所示,超窄线宽低噪声高功率单频光纤激光器包括单模半导体激光泵浦源1、保偏波分复用器(PM-WDM)2、耦合输出保偏光纤光栅3、高反射保偏光纤光栅4、四分之一波片5、高增益光纤6、低反射窄线宽光纤光栅7、二色镜8、热沉9、密封气室10和光纤夹具11、保偏光纤隔离器12。其中,耦合输出保偏光纤光栅3、高反射保偏光纤光栅4、四分之一波片5、高增益光纤6、低反射窄线宽光纤光栅7及二色镜8组成单频光纤激光腔13。单模半导体激光泵浦源1与保偏波分复用器2的泵浦输入端连接,保偏波分复用器2的公共端与耦合输出保偏光纤光栅3连接,耦合输出保偏光纤光栅3再与高反射保偏光纤光栅4连接,经由四分之一波片5与高增益光纤6连接,再与低反射窄线宽光纤光栅7与二色镜8连接,保偏波分复用器2的信号端与保偏光纤隔离器12连接,单频光纤激光腔13固定在自动温度控制的热沉9中,再通过光纤夹具11将该热沉封装在一密封气室10中。热沉9的温度一般设置在-30~70℃范围内的任一温度值上,一般设置在25℃,且其控制精度小于0.1℃,通过控制热沉9的温度来调谐激光波长。高增益光纤6为稀土掺杂磷酸盐玻璃单模光纤,纤芯基质成分为磷酸盐玻璃,纤芯中稀土掺杂离子为铒、镱、或铒镱共掺。
As shown in Figure 1, an ultra-narrow linewidth, low-noise, and high-power single-frequency fiber laser includes a single-mode semiconductor laser pump source 1, a polarization-maintaining wavelength division multiplexer (PM-WDM) 2, a coupled output polarization-maintaining
厘米量级的高增益光纤6作为激光的增益介质,由耦合输出保偏光纤光栅3和高反射保偏光纤光栅4组成谐振腔结构的前后腔镜,耦合输出保偏光纤光栅3慢轴(或快轴)的反射谱位于高反射保偏光纤光栅4快轴(或慢轴)的反射谱内,且中心反射波长重合;其中,耦合输出保偏光纤光栅3慢轴(或快轴)的3dB反射谱宽小于0.15 nm,中心波长反射率为10-90%;高反射保偏光纤光栅快轴(或慢轴)的3dB反射谱宽大于0.15 nm,中心波长反射率大于90%。泵浦光采用单模半导体激光泵浦源1前向泵浦方式由保偏波分复用器2的泵浦端输入并经由耦合输出保偏光纤光栅3、高反射保偏光纤光栅4、四分之一波片5耦合到激光腔中高增益光纤6的纤芯中,抽运高掺杂的稀土离子,使粒子数发生反转,产生受激发射的信号光,利用四分之一波片5对由耦合输出保偏光纤光栅3和高反射保偏光纤光栅4产生的线偏振光进行旋转并形成圆偏振光,经低反射窄线宽光纤光栅7加上全反射二色镜8组成的滤波器后滤波反射后,变为与原传播方向相反的右旋圆偏振光,再回到高增益光纤6纤芯中得到进一步放大,从而形成了由两个虚拟环形光路组成的一个谐振周期,最后,形成的线偏振光经由耦合输出保偏光纤光栅3输出。其中,耦合输出保偏光纤光栅3和高反射保偏光纤光栅4采用熔接或端面对接方式连接,且它们的快慢轴必须对准;高反射保偏光纤光栅4与四分之一波片5采用紧密对接方式连接,高反射保偏光纤光栅4的端面必需研磨抛光,且其快轴(或慢轴)方向必须与四分之一波片5的主轴夹角成45o角,如图2所示;高增益光纤6与低反射窄线宽光纤光栅7的连接采用熔接或端面研磨抛光对接方式;低反射窄线宽光纤光栅7与二色镜8组成一个具有纵模选择及滤波作用的功能模块,它们的连接采用光纤端面研磨抛光与腔镜紧密对接的方式。低反射窄线宽光纤光栅7的中心波长反射谱位于耦合输出保偏光纤光栅3慢轴(或快轴)反射谱内,反射谱宽小于0.15 nm,中心波长反射率为10~50%;二色镜8为在腔镜表面镀上薄膜或为直接在低反射窄线宽光纤光栅7研磨抛光后的一侧端面镀上薄膜,薄膜对激光信号波长反射率大于95%,对泵浦波长透射率大于90%。再结合高增益光纤6的单位长度高增益特性、利用耦合输出保偏光纤光栅3及低反射窄线宽光纤光栅7的窄线宽实现单一纵模选择,同时又必须满足低反射窄线宽光纤光栅7与全反射二色镜8构成的超短内腔选择的纵模与外腔选择的纵模重合的条件,来实现更窄线宽单一频率的高功率激光保偏输出。
The centimeter-scale high-gain optical fiber 6 is used as the gain medium of the laser, and the front and rear cavity mirrors of the resonator structure are composed of the coupling output polarization-maintaining fiber Bragg grating 3 and the high-reflection polarization-maintaining fiber Bragg grating 4, and the coupling output polarization-maintaining fiber Bragg grating 3 slow axis (or The reflection spectrum of the fast axis) is located in the reflection spectrum of the fast axis (or slow axis) of the high-reflection polarization-maintaining fiber Bragg grating 4, and the central reflection wavelength coincides; among them, the coupled output is 3dB of the slow axis (or fast axis) of the polarization-maintaining fiber Bragg grating 3 The reflection spectral width is less than 0.15 nm, and the central wavelength reflectance is 10-90%; the 3dB reflection spectral width of the fast axis (or slow axis) of the high-reflection polarization-maintaining fiber grating is greater than 0.15 nm, and the central wavelength reflectance is greater than 90%. The pump light adopts a single-mode semiconductor laser pump source 1 forward pumping mode, and is input from the pump end of the polarization maintaining
实施例1Example 1
高增益光纤6是稀土掺杂磷酸盐玻璃单模光纤,其作为光纤激光器的增益介质,长度可根据器件激光输出功率大小及耦合输出保偏光纤光栅3的反射谱宽来选择,本例为1.0cm,一般为0.5~10 cm均可。高增益光纤6的纤芯中掺杂高浓度的发光离子是铒和镱,铒、镱稀土离子的掺杂浓度分别是2.5×1020ions/cm3、5.0×1020ions/cm3,一般要大于1×1019ions/cm3。纤芯直径为3~10μm,本例为6.0μm。高增益光纤6的纤芯基质成分为磷酸盐玻璃,其组成为:70P2O5-8Al2O3-15BaO-4La2O3-3Nd2O3。稀土离子在其纤芯中是均匀的高浓度掺杂。高增益光纤6是通过钻孔法、管棒法制作预制棒:先把包层玻璃加工处理成直径为30 mm的玻璃棒,再在此玻璃棒中心位置钻出一个直径为1.44mm的圆孔,然后抛光玻璃圆孔的内表面;其次,把纤芯玻璃加工处理成一个直径为1.44mm的圆棒,然后再抛光此圆棒外表面;再次,把纤芯玻璃棒插入到包层玻璃棒中的孔内,组装成一光纤预制棒;最后,把组装好的光纤预制棒放到光纤拉制塔中高温炉中拉制,最终拉制出的稀土掺杂磷酸盐玻璃单模光纤,即为高增益光纤6。
The high-gain fiber 6 is a rare-earth-doped phosphate glass single-mode fiber, which is used as the gain medium of the fiber laser. The length can be selected according to the laser output power of the device and the reflection spectrum width of the coupling output polarization-maintaining
如图3所示,本例的耦合输出保偏光纤光栅3慢轴(或快轴)的中心反射波长为激光输出波长1548.92 nm,其波长可在1525~1650nm范围内选择,3dB反射谱宽小于0.15 nm,中心波长反射率为10~90%,本例中心波长反射率为55%。高反射保偏光纤光栅4快轴(或慢轴)的中心反射波长与耦合输出保偏光纤光栅3慢轴(或快轴)的中心反射波长重合,本例中也为激光输出波长1548.92 nm,3dB反射谱宽大于0.15 nm,中心波长反射率大于90%。耦合输出保偏光纤光栅3和高反射保偏光纤光栅4组成谐振腔的前后腔镜。低反射窄线宽光纤光栅7的中心反射波长同样与耦合输出保偏光纤光栅3慢轴(或快轴)的中心反射波长重合,本例中也为激光输出波长1548.92 nm,反射谱宽小于0.15 nm,中心波长反射率为10~50%,本例中为20%。二色镜8为在腔镜表面镀上薄膜或直接在低反射窄线宽光纤光栅7研磨抛光后的一侧端面镀上薄膜,其材料一般为MgO,薄膜对激光信号波长1548.92 nm的反射率大于95%,对泵浦波长980 nm的透射率大于90%。低反射窄线宽光纤光栅7与二色镜8组成一个具有纵模选择及滤波作用的功能模块。通过设计耦合输出保偏光纤光栅3慢轴(或快轴)的反射谱宽、控制整个激光腔的腔长、以及调节低反射窄线宽光纤光栅7栅区与二色镜8之间的距离,可以实现只有唯一的单纵模激光输出,且无跳模及模式竞争现象。在激光功率饱和前,随着泵浦功率的不断增强,激光线宽就会不断变窄,最后可以实现百Hz量级的超窄线宽保偏输出。只要选择耦合输出保偏光纤光栅3慢轴(或快轴)的中心反射波长是设计激光波长值,则可实现所需波长的超窄线宽单频光纤激光。其中,耦合输出保偏光纤光栅3和高反射保偏光纤光栅4采用熔接或端面对接方式连接,且它们的快慢轴必须对准;高反射保偏光纤光栅4与四分之一波片5采用紧密对接方式连接,高反射保偏光纤光栅4的端面必需研磨抛光,且其快轴(或慢轴)方向必须与四分之一波片5的主轴夹角成45o角,如图2所示;高增益光纤6与低反射窄线宽光纤光栅7的连接采用熔接或端面研磨抛光对接方式;低反射窄线宽光纤光栅7靠近栅区1~2mm处的一端面需进行研磨抛光,以使低反射窄线宽光纤光栅7与二色镜8采用光纤端面研磨抛光与腔镜紧密对接方式连接。
As shown in Figure 3, the central reflection wavelength of the slow axis (or fast axis) of the coupled output polarization-maintaining fiber grating 3 in this example is the laser output wavelength of 1548.92 nm. 0.15 nm, the central wavelength reflectance is 10-90%, and the central wavelength reflectance is 55% in this case. The central reflection wavelength of the fast axis (or slow axis) of the high-reflection polarization-maintaining fiber grating 4 coincides with the central reflection wavelength of the slow axis (or fast axis) of the coupled output polarization-maintaining
泵浦光采用单模半导体激光泵浦源1前向泵浦方式由保偏波分复用器2的泵浦端输入并经由耦合输出保偏光纤光栅3、高反射保偏光纤光栅4、四分之一波片5耦合到激光腔中高增益光纤6的纤芯中。在泵浦光源的持续抽运下,抽运高掺杂的稀土离子,使粒子数发生反转,产生受激发射的信号光,高反射保偏光纤光栅4快轴(或慢轴)反射的线偏振光经由四分之一波片5旋转为右旋圆偏振光在高增益光纤6纤芯中得到放大,经低反射窄线宽光纤光栅7加上全反射二色镜8组成的滤波器后滤波反射后,变为与原传播方向相反的右旋圆偏振光,再回到高增益光纤6纤芯中得到进一步放大,此时,圆偏振光在腔内形成一个虚拟环光路,然后通过四分之一波片5变为慢轴(或快轴)线偏振光,在耦合输出保偏光纤光栅3的慢轴(或快轴)得到透射输出及部分反射,一部分光透射输出形成保偏单频激光,另一部分反射回来的线偏振光经历了与高反射保偏光纤光栅4快轴(或慢轴)反射的线偏振光一样的偏振旋转、右旋圆偏振光的放大、滤波、全反射反向、右旋圆偏振光的再次放大,同样在腔内形成另一个虚拟环光路,最后再偏振旋转为快轴(或慢轴)的线偏振光,然后由高反射保偏光纤光栅4快轴(或慢轴)再次反射,如此形成了内含两个虚拟环的一个谐振周期。最后,形成的线偏振单频激光经由耦合输出保偏光纤光栅3输出,再次经由980/1550nm的保偏波分复用器2分波输入到1550nm保偏光纤隔离器12的前端,并由保偏光纤隔离器12隔离反射或残留的泵浦光后输出稳定的、偏振保持的、单一纵模的光纤激光,而精密控制热沉9的温度,有利于进一步实现激光波长的稳定性,最终实现了输出波长为1548.92 nm的超窄线宽、低噪声单频光纤激光保偏输出。
The pump light adopts a single-mode semiconductor laser pump source 1 forward pumping mode, and is input from the pump end of the polarization maintaining
实施例2Example 2
高增益光纤6是稀土掺杂磷酸盐玻璃单模保偏光纤,其作为光纤激光器的增益介质,长度可根据器件激光输出功率大小及耦合输出保偏光纤光栅3的反射谱宽来选择,本例为1.0cm,一般为0.5~10 cm均可。高增益光纤6纤芯的均匀掺杂高浓度的发光离子是镱,镱离子的掺杂浓度是7.5×1020ions/cm3,一般要大于1×1019ions/cm3。高增益光纤6的纤芯直径为8μm,一般为1~10μm均可,采用熊猫眼结构设计其偏振特性,两熊猫眼对称排布、大小一致,与纤芯距离为20~40μm,熊猫眼直经大小为16μm,一般10~20μm均可,包层直径为125 μm,一般125~400 μm均可。高增益光纤6的纤芯基质成分为磷酸盐玻璃,其组成为:70P2O5-8Al2O3-15BaO-4La2O3-3Nd2O3。由于高增益光纤6具有保偏特性,因而具有更高的消光比,同时对弯曲和扭曲应力不敏感,有利于消除单频光纤激光因环境振动引起的噪声和频率漂移,从而进一步提高激光的信噪比,信噪比可达65 dB。高增益光纤6是通过钻孔法、管棒法制作预制棒:先把包层玻璃加工处理成直径为35 mm的玻璃棒,再在此玻璃棒中心位置钻出一个直径为2.24mm圆孔,然后抛光玻璃圆孔的内表面,然后再在熊猫眼设计位置钻两个直经为4.48mm的圆孔,同样抛光两圆孔的内表面;其次,把纤芯玻璃加工处理成一个直径为2.24mm的圆棒,然后再抛光此圆棒外表面;再次,把另一种多组分玻璃材料(其膨胀系数需大于磷酸盐玻璃的膨胀系数)加工处理成直经为4.48mm的两条圆棒,抛光此两圆棒的外表面,再把纤芯玻璃棒插入到包层玻璃棒中的中心孔内,两条圆棒玻璃圆棒分别插入到包层玻璃棒中的熊猫眼孔中, 组装成一光纤预制棒;最后,把组装好的光纤预制棒放到光纤拉制塔中高温炉中拉制,最终拉制出具有保偏性能的稀土掺杂磷酸盐玻璃单模光纤,即为高增益光纤6。
The high-gain fiber 6 is a rare-earth-doped phosphate glass single-mode polarization-maintaining fiber, which is used as the gain medium of the fiber laser. The length can be selected according to the laser output power of the device and the reflection spectrum width of the coupled output polarization-maintaining
本例的耦合输出保偏光纤光栅3慢轴(或快轴)的中心反射波长为激光输出波长1064.00 nm,其波长可在1000~1120nm范围内选择,3dB反射谱宽小于0.10 nm,中心波长反射率为10~90%,本例中心波长反射率为65%。耦合输出保偏光纤光栅3和全反射二色镜8组成谐振腔的前后腔镜。低反射窄线宽光纤光栅7的中心反射波长同样与耦合输出保偏光纤光栅3慢轴(或快轴)的中心反射波长重合,本例中也为激光输出波长1064.00 nm,反射谱宽小于0.10 nm,中心波长反射率为10~50%,本例中为15%。二色镜8为在腔镜表面镀上薄膜或直接在低反射窄线宽光纤光栅7研磨抛光后的一侧端面镀上薄膜,其材料一般为MgO,薄膜对激光信号波长的反射率大于95%,对泵浦波长976 nm的透射率大于90%。低反射窄线宽光纤光栅7与二色镜8组成一个具有纵模选择及滤波作用的功能模块。通过设计耦合输出保偏光纤光栅3慢轴(或快轴)的反射谱宽、控制整个激光腔的腔长、以及调节低反射窄线宽光纤光栅7栅区与二色镜8之间的距离,可以实现只有唯一的单纵模激光输出,且无跳模及模式竞争现象。在激光功率饱和前,随着泵浦功率的不断增强,激光线宽就会不断变窄,最后可以实现百Hz量级的超窄线宽保偏输出。只要选择耦合输出保偏光纤光栅3慢轴(或快轴)的中心反射波长是设计激光波长值,则可实现所需波长的超窄线宽单频光纤激光。其中,耦合输出保偏光纤光栅3和四分之一波片5采用紧密对接方式连接,耦合输出保偏光纤光栅3的端面必需研磨抛光,且其快轴(或慢轴)方向必须与四分之一波片5的主轴夹角成45o角,如图2所示;高增益光纤6与耦合输出保偏光纤光栅3的快慢轴对准;高增益光纤6与低反射窄线宽光纤光栅7的连接采用熔接或端面研磨抛光对接方式;低反射窄线宽光纤光栅7靠近栅区1~2mm处的一端面需进行研磨抛光,以使低反射窄线宽光纤光栅7与二色镜8采用光纤端面研磨抛光与腔镜紧密对接方式连接。
In this example, the central reflection wavelength of the slow axis (or fast axis) of the polarization-maintaining fiber grating 3 is the laser output wavelength of 1064.00 nm, and its wavelength can be selected within the range of 1000-1120 nm. The rate is 10 to 90%, and the central wavelength reflectance in this case is 65%. The coupled output polarization-maintaining
泵浦光采用976nm的单模半导体激光泵浦源1前向泵浦方式由980/1064nm的保偏波分复用器2的泵浦端输入并经由耦合输出保偏光纤光栅3、四分之一波片5耦合到激光腔中高增益光纤6的纤芯中。在泵浦光源的持续抽运下,抽运高掺杂的稀土离子,使粒子数发生反转,产生受激发射的信号光,高反射保偏光纤光栅4快轴(或慢轴)反射的线偏振光经由四分之一波片5旋转为右旋圆偏振光在高增益光纤6纤芯中得到放大,经低反射窄线宽光纤光栅7加上全反射二色镜8组成的滤波器后滤波反射后,变为与原传播方向相反的右旋圆偏振光,再回到高增益光纤6纤芯中得到进一步放大,此时,圆偏振光在腔内形成一个虚拟环光路,然后通过四分之一波片5变为慢轴(或快轴)线偏振光,在耦合输出保偏光纤光栅3的慢轴(或快轴)得到透射输出及部分反射,一部分光透射输出形成保偏单频激光,另一部分反射回来的线偏振光经历了与高反射保偏光纤光栅4快轴(或慢轴)反射的线偏振光一样的偏振旋转、右旋圆偏振光的放大、滤波、全反射反向、右旋圆偏振光的再次放大,同样在腔内形成另一个虚拟环光路,最后再偏振旋转为快轴(或慢轴)的线偏振光,然后由高反射保偏光纤光栅4快轴(或慢轴)再次反射,如此形成了内含两个虚拟环的一个谐振周期。最后,形成的线偏振单频激光经由耦合输出保偏光纤光栅3输出,再次经由980/1064nm的保偏波分复用器2分波输入到1064nm保偏光纤隔离器12的前端,并由保偏光纤隔离器12隔离反射或残留的泵浦光后输出稳定的、偏振保持的、单一纵模的光纤激光,而精密控制热沉9的温度,有利于进一步实现激光波长的稳定性,最终实现了输出波长为1.06 μm的超窄线宽、低噪声单频光纤激光保偏输出。
The pumping light adopts 976nm single-mode semiconductor laser pumping source 1. The forward pumping mode is input from the pumping end of 980/1064nm polarization maintaining
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102415208A CN102306897B (en) | 2011-08-22 | 2011-08-22 | Ultra narrow linewidth low noise high power single frequency fiber laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102415208A CN102306897B (en) | 2011-08-22 | 2011-08-22 | Ultra narrow linewidth low noise high power single frequency fiber laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102306897A CN102306897A (en) | 2012-01-04 |
CN102306897B true CN102306897B (en) | 2012-08-08 |
Family
ID=45380725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011102415208A Expired - Fee Related CN102306897B (en) | 2011-08-22 | 2011-08-22 | Ultra narrow linewidth low noise high power single frequency fiber laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102306897B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103188019B (en) * | 2013-03-08 | 2016-05-25 | 华南理工大学 | Microwave signal source based on dual-wavelength single-frequency fiber laser |
CN103956638B (en) * | 2014-01-17 | 2016-01-06 | 华南理工大学 | A kind of tunable narrow-linewidth single-frequency linearly polarized laser device |
CN103825180B (en) * | 2014-02-12 | 2016-10-05 | 华南理工大学 | A kind of low noise protects inclined single frequency optical fiber laser |
CN103825166B (en) * | 2014-02-12 | 2016-10-05 | 华南理工大学 | A kind of high-precision wide tunable single-frequency optical fiber laser |
CN104092087A (en) * | 2014-06-18 | 2014-10-08 | 华南理工大学 | A High Energy Short Pulse Fiber Laser Amplifier |
CN104092095A (en) * | 2014-06-18 | 2014-10-08 | 华南理工大学 | A highly stable ultra-narrow linewidth single-frequency fiber laser |
CN104466649B (en) * | 2014-12-15 | 2023-07-18 | 山东海富光子科技股份有限公司 | Mode-jump-free fast wavelength modulation single-frequency optical fiber laser |
CN106145021B (en) * | 2015-03-26 | 2017-12-29 | 中科院南通光电工程中心 | Optical micro/nano cavity resonator structure and preparation method thereof |
CN105071212A (en) * | 2015-08-31 | 2015-11-18 | 华南理工大学 | Fiber laser intensity noise suppressing device and working method thereof |
CN106877126A (en) * | 2017-03-31 | 2017-06-20 | 佛山科学技术学院 | Compound-cavity fiber laser and its method for realizing coherent modulation of heterogeneous pulse formats |
CN107946878A (en) * | 2017-12-29 | 2018-04-20 | 横琴东辉科技有限公司 | A kind of 0.9 mu m waveband ultra-low noise narrow-linewidth single frequency fiber laser light source |
CN108711727B (en) * | 2018-06-04 | 2020-06-09 | 山东省科学院激光研究所 | Polarization maintaining distributed feedback fiber laser and manufacturing method thereof |
CN109193314A (en) * | 2018-09-21 | 2019-01-11 | 华南理工大学 | A kind of adjustable narrow linewidth photo-generated microwave source based on Polarization Control |
CN109687276A (en) * | 2019-01-20 | 2019-04-26 | 北京工业大学 | The gain switch laser of thulium-doped fiber laser pumping |
CN110797738A (en) * | 2019-12-04 | 2020-02-14 | 南京先进激光技术研究院 | Low-noise polarization-maintaining virtual annular cavity single-frequency fiber laser |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101483304A (en) * | 2009-02-25 | 2009-07-15 | 中国科学院上海光学精密机械研究所 | Distributed Bragg reflection single-frequency fiber laser based on phase-shifted fiber grating |
CN101667710A (en) * | 2009-10-09 | 2010-03-10 | 北京航空航天大学 | Tunable single-frequency single polarization fiber laser based on polarization-preserved fiber grating |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6816514B2 (en) * | 2002-01-24 | 2004-11-09 | Np Photonics, Inc. | Rare-earth doped phosphate-glass single-mode fiber lasers |
US6940877B2 (en) * | 2003-05-30 | 2005-09-06 | Np Photonics, Inc. | High-power narrow-linewidth single-frequency laser |
-
2011
- 2011-08-22 CN CN2011102415208A patent/CN102306897B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101483304A (en) * | 2009-02-25 | 2009-07-15 | 中国科学院上海光学精密机械研究所 | Distributed Bragg reflection single-frequency fiber laser based on phase-shifted fiber grating |
CN101667710A (en) * | 2009-10-09 | 2010-03-10 | 北京航空航天大学 | Tunable single-frequency single polarization fiber laser based on polarization-preserved fiber grating |
Also Published As
Publication number | Publication date |
---|---|
CN102306897A (en) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102306897B (en) | Ultra narrow linewidth low noise high power single frequency fiber laser | |
CN101447637B (en) | Single longitudinal-mode optical fiber laser with low noise, narrow linewidth and high power | |
Kurkov | Oscillation spectral range of Yb‐doped fiber lasers | |
JP5899084B2 (en) | Polarization-maintaining mode-locked fiber laser oscillator | |
CN102388512B (en) | Cascaded raman fiber laser system based on filter fiber | |
CN103022864B (en) | Tunable narrow-linewidth array single-frequency fiber laser | |
CN106356704A (en) | 0.9-micron waveband high-power and single-frequency optical fiber laser device | |
CN101420099A (en) | Germanate glass optical fiber laser with laser wavelength within 1.7-2.1 mu m | |
JPH10284777A (en) | Optical fiber laser | |
CN107370012A (en) | Two-dimension nano materials mode-locked all-fiber laser with end face reflection structure | |
CN100428585C (en) | Dual Wavelength Pulsed Fiber Laser System | |
CN101719621A (en) | Large-power multiwaveband multicore optical fiber laser | |
CN103915750A (en) | Optical-fiber laser device | |
CN109193336B (en) | Method for suppressing stimulated Brillouin scattering by fiber laser oscillator | |
CN110635346A (en) | A ring-cavity 1.7um thulium-doped all-fiber laser | |
CN104051938A (en) | A fiber laser device | |
CN108879307A (en) | One kind being based on Er:YAG-SiO2The tunable single frequency laser and its working method of optical fiber | |
CN104092095A (en) | A highly stable ultra-narrow linewidth single-frequency fiber laser | |
CN109038186A (en) | A kind of flat type erbium-ytterbium co-doped fiber light source | |
CN202217906U (en) | A single-frequency fiber laser with ultra-narrow linewidth, low noise and high power | |
CN110299663A (en) | All -fiber dual wavelength pumps thulium-doped fiber laser | |
CN108155547A (en) | Injection locking optical taper laser | |
CN101976795A (en) | Gadolinium-doped ultraviolet up-conversion fluoride optical fiber and optical fiber laser device | |
CN104092086A (en) | A single-frequency Q-switched pulsed fiber laser with ultra-narrow linewidth | |
CN103647206A (en) | All-fiber mode-locked laser with high repetition frequency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120808 Termination date: 20210822 |
|
CF01 | Termination of patent right due to non-payment of annual fee |