CN102303018A - 机器视觉系统对注射器钢针毛刺的自动检测方法 - Google Patents
机器视觉系统对注射器钢针毛刺的自动检测方法 Download PDFInfo
- Publication number
- CN102303018A CN102303018A CN201110109620A CN201110109620A CN102303018A CN 102303018 A CN102303018 A CN 102303018A CN 201110109620 A CN201110109620 A CN 201110109620A CN 201110109620 A CN201110109620 A CN 201110109620A CN 102303018 A CN102303018 A CN 102303018A
- Authority
- CN
- China
- Prior art keywords
- burr
- draw point
- image
- burrs
- notch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 10
- 229910000831 Steel Inorganic materials 0.000 title abstract 5
- 239000010959 steel Substances 0.000 title abstract 5
- 238000001514 detection method Methods 0.000 claims abstract description 33
- 239000002699 waste material Substances 0.000 claims abstract description 10
- 230000004438 eyesight Effects 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 238000007689 inspection Methods 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 9
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract 1
- 230000002950 deficient Effects 0.000 description 8
- 239000013307 optical fiber Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 208000003464 asthenopia Diseases 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
Abstract
本发明提供一种机器视觉系统对注射器钢针毛刺的自动检测方法,将钢针针尖部分的凸出毛刺和凹缺毛刺的横向长度设为检测参量,根据用户要求设置不同检测参量的检测精度以及合格范围,由外部触发与控制信号启动所述相机实时拍摄在线运行钢针的图像,并将拍摄的图像传输至计算机供检测,计算机通过图像算法处理,提取钢针出现毛刺的图像,并对所述的两种毛刺尺寸进行计算,通过计算出的毛刺尺寸判断该产品是属于合格品还是废品,通过外部触发与控制信号将废品从指定出料口进行剔除。本发明对注射器钢针毛刺的检测精度高、速度快,可以有效保证产品的合格率。
Description
技术领域
本发明涉及利用机器视觉系统进行在线检测的技术领域,尤其涉及在注射器钢针生产现场,利用机器视觉系统对注射器钢针是否存在毛刺进行自动检测的方法。
背景技术
在流水作业的注射器钢针装配车间现场,需要对钢针是否存在毛刺进行在线检测。现有技术中,对钢针毛刺的在线检测依靠人工使用专用放大镜进行检测,在钢针生产机旁设约80人进行钢针毛刺的检测和处理,根据检测结果将产品分为合格品(如凸出毛刺横向长度<0.05mm,或凹缺毛刺横向长度<0.05mm,及没有其他毛刺)和不合格品(如凸出毛刺横向长度≥0.05mm,或凹缺毛刺横向长度≥0.05mm,或有以上两种以外的其他毛刺)。不合格品直接作为废品剔除。
人工检测存在的缺点主要有:生产车间现场通风差,工人检测工作环境恶劣,无法直接使用目测(需用专用手持式放大镜),劳动强度大;正常人眼在不间断观测运动物体30min左右,即会眼花、眼胀等不适,检测人员无法长时间不间断工作,无法保证产品出厂合格率;钢针毛刺检测是带很高数量精度的检测,人眼无法准确判断,误差大,出错机会很多,无法保证检测质量;专业人员检测钢针的速度最高为0.5个/s,对生产速率有极大限制。
发明的内容
针对现有技术对注射器钢针毛刺的在线检测依靠人工进行检测,工人容易产生视觉疲劳,劳动强度大,无法保证产品合格率以及检测质量,监测速度低等问题,本发明提供一种机器视觉系统对注射器钢针毛刺的自动检测方法,其大大降低工人的检测劳动强度,检测精度高、速度快,可以有效保证出厂产品的合格率。
本发明的技术方案如下:
一种机器视觉系统对注射器钢针毛刺的自动检测方法,包括以下步骤:
(1)将钢针固定在工装条夹具上,使工装条夹具在线运行,将拍摄相机固定在在线运行的工装条夹具一侧;根据待检测钢针的尺寸大小及钢针朝向,选择镜头的焦距,调整拍摄相机的拍摄角度、放大倍数、拍摄距离、光圈大小、曝光时间,以便获取清晰的拍摄图像;
(2)将毛刺横向长度设为检测参量,并根据用户要求设置所述检测参量的检测精度以及合格范围;
(3)计算机取得相机与生产进程同步的触发与控制信号,由外部触发与控制信号启动所述相机实时拍摄在线运行钢针毛刺的图像,并将拍摄的图像传输至计算机供检测;
(4)计算机通过图像算法处理,提取钢针毛刺的图像;若经过图像算法处理发现不存在毛刺图像,则认为该钢针不存在毛刺,属于合格品,从合格品分拣口拣出;
(5)计算机对所述钢针毛刺的尺寸进行计算;对于钢针凸出毛刺,计算所述凸出毛刺与钢针边缘连接点、以及凸出毛刺外侧距离钢针垂直中心最远点两者之间的距离,该距离值也是所述凸出毛刺的横向长度值;对于钢针凹缺毛刺,计算所述凹缺毛刺与钢针边缘连接点、以及凹缺毛刺内侧距离钢针垂直中心最近点两者之间的距离,该距离值也是所述凹缺毛刺的横向长度值;
(6)通过计算出的毛刺尺寸判断该产品是属于合格品、还是废品,通过外部触发与控制信号将废品从指定的出料口进行剔除。
其进一步的技术方案为:对所述第(6)步 ,具体按下述步骤进行毛刺的判断和分检:
(7)判断毛刺是否为凸出毛刺或凹缺毛刺,若为凸出毛刺则转向第(8)步,若为凹缺毛刺则转向第(9)步;若为其他未知的瑕疵则转向第(11)步;
(8)判断凸出毛刺图像的横向长度是否在合格范围<0.05mm,如在合格范围则转向第(10)步,若大于等于合格范围≥0.05mm则转向第(11)步;
(9)判断凹缺毛刺图像的横向长度是否在合格范围<0.05mm,如在合格范围则转向第(10)步,若大于等于合格范围≥0.05mm则转向第(11)步;
(10)作为合格品进行分拣;
(11)直接作为废品剔除。
以及,其进一步的技术方案为:对所述第(6)步,当检测到产品为废品时,计算机将通过人机界面进行图像提示,并启动报警装置。
本发明的有益技术效果是:
本发明采用机器视觉系统对钢针毛刺进行自动在线检测,取代人工检测,用户可自动进行检测精度的调节。具有对产品检测合格品、废品这两类产品的记录、分类、统计、存储、查询功能。并通过友好人机界面在图像中提示不合格品情况,并给予声、光报警提示,大大降低工人的检测劳动强度。
人工检测速度一般为0.5个/s,而机器视觉系统检测速度可达3~4个/s,机器视觉系统的产品检测速度是人工的6~8倍,极大提高了生产效率。
人工检测由于环境和生理的原因,无法24小时不间断进行产品质量检测,而采用机器视觉系统检测则使其成为可能。设备的生产时间可最大限度地延长,提高了设备的利用率。
人为检测由于通风差、视觉易疲劳,很难连续跟踪产品质量。数值化检测靠人工很难保证,非正常次品率一般在8~10%左右,造成了生产资源和生产成本的极大浪费;机器视觉系统的检测尺寸精度最高为0.01mm,精度可每0.01mm为一个梯度进行调整,设置为0.01、0.02、0.03、0.04、0.05mm等几个精度等级,从而大大提高产品合格率以及检测质量。
附图说明
图1是正常的钢针图像。
图2是有凸出毛刺的钢针图像。
图3是有凹缺毛刺的钢针图像。
图4是本发明的工艺步骤图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
图1、图2、图3是从钢针侧面拍摄并经过处理后的实际图像。
在图1、图2、图3所示的拍摄图像中,为了更好的区分图形,图中毛刺部分采用一般毛刺的形状表示毛刺类别;四周空白部分为钢针图像经过去噪软件处理后的透明空间,所示线条为钢针处理后的轮廓图像。
实施例1,对有凸出毛刺产品的检测:
如图2所示的凸出毛刺图像,其中右上部的突出部分为凸出毛刺的视觉图形。
将Basler ACA640-100GM型工业相机固定在钢针的侧方,相机距钢针侧面的距离约为20mm,使用施耐得50倍放大变焦变倍镜头,焦距调至16mm,光圈调到最大值,曝光时间调为0.41ms。凸出毛刺检测精度设置为0.01mm,设定合格品正常凸出毛刺横向长度最大为0.05mm。采用专用白色光纤点光源,从相机的异侧方进行照射(背光),并使用半封闭遮挡金属框体来屏蔽外界杂光的影响,以便比较稳定地取得视觉图像,体现钢针凸出毛刺的明显特征。本项目的光纤光源使用CCS公司的机器视觉专用光源(也可使用其他公司的光纤光源),以便能比较稳定地拍摄到清晰的图像,并显示于计算机的屏幕。采用生产线上的工装条夹具(针排)与皮带传输系统进行注射器钢针输送,保证钢针按一定的方向和速度,稳定地进入检测装置。
计算机根据不同生产厂商所生产设备的不同控制系统,取得相机与生产进程同步的触发与控制信号,启动所述工业相机拍摄在线运行的钢针的图像,并将获取的凸出毛刺图像,贮存于计算机中。
计算机对所拍摄的图像通过边缘提取、平滑去噪、二值化处理、傅利叶变换等算法进行图像处理,使图像更清晰,更符合钢针凸出毛刺的真实情况。上述图像处理过程中所采用的算法均为现有技术中的常规算法。
计算机对钢针凸出毛刺的横向长度进行计算。该长度是所述凸出毛刺与钢针边缘连接点与凸出毛刺外侧距离钢针垂直中心最远点的距离(取最大值),该距离值也是所述凸出毛刺的横向长度值。
如检测出的横向长度值为0.04mm,则该产品为合格品;如检测出的横向长度值为0.06mm,则该产品为不合格品。计算机通过友好人机界面在图像中提示不合格品情况,并给予声、光报警提示,对合格品进行记录、分类、统计入库。
实施例2,对有凹缺毛刺产品的检测:
如图3所示的凹缺毛刺(开口汽泡瑕疵)图像,其中其中右上缺口部分为凹缺毛刺形成的视觉图形。
将Basler ACA640-100GM型工业相机固定在钢针的侧方,相机距钢针侧面的距离约为20mm,使用施耐得50倍放大变焦变倍镜头,焦距调至16mm,光圈调到最大值,曝光时间调为0.41ms。凹缺毛刺检测精度设置为0.01mm,设定合格品正常凹缺毛刺横向长度最大为0.05mm。采用专用白色光纤点光源,从相机的异侧方进行照射(背光),并使用半封闭遮挡金属框体来屏蔽外界杂光的影响,以便比较稳定地取得视觉图像,体现钢针凹缺毛刺的明显特征。本项目的光纤光源使用CCS公司的机器视觉专用光源(也可使用其他公司的光纤光源),以便能比较稳定地拍摄到清晰的图像,并显示于计算机的屏幕。采用生产线上的工装条夹具(针排)与皮带传输系统进行注射器钢针输送,保证钢针按一定的方向和速度,稳定地进入检测装置。
计算机根据不同生产厂商所生产设备的不同控制系统,取得相机与生产进程同步的触发与控制信号,启动所述工业相机拍摄在线运行的钢针的图像,并将获取的凹缺毛刺图像,贮存于计算机中。
计算机对所拍摄的图像通过边缘提取、平滑去噪、二值化处理、傅利叶变换等算法进行图像处理,使图像更清晰,更符合钢针凹缺毛刺的真实情况。上述图像处理过程中所采用的算法均为现有技术中的常规算法。
计算机对钢针凹缺毛刺的横向长度进行计算。该长度是所述凹缺毛刺与钢针边缘连接点与凹缺毛刺内侧距离钢针垂直中心最近点的距离(取最大值),该距离值也是所述凹缺毛刺的横向长度值。
如检测出的横向长度值为0.04mm,则该产品为合格品;如检测出的横向长度值为0.06mm,则该产品为不合格品。计算机通过友好人机界面在图像中提示不合格品情况,并给予声、光报警提示,对合格品进行记录、分类、统计入库。
在上述两个实施例中,若经过图像算法处理发现还有其他未知的瑕疵图像出现,则认为该钢针为不合格品,将该钢针作为废品进行剔除。
以上所有实施例中使用的图像采集设备(相机、照射光源、电源、图像采集卡等)及存贮设备(硬盘、光盘、软盘等)、图像处理设备(图像处理器的硬件及软件)、图像显示设备(硬件及软件)、报警装置以及上述各部分的控制系统(硬件及软件)皆采用已有技术设计制作或直接采用相关市售产品。
以上所述的本发明的工艺步骤示于图4。
最后需要注意的是,以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。
Claims (3)
1.一种机器视觉系统对注射器钢针毛刺的自动检测方法,其特征在于包括以下步骤:
(1)将钢针固定在工装条夹具上,使工装条夹具在线运行,将拍摄相机固定在在线运行的工装条夹具一侧;根据待检测钢针的尺寸大小及钢针朝向,选择镜头的焦距,调整拍摄相机的拍摄角度、放大倍数、拍摄距离、光圈大小、曝光时间,以便获取清晰的拍摄图像;
(2)将毛刺横向长度设为检测参量,并根据用户要求设置所述检测参量的检测精度以及合格范围;
(3)计算机取得相机与生产进程同步的触发与控制信号,由外部触发与控制信号启动所述相机实时拍摄在线运行钢针毛刺的图像,并将拍摄的图像传输至计算机供检测;
(4)计算机通过图像算法处理,提取钢针毛刺的图像;若经过图像算法处理发现不存在毛刺图像,则认为该钢针不存在毛刺,属于合格品,从合格品分拣口拣出;
(5)计算机对所述钢针毛刺的尺寸进行计算;对于钢针凸出毛刺,计算所述凸出毛刺与钢针边缘连接点、以及凸出毛刺外侧距离钢针垂直中心最远点两者之间的距离,该距离值也是所述凸出毛刺的横向长度值;对于钢针凹缺毛刺,计算所述凹缺毛刺与钢针边缘连接点、以及凹缺毛刺内侧距离钢针垂直中心最近点两者之间的距离,该距离值也是所述凹缺毛刺的横向长度值;
(6)通过计算出的毛刺尺寸判断该产品是属于合格品、还是废品,通过外部触发与控制信号将废品从指定的出料口进行剔除。
2.根据权利要求1所述机器视觉系统对注射器钢针毛刺的自动检测方法,其特征在于对所述第(6)步 ,具体按下述步骤进行毛刺的判断和分检:
(7)判断毛刺是否为凸出毛刺或凹缺毛刺,若为凸出毛刺则转向第(8)步,若为凹缺毛刺则转向第(9)步;若为其他未知的瑕疵则转向第(11)步;
(8)判断凸出毛刺图像的横向长度是否在合格范围<0.05mm,如在合格范围则转向第(10)步,若大于等于合格范围≥0.05mm则转向第(11)步;
(9)判断凹缺毛刺图像的横向长度是否在合格范围<0.05mm,如在合格范围则转向第(10)步,若大于等于合格范围≥0.05mm则转向第(11)步;
(10)作为合格品进行分拣;
(11)直接作为废品剔除。
3.根据权利要求1所述机器视觉系统对注射器钢针毛刺的自动检测方法,其特征在于对所述第(6)步,当检测到产品为废品时,计算机将通过人机界面进行图像提示,并启动报警装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110109620 CN102303018B (zh) | 2011-04-29 | 2011-04-29 | 机器视觉系统对注射器钢针毛刺的自动检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110109620 CN102303018B (zh) | 2011-04-29 | 2011-04-29 | 机器视觉系统对注射器钢针毛刺的自动检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102303018A true CN102303018A (zh) | 2012-01-04 |
CN102303018B CN102303018B (zh) | 2012-12-26 |
Family
ID=45376986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110109620 Expired - Fee Related CN102303018B (zh) | 2011-04-29 | 2011-04-29 | 机器视觉系统对注射器钢针毛刺的自动检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102303018B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104076039A (zh) * | 2014-03-28 | 2014-10-01 | 合波光电通信科技有限公司 | 滤光片外观缺陷自动检测方法 |
CN105158260A (zh) * | 2015-08-27 | 2015-12-16 | 孔华 | 一种基于双重检测的纺织机针处理方法 |
CN105381965A (zh) * | 2015-11-02 | 2016-03-09 | 温州通尔自动化有限公司 | 一种基于pc图像采集系统的注射器针头检测系统及方法 |
CN109324061A (zh) * | 2018-10-11 | 2019-02-12 | 广东德尔智慧工厂科技有限公司 | 一种锂电池极片的毛刺检测装置和方法 |
CN110930376A (zh) * | 2019-11-13 | 2020-03-27 | 上海交通大学 | 基于机器视觉的对焊点毛刺的检测方法及系统 |
CN110976340A (zh) * | 2019-12-25 | 2020-04-10 | 江苏鑫蕴模塑科技有限公司 | 一种车灯注塑件筛选装置及其筛选方法 |
CN113588662A (zh) * | 2021-07-28 | 2021-11-02 | 扬州美德莱医疗用品有限公司 | 一种注射针加工的精准影像检测方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2444203Y (zh) * | 1997-07-03 | 2001-08-22 | 彭水源 | 金属冲片毛刺检测仪 |
CN101141123A (zh) * | 2007-10-11 | 2008-03-12 | 电子科技大学 | 一种毛刺检测装置 |
JP2009092474A (ja) * | 2007-10-05 | 2009-04-30 | Denso Corp | 成形品のバリ検出方法 |
CN201731837U (zh) * | 2010-06-17 | 2011-02-02 | 江苏通达动力科技股份有限公司 | 一种毛刺检测装置 |
-
2011
- 2011-04-29 CN CN 201110109620 patent/CN102303018B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2444203Y (zh) * | 1997-07-03 | 2001-08-22 | 彭水源 | 金属冲片毛刺检测仪 |
JP2009092474A (ja) * | 2007-10-05 | 2009-04-30 | Denso Corp | 成形品のバリ検出方法 |
CN101141123A (zh) * | 2007-10-11 | 2008-03-12 | 电子科技大学 | 一种毛刺检测装置 |
CN201731837U (zh) * | 2010-06-17 | 2011-02-02 | 江苏通达动力科技股份有限公司 | 一种毛刺检测装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104076039A (zh) * | 2014-03-28 | 2014-10-01 | 合波光电通信科技有限公司 | 滤光片外观缺陷自动检测方法 |
CN104076039B (zh) * | 2014-03-28 | 2017-05-31 | 合波光电通信科技有限公司 | 滤光片外观缺陷自动检测方法 |
CN105158260A (zh) * | 2015-08-27 | 2015-12-16 | 孔华 | 一种基于双重检测的纺织机针处理方法 |
CN105381965A (zh) * | 2015-11-02 | 2016-03-09 | 温州通尔自动化有限公司 | 一种基于pc图像采集系统的注射器针头检测系统及方法 |
CN109324061A (zh) * | 2018-10-11 | 2019-02-12 | 广东德尔智慧工厂科技有限公司 | 一种锂电池极片的毛刺检测装置和方法 |
CN109324061B (zh) * | 2018-10-11 | 2023-09-22 | 广东德尔智慧工厂科技有限公司 | 一种锂电池极片的毛刺检测装置和方法 |
CN110930376A (zh) * | 2019-11-13 | 2020-03-27 | 上海交通大学 | 基于机器视觉的对焊点毛刺的检测方法及系统 |
CN110976340A (zh) * | 2019-12-25 | 2020-04-10 | 江苏鑫蕴模塑科技有限公司 | 一种车灯注塑件筛选装置及其筛选方法 |
CN113588662A (zh) * | 2021-07-28 | 2021-11-02 | 扬州美德莱医疗用品有限公司 | 一种注射针加工的精准影像检测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN102303018B (zh) | 2012-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102303017B (zh) | 机器视觉系统对注射器钢针弯针的自动检测方法 | |
CN102303018B (zh) | 机器视觉系统对注射器钢针毛刺的自动检测方法 | |
CN101696945B (zh) | 机器视觉系统对光伏玻璃瑕疵的在线检测方法 | |
CN204479490U (zh) | 一种激光打标产品在线检测分析系统 | |
CN101509766B (zh) | 机器视觉系统对弹簧端面角度的在线检测方法 | |
CN102494773A (zh) | 机器视觉系统对按扣色差的自动检测方法 | |
CN101696943B (zh) | 机器视觉系统对医用手术刀瑕疵的在线检测方法 | |
CN102967586B (zh) | 基于单目多视角机器视觉的珍珠颜色光泽度在线自动分级装置 | |
CN101696877A (zh) | 机器视觉系统对弹簧垂直度的在线检测方法 | |
CN102928431A (zh) | 基于单目多视角机器视觉的珍珠大小形状在线自动分级装置 | |
CN102305595A (zh) | 机器视觉系统对弹簧节距的自动检测方法 | |
CN101726265A (zh) | 机器视觉系统对弹簧平行度的在线检测方法 | |
WO2024055796A1 (zh) | 一种缺陷检测系统、方法、装置、电子设备及存储介质 | |
TWI747686B (zh) | 缺陷檢測方法及檢測裝置 | |
CN102305592A (zh) | 机器视觉系统对注射器钢针倒针的自动检测方法 | |
CN102305597A (zh) | 机器视觉系统对注射器部件异形的自动检测方法 | |
Fu et al. | Medicine glass bottle defect detection based on machine vision | |
CN102305603B (zh) | 机器视觉系统对注射器钢针倾斜的自动检测方法 | |
CN102305797A (zh) | 机器视觉系统对医疗产品包装异物的自动检测方法 | |
CN102305950A (zh) | 机器视觉系统对注射器自动化装配配件缺失的自动检测方法 | |
CN102495077A (zh) | 机器视觉系统对输液瓶瓶身瑕疵的自动检测方法 | |
CN102507602A (zh) | 机器视觉系统对输液瓶瓶口破裂的自动检测方法 | |
CN102495072A (zh) | 机器视觉系统对输液导管瑕疵的自动检测方法 | |
CN102303019B (zh) | 机器视觉系统对注射器针筒刻度的自动检测方法 | |
CN102495073B (zh) | 机器视觉系统对留置针衬套毛刺的自动检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121226 |