CN102305592A - 机器视觉系统对注射器钢针倒针的自动检测方法 - Google Patents
机器视觉系统对注射器钢针倒针的自动检测方法 Download PDFInfo
- Publication number
- CN102305592A CN102305592A CN201110109644A CN201110109644A CN102305592A CN 102305592 A CN102305592 A CN 102305592A CN 201110109644 A CN201110109644 A CN 201110109644A CN 201110109644 A CN201110109644 A CN 201110109644A CN 102305592 A CN102305592 A CN 102305592A
- Authority
- CN
- China
- Prior art keywords
- draw point
- image
- detection
- steel needle
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明提供一种机器视觉系统对注射器钢针倒针的自动检测方法,将钢针顶部高度设为检测参量,根据用户要求设置不同检测参量的检测精度以及合格范围,由外部触发与控制信号启动所述相机实时拍摄在线运行钢针的图像,并将拍摄的图像传输至计算机供检测,计算机通过图像算法处理,提取钢针顶部的图像,并对所述钢针顶部高度进行计算,通过计算出的钢针顶部高度判断该产品是属于合格品、还是废品,通过外部触发与控制信号将废品从指定出料口进行剔除。本发明对注射器钢针倒针的检测精度高、速度快,可以有效保证产品的合格率。
Description
技术领域
本发明涉及利用机器视觉系统进行在线检测的技术领域,尤其涉及在注射器钢针装配现场,利用机器视觉系统对注射器钢针是否存在倒针进行自动检测的方法。
背景技术
在流水作业的注射器钢针装配车间现场,需要对钢针是否倒针(即反装,针尖插入针座)进行在线检测。现有技术中,对钢针倒针的在线检测依靠人工进行,在钢针生产机旁设约80人进行钢针倒针的检测和处理,根据检测结果将产品分为合格品(如不存在倒针)和不合格品(如存在倒针)。不合格品直接作为废品剔除。
人工检测存在的缺点主要有:生产车间现场通风差,工人检测工作环境恶劣,劳动强度大;正常人眼在不间断观测运动物体30min左右,即会眼花、眼胀等不适,检测人员无法长时间不间断工作,无法保证产品出厂合格率;钢针倒针检测是带很高精度的检测,人眼无法准确判断,误差大,出错机会很多,无法保证检测质量;专业人员检测钢针的速度最高为0.5个/s,对生产速率有极大限制。
发明的内容
针对现有技术对注射器钢针倒针的在线检测依靠人工进行检测,工人容易产生视觉疲劳,劳动强度大,无法保证产品合格率以及检测质量,监测速度低等问题,本发明提供一种机器视觉系统对注射器钢针倒针的自动检测方法,其大大降低工人的检测劳动强度,检测精度高、速度快,可以有效保证出厂产品的合格率。
由于针尖和底部形状不同,则反装后针尖部位的形状会发生变化,这就是本发明的检测依据。
本发明的技术方案如下:
一种机器视觉系统对注射器钢针倒针的自动检测方法,包括以下步骤:
(1)将钢针固定在工装条夹具上,使工装条夹具在线运行,将拍摄相机固定在在线运行的工装条夹具一侧;根据待检测钢针的尺寸大小及钢针朝向,选择镜头的焦距,调整拍摄相机的拍摄角度、拍摄距离、光圈大小、曝光时间,以便获取清晰的拍摄图像;
(2)将钢针顶部高度设为检测参量,并根据用户要求设置所述检测参量的检测精度以及合格范围;
(3)计算机取得相机与生产进程同步的触发与控制信号,由外部触发与控制信号启动所述相机实时拍摄在线运行钢针的图像,并将拍摄的图像传输至计算机供检测;
(4)计算机通过图像算法处理,提取钢针顶部的图像;
(5)计算机对所述钢针顶部的高度进行计算;该高度是钢针顶部最高点距离钢针针体圆柱最上端水平线之间的距离,该距离值即是所述钢针顶部的高度值;
(6)通过计算出的钢针顶部的高度判断该产品是属于合格品还是废品,通过外部触发与控制信号将废品从指定的出料口进行剔除。
其进一步的技术方案为:对所述第(6)步 ,具体按下述步骤进行倒针的判断和分检:
(7)判断钢针顶部的高度是否在合格范围≥0.5mm,如在合格范围则转向第(8)步,若小于合格范围<0.5mm则转向第(9)步;
(8)作为合格品进行分拣;
(9)直接作为废品剔除。
以及,其进一步的技术方案为:对所述第(6)步,当检测到产品为废品时,计算机将通过人机界面进行图像提示,并启动报警装置。
本发明的有益技术效果是:
本发明采用机器视觉系统对钢针倒针进行自动在线检测,取代人工检测,用户可自动进行检测精度的调节。具有对产品检测合格品、废品这两类产品的记录、分类、统计、存储、查询功能。并通过友好人机界面在图像中提示不合格品情况,并给予声、光报警提示,大大降低工人的检测劳动强度。
人工检测速度一般为0.5个/s,而机器视觉系统检测速度可达3~4个/s,机器视觉系统的产品检测速度是人工的6~8倍,极大提高了生产效率。
人工检测由于环境和生理的原因,无法24小时不间断进行产品质量检测,而采用机器视觉系统检测则使其成为可能。设备的生产时间可最大限度地延长,提高了设备的利用率。
人为检测由于通风差、视觉易疲劳,很难连续跟踪产品质量。数值化检测靠人工很难保证,非正常次品率一般在8~10%左右,造成了生产资源和生产成本的极大浪费;机器视觉系统的检测尺寸精度最高为0.01mm,精度可每0.01mm为一个梯度进行调整,设置为0.01、0.02、0.03、0.04、0.05mm等几个精度等级,从而大大提高产品合格率以及检测质量。
附图说明
图1是正常的钢针图像。
图2是存在倒针的钢针图像。
图3是本发明的工艺步骤图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
图1、图2是从钢针侧面拍摄并经过处理后的实际图像。
在图2所示的拍摄图像中,为了更好的区分图形,将钢针顶部的不平整进行了夸张放大;在图1、图2中,四周空白部分为钢针图像经过去噪软件处理后的透明空间,所示线条为钢针处理后的轮廓图像。
实施例1,对合格产品的检测:
如图1所示的钢针顶部图像,其中顶部凸出部分为钢针针尖的视觉图形。
将Basler ACA640-100GM型工业相机固定在钢针的侧方,相机距钢针侧面的距离约为20mm,使用施耐得焦变镜头,焦距调至16mm,光圈调到最大值,曝光时间调为0.41ms。检测精度设置为0.05mm,设定合格品钢针顶部高度至少为0.5mm。采用专用白色LED面光源,从相机的异侧方进行照射(背光),并使用半封闭遮挡金属框体来屏蔽外界杂光的影响,以便比较稳定地取得视觉图像,体现钢针顶部的明显特征。本项目的LED面光源使用CCS公司的机器视觉专用光源(也可使用其他公司的LED面光源),以便能比较稳定地拍摄到清晰的图像,并显示于计算机的屏幕。采用生产线上的工装条夹具(针排)与皮带传输系统进行注射器钢针输送,保证钢针按一定的方向和速度,稳定地进入检测装置。
计算机根据不同生产厂商所生产设备的不同控制系统,取得相机与生产进程同步的触发与控制信号,启动所述工业相机拍摄在线运行的钢针的图像,并将获取的钢针顶部图像,贮存于计算机中。
计算机对所拍摄的图像通过边缘提取、平滑去噪、二值化处理、傅利叶变换等算法进行图像处理,使图像更清晰,更符合钢针顶部的真实情况。上述图像处理过程中所采用的算法均为现有技术中的常规算法。
计算机对钢针顶部的高度进行计算。该高度是钢针顶部最高点距离钢针针体圆柱最上端水平线之间的距离(图1中高度h),该距离值即是所述钢针顶部的高度值。
如检测出的高度值为0.65mm,则该产品为合格品。计算机对该类合格品进行记录、分类、统计入库。
实施例2,对存在倒针产品的检测:
如图2所示的钢针顶部图像,其中顶部凸出部分实际上为钢针底部的视觉图形。
将Basler ACA640-100GM型工业相机固定在钢针的侧方,相机距钢针侧面的距离约为20mm,使用施耐得变焦镜头,焦距调至16mm,光圈调到最大值,曝光时间调为0.41ms。检测精度设置为0.1mm,设定合格品正常钢针顶部高度至少为0.5mm。采用专用白色LED面光源,从相机的异侧方进行照射(背光),并使用半封闭遮挡金属框体来屏蔽外界杂光的影响,以便比较稳定地取得视觉图像,体现钢针顶部的明显特征。本项目的LED面光源使用CCS公司的机器视觉专用光源(也可使用其他公司的LED面光源),以便能比较稳定地拍摄到清晰的图像,并显示于计算机的屏幕。采用生产线上的工装条夹具(针排)与皮带传输系统进行注射器钢针输送,保证钢针按一定的方向和速度,稳定地进入检测装置。
计算机根据不同生产厂商所生产设备的不同控制系统,取得相机与生产进程同步的触发与控制信号,启动所述工业相机拍摄在线运行的钢针的图像,并将获取的钢针顶部图像,贮存于计算机中。
计算机对所拍摄的图像通过边缘提取、平滑去噪、二值化处理、傅利叶变换等算法进行图像处理,使图像更清晰,更符合钢针顶部的真实情况。上述图像处理过程中所采用的算法均为现有技术中的常规算法。
计算机对钢针顶部的高度进行计算。该高度是钢针顶部最高点距离钢针针体圆柱最上端水平线之间的距离(图1中高度h),该距离值即是所述钢针顶部的高度值。
如检测出的高度值为0.05mm,则该产品为不合格品。计算机通过友好人机界面在图像中提示不合格品情况,并给予声、光报警提示,对该类不合格品进行记录、分类、统计入库。
以上所有实施例中使用的图像采集设备(相机、照射光源、电源、图像采集卡等)及存贮设备(硬盘、光盘、软盘等)、图像处理设备(图像处理器的硬件及软件)、图像显示设备(硬件及软件)、报警装置以及上述各部分的控制系统(硬件及软件)皆采用已有技术设计制作或直接采用相关市售产品。
以上所述的本发明的工艺步骤示于图3。
最后需要注意的是,以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。
Claims (3)
1.一种机器视觉系统对注射器钢针倒针的自动检测方法,其特征在于包括以下步骤:
(1)将钢针固定在工装条夹具上,使工装条夹具在线运行,将拍摄相机固定在在线运行的工装条夹具一侧;根据待检测钢针的尺寸大小及钢针朝向,选择镜头的焦距,调整拍摄相机的拍摄角度、拍摄距离、光圈大小、曝光时间,以便获取清晰的拍摄图像;
(2)将钢针顶部高度设为检测参量,并根据用户要求设置所述检测参量的检测精度以及合格范围;
(3)计算机取得相机与生产进程同步的触发与控制信号,由外部触发与控制信号启动所述相机实时拍摄在线运行钢针的图像,并将拍摄的图像传输至计算机供检测;
(4)计算机通过图像算法处理,提取钢针顶部的图像;
(5)计算机对所述钢针顶部的高度进行计算;该高度是钢针顶部最高点距离钢针针体圆柱最上端水平线之间的距离,该距离值即是所述钢针顶部的高度值;
(6)通过计算出的钢针顶部的高度判断该产品是属于合格品还是废品,通过外部触发与控制信号将废品从指定的出料口进行剔除。
2.根据权利要求1所述机器视觉系统对注射器钢针倒针的自动检测方法,其特征在于对所述第(6)步 ,具体按下述步骤进行倒针的判断和分检:
(7)判断钢针顶部的高度是否在合格范围≥0.5mm,如在合格范围则转向第(8)步,若小于合格范围<0.5mm则转向第(9)步;
(8)作为合格品进行分拣;
(9)直接作为废品剔除。
3.根据权利要求1所述机器视觉系统对注射器钢针倒针的自动检测方法,其特征在于对所述第(6)步,当检测到产品为废品时,计算机将通过人机界面进行图像提示,并启动报警装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110109644A CN102305592A (zh) | 2011-04-29 | 2011-04-29 | 机器视觉系统对注射器钢针倒针的自动检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110109644A CN102305592A (zh) | 2011-04-29 | 2011-04-29 | 机器视觉系统对注射器钢针倒针的自动检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102305592A true CN102305592A (zh) | 2012-01-04 |
Family
ID=45379478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110109644A Pending CN102305592A (zh) | 2011-04-29 | 2011-04-29 | 机器视觉系统对注射器钢针倒针的自动检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102305592A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103486978A (zh) * | 2013-09-29 | 2014-01-01 | 无锡众望四维科技有限公司 | 注射器装针机的倒针检测装置 |
CN103791852A (zh) * | 2013-12-27 | 2014-05-14 | 杭州依镭科技有限公司 | 一种注射器针头倒针检测方法及装置 |
CN104483321B (zh) * | 2014-10-31 | 2017-07-28 | 苏州捷碧医疗科技有限公司 | 一种基于机器视觉的注射针管自动检测系统和检测方法 |
CN108906641A (zh) * | 2018-06-14 | 2018-11-30 | 安徽海思达机器人有限公司 | 一种接插件中针座的视觉检测装置 |
CN117023002A (zh) * | 2023-10-08 | 2023-11-10 | 常州市佳峰医疗器材有限公司 | 一次性使用配药用注射器用输送设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0823629B1 (en) * | 1996-08-05 | 2003-07-16 | Chep Pooling Systems BV | Process for the automatic recognition and categorization of defects in pallets or similar elements, and corresponding system |
CN101696877A (zh) * | 2009-11-13 | 2010-04-21 | 无锡众望四维科技有限公司 | 机器视觉系统对弹簧垂直度的在线检测方法 |
CN101726265A (zh) * | 2009-11-13 | 2010-06-09 | 无锡众望四维科技有限公司 | 机器视觉系统对弹簧平行度的在线检测方法 |
-
2011
- 2011-04-29 CN CN201110109644A patent/CN102305592A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0823629B1 (en) * | 1996-08-05 | 2003-07-16 | Chep Pooling Systems BV | Process for the automatic recognition and categorization of defects in pallets or similar elements, and corresponding system |
CN101696877A (zh) * | 2009-11-13 | 2010-04-21 | 无锡众望四维科技有限公司 | 机器视觉系统对弹簧垂直度的在线检测方法 |
CN101726265A (zh) * | 2009-11-13 | 2010-06-09 | 无锡众望四维科技有限公司 | 机器视觉系统对弹簧平行度的在线检测方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103486978A (zh) * | 2013-09-29 | 2014-01-01 | 无锡众望四维科技有限公司 | 注射器装针机的倒针检测装置 |
CN103486978B (zh) * | 2013-09-29 | 2016-02-03 | 无锡众望四维科技有限公司 | 注射器装针机的倒针检测装置 |
CN103791852A (zh) * | 2013-12-27 | 2014-05-14 | 杭州依镭科技有限公司 | 一种注射器针头倒针检测方法及装置 |
CN103791852B (zh) * | 2013-12-27 | 2017-02-22 | 杭州依镭科技有限公司 | 一种注射器针头倒针检测方法及装置 |
CN104483321B (zh) * | 2014-10-31 | 2017-07-28 | 苏州捷碧医疗科技有限公司 | 一种基于机器视觉的注射针管自动检测系统和检测方法 |
CN108906641A (zh) * | 2018-06-14 | 2018-11-30 | 安徽海思达机器人有限公司 | 一种接插件中针座的视觉检测装置 |
CN108906641B (zh) * | 2018-06-14 | 2023-09-05 | 安徽海思达机器人有限公司 | 一种接插件中针座的视觉检测装置 |
CN117023002A (zh) * | 2023-10-08 | 2023-11-10 | 常州市佳峰医疗器材有限公司 | 一次性使用配药用注射器用输送设备 |
CN117023002B (zh) * | 2023-10-08 | 2023-12-05 | 常州市佳峰医疗器材有限公司 | 一次性使用配药用注射器用输送设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102303017B (zh) | 机器视觉系统对注射器钢针弯针的自动检测方法 | |
CN102303018B (zh) | 机器视觉系统对注射器钢针毛刺的自动检测方法 | |
CN101696945B (zh) | 机器视觉系统对光伏玻璃瑕疵的在线检测方法 | |
CN102494773A (zh) | 机器视觉系统对按扣色差的自动检测方法 | |
CN101509766B (zh) | 机器视觉系统对弹簧端面角度的在线检测方法 | |
CN204479490U (zh) | 一种激光打标产品在线检测分析系统 | |
CN101696877A (zh) | 机器视觉系统对弹簧垂直度的在线检测方法 | |
CN101696943B (zh) | 机器视觉系统对医用手术刀瑕疵的在线检测方法 | |
CN102305592A (zh) | 机器视觉系统对注射器钢针倒针的自动检测方法 | |
CN102305595A (zh) | 机器视觉系统对弹簧节距的自动检测方法 | |
CN102967586B (zh) | 基于单目多视角机器视觉的珍珠颜色光泽度在线自动分级装置 | |
CN101726265A (zh) | 机器视觉系统对弹簧平行度的在线检测方法 | |
CN102928431A (zh) | 基于单目多视角机器视觉的珍珠大小形状在线自动分级装置 | |
CN102529019A (zh) | 一种模具检测、保护及零件检测、摘取的方法 | |
CN102305597A (zh) | 机器视觉系统对注射器部件异形的自动检测方法 | |
CN102305603B (zh) | 机器视觉系统对注射器钢针倾斜的自动检测方法 | |
WO2024055796A1 (zh) | 一种缺陷检测系统、方法、装置、电子设备及存储介质 | |
CN101762589A (zh) | 一种机器视觉在文具组合套装瑕疵的在线监测方法及其设备 | |
CN102305797A (zh) | 机器视觉系统对医疗产品包装异物的自动检测方法 | |
CN102507602A (zh) | 机器视觉系统对输液瓶瓶口破裂的自动检测方法 | |
CN102305950A (zh) | 机器视觉系统对注射器自动化装配配件缺失的自动检测方法 | |
CN102495077A (zh) | 机器视觉系统对输液瓶瓶身瑕疵的自动检测方法 | |
CN102495072A (zh) | 机器视觉系统对输液导管瑕疵的自动检测方法 | |
CN202074946U (zh) | 一种烟盒外观检测设备 | |
CN102303019B (zh) | 机器视觉系统对注射器针筒刻度的自动检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120104 |