CN102289156B - Optimization method for NA-Sigma configuration of photoetching machine - Google Patents

Optimization method for NA-Sigma configuration of photoetching machine Download PDF

Info

Publication number
CN102289156B
CN102289156B CN 201110231966 CN201110231966A CN102289156B CN 102289156 B CN102289156 B CN 102289156B CN 201110231966 CN201110231966 CN 201110231966 CN 201110231966 A CN201110231966 A CN 201110231966A CN 102289156 B CN102289156 B CN 102289156B
Authority
CN
China
Prior art keywords
point
search
sigma
lithography
focal depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110231966
Other languages
Chinese (zh)
Other versions
CN102289156A (en
Inventor
李艳秋
郭学佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN 201110231966 priority Critical patent/CN102289156B/en
Publication of CN102289156A publication Critical patent/CN102289156A/en
Application granted granted Critical
Publication of CN102289156B publication Critical patent/CN102289156B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本发明提供一种光刻机NA-Sigma配置的优化方法;具体过程为:在事先设定两个优化方向选取具有最大光刻焦深的点;当所选取的点不满足条件时,计算新的优化方向,并获取新的优化方向上对应的最大光刻焦深的点,进一步判断所获取的点是否满足条件;当不满足时,对所选取的优化方向进行更新,直至获取的最大光刻焦深的点满足条件为止。采用本发明可以快速有效地优化得出最优的NA-Sigma配置,得到最大的光刻焦深,并有较高的精度。

Figure 201110231966

The invention provides a method for optimizing the NA-Sigma configuration of a lithography machine; the specific process is: select a point with the maximum lithography focal depth in two optimization directions set in advance; when the selected point does not meet the conditions, calculate a new Optimize the direction, and obtain the point corresponding to the maximum lithographic focal depth in the new optimized direction, and further judge whether the obtained point satisfies the condition; if not, update the selected optimized direction until the obtained maximum lithography The point of depth of focus satisfies the condition. By adopting the present invention, the optimum NA-Sigma configuration can be quickly and effectively optimized to obtain the maximum focal depth of lithography and high precision.

Figure 201110231966

Description

一种光刻机NA-Sigma配置的优化方法An optimization method for NA-Sigma configuration of lithography machine

技术领域 technical field

本发明涉及一种光刻机投影物镜数值孔径与照明系统相干因子(NA-Sigma)配置的优化方法,属于光刻机参数协同优化设计领域。The invention relates to an optimization method for configuring the numerical aperture of a projection objective lens of a lithography machine and the coherence factor (NA-Sigma) of an illumination system, and belongs to the field of collaborative optimization design of parameters of a lithography machine.

背景技术 Background technique

当前大规模的集成电路普遍采用光刻系统进行制造。光刻系统主要分为:光源、照明系统、掩模、投影系统以及晶片五部分。光源发出的光线经过照明系统整形后入射至掩模上,掩模开口部分透光;经过掩模后,光线经由投影系统入射至涂有光刻胶的晶片上,这样就将掩模图形复制在晶片上。At present, large-scale integrated circuits are generally manufactured by photolithography systems. The lithography system is mainly divided into five parts: light source, illumination system, mask, projection system and wafer. The light emitted by the light source is incident on the mask after being shaped by the lighting system, and the opening of the mask is partially transparent; after passing through the mask, the light is incident on the wafer coated with photoresist through the projection system, so that the mask pattern is copied on the wafer .

光刻焦深是评价光刻系统性能的主要参数之一,其定义为:在一定的曝光宽容度(曝光剂量变化范围)内,且复制在晶片上的掩模图形满足一定的图形尺寸误差、图形侧壁角、光刻胶损失的约束条件下,所能实现的最大离焦量。光刻焦深越大说明光刻性能越好。Depth of focus in lithography is one of the main parameters for evaluating the performance of a lithography system, which is defined as: within a certain exposure latitude (exposure dose variation range), and the mask pattern replicated on the wafer satisfies a certain pattern size error, Under the constraints of pattern sidewall angle and photoresist loss, the maximum defocus amount that can be achieved. The larger the lithographic depth of focus, the better the lithographic performance.

在光刻系统中,NA和Sigma是影响光刻焦深的重要因素。其中NA与光刻分辨率成正比,其平方与光刻焦深成反比,因此为实现良好的光刻分辨率以及大的光刻焦深,必须对NA和Sigma之间进行有机的配置。In the lithography system, NA and Sigma are important factors affecting the depth of focus in lithography. Among them, NA is directly proportional to the lithographic resolution, and its square is inversely proportional to the lithographic focal depth. Therefore, in order to achieve good lithographic resolution and large lithographic focal depth, an organic configuration between NA and Sigma is necessary.

当前,对不同条件下合理的NA-Sigma配置已经有了大量研究(李艳秋等,光学参数配置对ArF光刻性能影响研究[J].电子工业专用设备,2004,33(4):36-39.)。上述研究主要是通过遍历仿真的方法确定NA-Sigma配置,即把NA和Sigma范围内所有值的组合均遍历一遍,得出NA-Sigma和光刻焦深的关系图,然后选择可得到最大光刻焦深的NA-Sigma配置。但是这种方法往往需要遍历所有NA和Sigma范围内的可能值,计算量较大,且精度较低,难以找出最优的NA-Sigma配置。At present, there have been a lot of research on the reasonable NA-Sigma configuration under different conditions (Li Yanqiu et al., Research on the Effect of Optical Parameter Configuration on ArF Lithography Performance [J]. Special Equipment for Electronic Industry, 2004, 33(4): 36-39 .). The above research is mainly to determine the NA-Sigma configuration by traversing the simulation method, that is, traversing the combination of all values in the NA and Sigma ranges, and obtaining the relationship between NA-Sigma and the focal depth of lithography, and then selecting the maximum light. NA-Sigma configuration with engraved depth of focus. However, this method often needs to traverse all possible values in the range of NA and Sigma, which requires a large amount of calculation and low precision, making it difficult to find the optimal NA-Sigma configuration.

发明内容 Contents of the invention

本发明的目的是提供一种光刻机NA-Sigma配置的优化方法;该方法可以快速有效地优化具有最大光刻焦深的NA-Sigma配置。The object of the present invention is to provide a method for optimizing the NA-Sigma configuration of a lithography machine; the method can quickly and effectively optimize the NA-Sigma configuration with the maximum lithography focal depth.

实现本发明的技术方案如下:Realize the technical scheme of the present invention as follows:

一种光刻机NA-Sigma配置的优化方法,具体步骤为:A method for optimizing the NA-Sigma configuration of a photolithography machine, the specific steps are:

步骤101、给定初始点NA和Sigma的值,设为(NA,σ)(1,0),确定两个初始线性无关的方向d(1,1)和d(1,2),设定搜索精度ε,令k=1;Step 101, given the initial point NA and the value of Sigma, set it as (NA, σ) (1, 0) , determine two initial linearly independent directions d (1, 1) and d (1, 2) , set Search precision ε, let k=1;

步骤102、从(NA,σ)(k,0)出发,沿方向d(k,1)进行搜索,得到在该方向上具有最大光刻焦深的点(NA,σ)(k,1),其中若该方向所有点对应的光刻焦深的值都相等时,则任选一点作为最大光刻焦深的点(NA,σ)(k,1);从(NA,σ)(k,1)出发,沿方向d(k,2)进行搜索,得到在该方向上具有最大光刻焦深的点(NA,σ)(k,2),其中若该方向所有点对应的光刻焦深的值都相等时,则任选一点作为最大光刻焦深的点(NA,σ)(k,2)Step 102, start from (NA, σ) (k, 0) , search along the direction d (k, 1) , and obtain the point (NA, σ) (k, 1) with the maximum lithographic focal depth in this direction , where if the values of the lithographic depth of focus corresponding to all points in this direction are equal, then choose a point as the point (NA, σ) (k, 1) of the maximum lithographic focal depth; from (NA, σ) (k , 1) , search along the direction d (k, 2) , and get the point (NA, σ) (k, 2) with the maximum lithographic focal depth in this direction, where if all points in this direction correspond to the lithographic When the values of the depth of focus are all equal, then choose a point as the point (NA, σ) (k, 2) of the maximum depth of focus for lithography;

步骤103、若||(NA,σ)(k,2)-(NA,σ)(k,0)||≤ε,则令(NA,σ)=(NA,σ)(k,2),进入步骤109,其中|| ||为取模运算;否则进入步骤104;Step 103, if ||(NA, σ) (k, 2) -(NA, σ) (k, 0) ||≤ε, then set (NA, σ)=(NA, σ) (k, 2) , enter step 109, where || || is a modulo operation; otherwise, enter step 104;

步骤104、计算新的搜索方向d(k,3)=(NA,σ)(k,2)-(NA,σ)(k,0);从(NA,σ)(k,0)出发,沿方向d(k,3)进行搜索,得到在该方向上具有最大光刻焦深的点(NA,σ)(k,3)Step 104, calculate the new search direction d (k, 3) = (NA, σ) (k, 2) - (NA, σ) (k, 0) ; starting from (NA, σ) (k, 0) , Carry out search along direction d (k, 3) , obtain the point (NA, σ) (k, 3) with maximum lithography focal depth on this direction;

步骤105、若||(NA,σ)(k,3)-(NA,σ)(k,2)||≤ε,则令(NA,σ)=(NA,σ)(k,3),进入步骤109;否则进入步骤106;Step 105, if ||(NA, σ) (k, 3) -(NA, σ) (k, 2) ||≤ε, then set (NA, σ)=(NA, σ) (k, 3) , go to step 109; otherwise go to step 106;

步骤106、当{f((NA,σ)(k,0))-f((NA,σ)(k,1))}≥{f((NA,σ)(k,1))-f((NA,σ)(k,2))}时,令m=1;当{f((NA,σ)(k,0))-f((NA,σ)(k,1))}<{f((NA,σ)(k,1))-f((NA,σ)(k,2))}时,令m=2;其中f((NA,σ)(p,q))表示点(NA,σ)(p,q)所对应的光刻焦深;Step 106, when {f((NA, σ) (k, 0) )-f((NA, σ) (k, 1)) }≥{f((NA, σ) (k, 1) )-f ((NA, σ) (k, 2) )}, let m=1; when {f((NA, σ) (k, 0) )-f((NA, σ) (k, 1) )} <{f((NA,σ) (k,1) )-f((NA,σ) (k,2)) }, let m=2; where f((NA,σ) (p,q) ) represents the focal depth of lithography corresponding to the point (NA, σ) (p, q) ;

步骤107、令 &lambda; = | | ( NA , &sigma; ) ( k , 3 ) - ( NA , &sigma; ) ( k , 0 ) | | | | ( NA , &sigma; ) ( k , 2 ) - ( NA , &sigma; ) ( k , 0 ) | | , Step 107, command &lambda; = | | ( NA , &sigma; ) ( k , 3 ) - ( NA , &sigma; ) ( k , 0 ) | | | | ( NA , &sigma; ) ( k , 2 ) - ( NA , &sigma; ) ( k , 0 ) | | ,

Figure BDA0000083075780000032
则进入步骤108;否则,从(NA,σ)(k,1)、(NA,σ)(k,2)以及(NA,σ)(k,3)中选取具有最大光刻焦深的点,令k加1,并将所选取的点作为初始点(NA,σ)(k,0),令此时搜索方向d(k,1)和d(k,2)为原搜索方向d(k-1,1)和d(k-1,2),返回步骤102;like
Figure BDA0000083075780000032
Then go to step 108; otherwise, select the point with the maximum lithography focal depth from (NA, σ) (k, 1) , (NA, σ) (k, 2) and (NA, σ) (k, 3) , add 1 to k, and take the selected point as the initial point (NA, σ) (k, 0) , let the search directions d (k, 1) and d (k, 2) be the original search directions d ( k-1, 1) and d (k-1, 2) , return to step 102;

步骤108、替换搜索方向:当m=1时,此时令d(k+1,1)=d(k,2),d(k+1,2)=d(k,3);当m=2时,此时令d(k+1,1)=d(k,1),d(k+1,2)=d(k,3);令k加1,令此时初始点(NA,σ)(k,0)为原初始点(NA,σ)(k-1,0),并返回步骤102;Step 108, replace the search direction: when m=1, then d (k+1, 1) = d (k, 2) , d (k+1, 2) = d (k, 3) ; when m = 2, this time d (k+1, 1) = d (k, 1) , d (k+1, 2) = d (k, 3) ; let k add 1, let the initial point (NA, σ) (k, 0) is the original initial point (NA, σ) (k-1, 0) , and return to step 102;

步骤109、输出NA-Sigma的值(NA,σ)以及最佳光刻焦深f((NA,σ)),优化结束。Step 109 , output the value of NA-Sigma (NA, σ) and the optimal lithography focal depth f((NA, σ)), and the optimization ends.

本发明当所述步骤102中,当沿方向d(k,1)搜索到所有点所对应的光刻焦深的值都等于本搜索方向初始点的光刻焦深时,则令(NA,σ)(k,1)等于(NA,σ)(k,0);当沿方向d(k,2)搜索到所有点所对应的光刻焦深的值都等于本搜索方向初始点的光刻焦深时,则令(NA,σ)(k,2)等于(NA,σ)(k,1)In step 102 of the present invention, when searching along the direction d (k, 1) the value of the lithographic focal depth corresponding to all points is equal to the lithographic focal depth of the initial point in this search direction, then let (NA, σ) (k, 1) is equal to (NA, σ) (k, 0) ; when searching along the direction d (k, 2) , the values of the lithography focal depths corresponding to all points are equal to the light at the initial point of this search direction When engraving the depth of focus, let (NA, σ) (k, 2) be equal to (NA, σ) (k, 1) .

本发明中所述方向d(1,1)为沿[0,1]方向,所述方向d(1,2)为沿[1,0]方向。In the present invention, the direction d (1, 1) is along the [0, 1] direction, and the direction d (1, 2) is along the [1, 0] direction.

有益效果Beneficial effect

本发明通过选取两个优化方向,并在约束条件下通过对优化方向进行优化,最终获取具有较大光刻焦深梯度的优化方向;因此采用本发明可以快速有效地优化得出最优的NA-Sigma配置,得到最大的光刻焦深,并有较高的精度。The present invention selects two optimization directions, and optimizes the optimization directions under constraint conditions, and finally obtains the optimization direction with a larger lithographic focal depth gradient; therefore, the present invention can be quickly and effectively optimized to obtain the optimal NA -Sigma configuration, to get the largest focal depth of lithography, and have higher precision.

附图说明 Description of drawings

图1为光刻机NA-Sigma配置的优化方法的流程图。FIG. 1 is a flowchart of an optimization method for NA-Sigma configuration of a photolithography machine.

图2为光刻机照明系统相干因子示意图。Fig. 2 is a schematic diagram of the coherence factor of the lighting system of the lithography machine.

图3为NA-Sigma配置与光刻焦深的关系图。Fig. 3 is a relationship diagram of NA-Sigma configuration and lithography focal depth.

具体实施方式 Detailed ways

下面结合附图进一步对本发明进行详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.

图1为本发明光刻机NA-Sigma配置的优化方法的流程图,其具体步骤为:Fig. 1 is the flowchart of the optimization method of photolithography machine NA-Sigma configuration of the present invention, and its specific steps are:

步骤101、根据光刻机照明系统和投影系统的类型给定初始点NA和Sigma的值,设为(NA,σ)(1,0),(σ为Sigma的初始值),确定两个初始线性无关的方向d(1,1),d(1,2),确定搜索精度ε>0,其中ε可以根据NA和Sigma的精度进行确定,例如,当所需的NA和Sigma的精度需求较高时,可将精度因子ε设置较小;令k=1。如图3所示,本实施例中水平方向和竖直方向建立坐标轴,其中水平方向代表NA,竖直方向代表Sigma;令初始方向d(1,1)为沿[0,1]方向,方向d(1,2)为沿[1,0]方向。Step 101, according to the type of the lighting system and projection system of the lithography machine, the values of the initial points NA and Sigma are given, set (NA, σ) (1, 0) , (σ is the initial value of Sigma), and two initial points are determined Linearly independent directions d (1, 1) , d (1, 2) , determine the search accuracy ε>0, where ε can be determined according to the accuracy of NA and Sigma, for example, when the required NA and Sigma accuracy requirements are relatively When it is high, the precision factor ε can be set smaller; let k=1. As shown in Figure 3, in the present embodiment, horizontal direction and vertical direction establish coordinate axis, and wherein horizontal direction represents NA, and vertical direction represents Sigma; Make initial direction d (1,1) be along [0,1] direction, The direction d (1, 2) is along the [1, 0] direction.

步骤102、从(NA,σ)(k,0)出发,沿方向d(k,1)即为沿[0,1](竖直)方向进行搜索,其中所述搜索是按照设定的竖直搜索步长进行,即令NA不变,按照设定的竖直搜索步长逐渐变化σ,在σ可取的范围内获得到在竖直方向上具有最大光刻焦深的点(NA,σ)(k,1),其中,若竖直方向所有点对应的光刻焦深的值都相等时,则任选一点作为最大光刻焦深的点(NA,σ)(k,1)。本发明较佳的设定为:若在竖直方向上搜索的所有的点对应的光刻焦深都相等时,此时令(NA,σ)(k,1)等于(NA,σ)(k,0)Step 102, starting from (NA, σ) (k, 0) , search along the direction d (k, 1) that is, along the [0, 1] (vertical) direction, wherein the search is performed according to the set vertical The vertical search step is carried out, that is, keeping NA unchanged, gradually changing σ according to the set vertical search step, and obtaining the point (NA, σ) with the maximum lithographic focal depth in the vertical direction within the range of σ (k, 1) , where, if the lithographic depth of focus values corresponding to all points in the vertical direction are equal, then choose a point as the maximum lithographic focal depth point (NA, σ) (k, 1) . The preferred setting of the present invention is: if the lithographic focal depths corresponding to all points searched in the vertical direction are equal, then (NA, σ) (k, 1) is equal to (NA, σ) (k ,0) .

从(NA,σ)(k,1)出发,沿方向d(k,2)即为沿[1,0](水平)方向进行搜索,其中所述的搜索是按照设定的水平搜索步长进行,即令σ不变,按照设定的水平搜索步长逐渐变化NA,在NA可取的范围内获得到在水平方向上具有最大光刻焦深的点(NA,σ)(k,2),其中若水平方向所有点对应的光刻焦深的值都相等时,则任选一点作为最大光刻焦深的点(NA,σ)(k,2)。本发明较佳的设定为:若在水平方向上搜索的所有的点对应的光刻焦深都相等时,此时令(NA,σ)(k,2)等于(NA,σ)(k,1)。本实施中较佳的选取水平搜索步长和竖直搜索步长相等。Starting from (NA, σ) (k, 1) , along the direction d (k, 2) is to search along the [1, 0] (horizontal) direction, wherein the search is based on the set horizontal search step Proceeding, even if σ is constant, gradually change NA according to the set horizontal search step size, and obtain the point (NA, σ) (k, 2) with the maximum lithography focal depth in the horizontal direction within the range of NA, Among them, if the values of lithographic focal depth corresponding to all points in the horizontal direction are equal, then select a point as the maximum lithographic focal depth point (NA, σ) (k, 2) . The preferred setting of the present invention is: if the lithographic focal depths corresponding to all points searched in the horizontal direction are all equal, then (NA, σ) (k, 2) is equal to (NA, σ) (k, 1) . In this implementation, preferably, the horizontal search step size is equal to the vertical search step size.

步骤103、判断方向d(k,2)上最大光刻焦深对应的点(NA,σ)(k,2)与给定初始点(NA,σ)(k,0)之间距离的大小,若||(NA,σ)(k,2)-(NA,σ)(k,0)||≤ε,则令(NA,σ)=(NA,σ)(k,2),进入步骤109,其中|| ||为取模运算;否则进入步骤104。Step 103. Determine the distance between the point (NA, σ) ( k, 2) corresponding to the maximum lithographic focal depth in the direction d (k, 2) and the given initial point (NA, σ) (k, 0) , if ||(NA, σ) (k, 2) -(NA, σ) (k, 0) ||≤ε, then set (NA, σ) = (NA, σ) (k, 2) and enter Step 109, where || || is a modulo operation; otherwise, go to step 104.

步骤104、计算新的搜索方向d(k,3)=(NA,σ)(k,2)-(NA,σ)(k,0);从(NA,σ)(k,0)出发,沿方向d(k,3)进行搜索,其中所述搜索为在σ和NA可取的范围内,按照设定的步长进行,获取具有最大光刻焦深的点(NA,σ)(k,3)Step 104, calculate the new search direction d (k, 3) = (NA, σ) (k, 2) - (NA, σ) (k, 0) ; starting from (NA, σ) (k, 0) , Search along the direction d (k, 3) , wherein the search is within the range of σ and NA, according to the set step size, to obtain the point (NA, σ) (k, 3) .

步骤105、判断方向d(k,3)上最大光刻焦深对应的点(NA,σ)(k,3)与方向d(k,2)上最大光刻焦深对应的点(NA,σ)(k,2)之间距离的大小,若||(NA,σ)(k,3)-(NA,σ)(k,2)||≤ε,则令(NA,σ)=(NA,σ)(k,3),进入步骤109;否则进入步骤106。Step 105, judging the point (NA, σ) corresponding to the maximum depth of focus of lithography in direction d (k, 3) and the point (NA, σ ) corresponding to the maximum depth of focus of lithography in direction d (k, 2 ) σ) the size of the distance between (k, 2) , if ||(NA, σ) (k, 3) -(NA, σ) (k, 2) ||≤ε, then let (NA, σ)= (NA, σ) (k, 3) , go to step 109; otherwise go to step 106.

步骤106、判断{f((NA,σ)(k,0))-f((NA,σ)(k,1))}与{f((NA,σ)(k,1))-f((NA,σ)(k,2))}的大小,其中f((NA,σ)(p,q))表示点(NA,σ)(p,q)所对应的光刻焦深;Step 106, judge {f((NA, σ) (k, 0) )-f((NA, σ) (k, 1) )} and {f((NA, σ) (k, 1) )-f ((NA, σ) (k, 2) )}, where f((NA, σ) (p, q) ) represents the focal depth of lithography corresponding to the point (NA, σ) (p, q) ;

当{f((NA,σ)(k,0))-f((NA,σ)(k,1))}≥{f((NA,σ)(k,1))-f((NA,σ)(k,2))}时,表明此时沿方向d(k,1)光刻焦深的变化量较大,此时令m=1;When {f((NA,σ) (k,0) )-f((NA,σ) (k,1) )}≥{f((NA,σ) (k,1) )-f((NA , σ) (k, 2) )}, it indicates that the variation of the focal depth of lithography along the direction d (k, 1) is relatively large at this time, and m=1 at this time;

当{f((NA,σ)(k,0))-f((NA,σ)(k,1))}<{f((NA,σ)(k,1))-f((NA,σ)(k,2))}时,表明此时沿方向d(k,2)光刻焦深的变化量较小,此时令m=2。When {f((NA, σ) (k, 0) )-f((NA, σ) (k, 1) )}<{f((NA, σ) (k, 1) )-f((NA , σ) (k, 2) )}, it indicates that the variation of the focal depth of lithography along the direction d (k, 2) is small at this time, and m=2 at this time.

步骤107、令

Figure BDA0000083075780000051
通过λ判断当前搜索方向d(k,1)和d(k,2)与新的搜索方向d(k,3)的线性无关性,根据判断的结果确定是否需要用新的搜索方向替换当前搜索方向d(k,1)和d(k,2);判断的过程如下:Step 107, command
Figure BDA0000083075780000051
Judging the linear independence between the current search direction d (k, 1) and d (k, 2) and the new search direction d (k, 3) by λ, and determining whether to replace the current search direction with a new search direction according to the result of the judgment Direction d (k, 1) and d (k, 2) ; the process of judging is as follows:

则表明此时新的搜索方向d(k,3)与当前两个搜索方向中的一个具有更好的线性无关性,此时进入步骤108,用新的搜索方向代替原来搜索方向的一个;否则,从(NA,σ)(k,1)、(NA,σ)(k,2)以及(NA,σ)(k,3)中选取具有最大光刻焦深的点,令k加1,并将所选取的点作为初始点(NA,σ)(k,0),令此时搜索方向d(k,1)和d(k,2)为原搜索方向d(k-1,1)和d(k-1,2),返回步骤102。like Then it shows that the new search direction d (k, 3) has better linear independence with one of the current two search directions at this time, and now enters step 108, and replaces the original search direction with the new search direction; otherwise , select the point with the maximum lithographic focal depth from (NA, σ) (k, 1) , (NA, σ) (k, 2) and (NA, σ) (k, 3) , let k add 1, And take the selected point as the initial point (NA, σ) (k, 0) , let the search directions d (k, 1) and d (k, 2) at this time be the original search direction d (k-1, 1) and d (k-1, 2) , return to step 102.

步骤108、替换搜索方向:Step 108, replace the search direction:

当m等于1时,此时令d(k+1,1)=d(k,2),d(k+1,2)=d(k,3);保证此时确定的两个搜索方向线性无关,并随着迭代的延续,搜索方向接近共轭的程度逐渐增加。When m is equal to 1, d (k+1, 1) = d (k, 2) at this time, d (k+1, 2) = d (k, 3) ; guarantee that the two search directions determined at this time are linear irrelevant, and with the continuation of the iterations, the degree to which the search direction is close to the conjugate gradually increases.

当m等于2时,此时令d(k+1,1)=d(k,1),d(k+1,2)=d(k,3);保证此时确定的两个搜索方向线性无关,并随着迭代的延续,搜索方向接近共轭的程度逐渐增加。When m is equal to 2, this order d (k+1, 1) = d (k, 1) , d (k+1, 2) = d (k, 3) ; guarantee that the two search directions determined at this time are linear irrelevant, and with the continuation of the iterations, the degree to which the search direction is close to the conjugate gradually increases.

令k加1,令此时初始点(NA,σ)(k,0)为原初始点(NA,σ)(k-1,0),并返回步骤102。Add 1 to k, let the initial point (NA, σ) (k, 0) be the original initial point (NA, σ) (k-1, 0) , and return to step 102 .

步骤109、输出NA-Sigma的值(NA,σ)和对应的最佳光刻焦深f((NA,σ)),优化结束。Step 109 , output the value of NA-Sigma (NA, σ) and the corresponding optimal lithography focal depth f((NA, σ)), and the optimization ends.

本发明实施实例:Implementation example of the present invention:

下面以优化45nm节点光刻机NA-Sigma配置为例说明本发明的优化过程。The optimization process of the present invention will be described below by taking the optimization of the NA-Sigma configuration of a 45nm node photolithography machine as an example.

对45nm节点密集线条,采用浸没式光刻,浸没液体折射率为1.44,投影物镜数值孔径在[1,1.35]内可调,曝光波长为193nm,使用分辨率增强技术来提高其分辨率和增大光刻焦深,掩模类型选择衰减相移掩模,照明方式选择环形照明,在提高分辨率的同时为了保证产率,环形照明方式的环宽选择为0.15,也即外相干因子与内相干因子之间的差为0.15(Δσ=σoutin=0.15),如图2所示。为了进一步增大光刻焦深,光刻仿真时使用了和线条方向相同的线偏振光。针对这样一种光刻配置,外相干因子的搜索范围为[0.15,1],NA和Sigma的搜索精度为0.001,初始NA-Sigma配置为(1.1,0.8),初始搜索方向为[0,1;1,0]。下面通过本发明的方法来确定最佳的NA-Sigma配置,以得到最大光刻焦深。For dense lines at 45nm nodes, immersion lithography is used, the refractive index of the immersion liquid is 1.44, the numerical aperture of the projection objective lens is adjustable within [1, 1.35], the exposure wavelength is 193nm, and resolution enhancement technology is used to improve its resolution and increase Large depth of focus for lithography, attenuated phase-shift mask for the mask type, and ring lighting for the illumination method. In order to improve the resolution and ensure the yield, the ring width of the ring illumination method is selected as 0.15, that is, the outer coherence factor and the inner The difference between the coherence factors is 0.15 (Δσ=σ out −σ in =0.15), as shown in FIG. 2 . In order to further increase the focal depth of lithography, the linearly polarized light with the same direction as the line is used in the lithography simulation. For such a lithography configuration, the search range of the external coherence factor is [0.15, 1], the search accuracy of NA and Sigma is 0.001, the initial NA-Sigma configuration is (1.1, 0.8), and the initial search direction is [0, 1 ;1,0]. Next, the best NA-Sigma configuration is determined by the method of the present invention, so as to obtain the maximum focal depth of lithography.

图3为通过遍历仿真的方法得出上述条件下的NA-Sigma配置与光刻焦深的关系图。从图3可知,NA和Sigma只在一小部分区域内可得到光刻焦深,如要得到实现最大光刻焦深的NA-Sigma配置,则须在NA和Sigma变化范围内精确地遍历仿真此关系图。精确地遍历仿真此关系图耗时为17个小时。FIG. 3 is a graph showing the relationship between the NA-Sigma configuration and the focal depth of lithography under the above conditions obtained by traversing the simulation method. It can be seen from Figure 3 that NA and Sigma can only obtain the lithographic focal depth in a small part of the area. To obtain the NA-Sigma configuration to achieve the maximum lithographic focal depth, it is necessary to accurately traverse the simulation within the range of NA and Sigma This diagram. Accurately traversing the simulated graph takes 17 hours.

下表为采用本发明的搜索迭代过程,从迭代过程来看,初始点NA-Sigma配置(1.1,0.8)处的光刻焦深为0,沿[0,1]方向搜索之后仍得不到光刻焦深,返回(1.1,0.8)点,再沿[1,0]方向搜索,可得在(1.3496,0.8)点处可得最大光刻焦深0.15442μm,再沿从初始点(1.1,0.8)和(1.3496,0.8)之间的连线方向(0.2496,0.8)进行搜索,仍在(1.3496,0.8)点处得到最大焦深0.15442μm,判断其不满足优化结束的条件,开始第二轮的搜索。第二轮搜索从(1.3496,0.8)点出发,先沿[0,1]方向搜索,可得在(1.3496,0.90184)点处可得最大光刻焦深0.38657μm,再沿[1,0]方向搜索,可得在(1.3004,0.90184)点处可得最大光刻焦深0.46063μm,再沿从初始点(1.3496,0.8)和(1.3004,0.90184)之间的连线方向(-0.0492,0.1447)进行搜索,在(1.2797,0.9447)点处得到最大光刻焦深0.52215μm,其不满足优化结束的条件,开始第三轮的搜索;如此循环往复,直至满足收敛条件,为止,最后得出在(1.2214,0.97017)点处有最大光刻焦深0.62192μm,搜索结束,此发明耗时为8分钟,具体如表1所示:The following table shows the iterative search process of the present invention. From the iterative process, the focal depth of lithography at the initial point NA-Sigma configuration (1.1, 0.8) is 0, and after searching along the [0, 1] direction, no Depth of focus in lithography, return to point (1.1, 0.8), and then search along the direction of [1, 0], you can get the maximum depth of focus in lithography at point (1.3496, 0.8) 0.15442μm, and then along the path from the initial point (1.1 , 0.8) and (1.3496, 0.8) in the direction of the line (0.2496, 0.8) to search, still get the maximum focal depth of 0.15442μm at the point (1.3496, 0.8), judging that it does not meet the conditions for the end of optimization, start the first Two rounds of search. The second round of search starts from the point (1.3496, 0.8), and searches along the [0, 1] direction first, and obtains the maximum lithographic focal depth of 0.38657 μm at the point (1.3496, 0.90184), and then along the [1, 0] Direction search, it can be obtained that the maximum lithographic focal depth at point (1.3004, 0.90184) is 0.46063 μm, and then along the direction of the line between the initial point (1.3496, 0.8) and (1.3004, 0.90184) (-0.0492, 0.1447 ) to search, and the maximum lithographic focal depth of 0.52215 μm is obtained at the point (1.2797, 0.9447), which does not meet the conditions for the end of optimization, and the third round of search starts; it goes on and on until the convergence conditions are met, and finally obtains At the point (1.2214, 0.97017), there is a maximum lithographic focal depth of 0.62192 μm, and the search is over. This invention takes 8 minutes, as shown in Table 1:

表1选取采用本发明搜索迭代的次数Table 1 selects and adopts the number of times of the present invention's search iteration

  NA NA   Sigma Sigma   DOF(μm) DOF(μm)   第一轮搜索 First round of search   1.1 1.1   0.8 0.8   0 0   1.3496 1.3496   0.8 0.8   0.15442 0.15442   1.3496 1.3496   0.8 0.8   0.15442 0.15442   第二轮搜索 Second round of search   1.3496 1.3496   0.90184 0.90184   0.38657 0.38657   1.3004 1.3004   0.90184 0.90184   0.46063 0.46063

  1.2797 1.2797   0.9447 0.9447   0.52215 0.52215   第三轮搜索 The third round of search   1.2797 1.2797   0.9447 0.9447   0.52215 0.52215   1.2518 1.2518   0.9447 0.9447   0.55768 0.55768   1.2518 1.2518   0.9447 0.9447   0.55768 0.55768   第四轮搜索 Fourth round of search   1.2518 1.2518   0.9546 0.9546   0.56742 0.56742   1.2369 1.2369   0.9546 0.9546   0.58217 0.58217   1.2214 1.2214   0.96493 0.96493   0.61567 0.61567   第五轮搜索 Fifth round of search   1.2214 1.2214   0.97017 0.97017   0.62192 0.62192   1.2214 1.2214   0.97017 0.97017   0.62192 0.62192   1.2214 1.2214   0.97017 0.97017   0.62192 0.62192

虽然结合附图描述了本发明的具体实施方式,但是对于本技术领域的技术人员来说,在不脱离本发明的前提下,还可以做若干变形、替换和改进,这些也视为属于本发明的保护范围。Although the specific implementation of the present invention has been described in conjunction with the accompanying drawings, for those skilled in the art, without departing from the premise of the present invention, some modifications, replacements and improvements can also be made, and these are also considered to belong to the present invention scope of protection.

Claims (3)

1.一种光刻机NA-Sigma配置的优化方法,所述NA为投影物镜数值孔径,所述Sigma为照明系统相干因子,其特征在于,具体步骤为:1. an optimization method for photoetching machine NA-Sigma configuration, described NA is projection objective lens numerical aperture, and described Sigma is illumination system coherence factor, it is characterized in that, concrete steps are: 步骤101、给定初始点NA和Sigma的值,设为(NA,σ)(1,0),确定两个初始线性无关的方向d(1,1)和d(1,2),设定搜索精度ε,令k=1;Step 101, given the initial point NA and the value of Sigma, set it as (NA, σ) (1, 0) , determine two initial linearly independent directions d (1, 1 ) and d (1, 2) , set Search precision ε, let k=1; 步骤102、从(NA,σ)(k,0)出发,沿方向d(k,1)进行搜索,得到在该方向上具有最大光刻焦深的点(NA,σ)(k,1),其中若该方向所有点对应的光刻焦深的值都相等时,则任选一点作为最大光刻焦深的点(NA,σ)(k,1);从(NA,σ)(k,1)出发,沿方向d(k,2)进行搜索,得到在该方向上具有最大光刻焦深的点(NA,σ)(k,2),其中若该方向所有点对应的光刻焦深的值都相等时,则任选一点作为最大光刻焦深的点(NA,σ)(k,2)Step 102, start from (NA, σ) (k, 0) , search along the direction d (k, 1) , and obtain the point (NA, σ) (k, 1) with the maximum lithographic focal depth in this direction , where if the values of the lithographic depth of focus corresponding to all points in this direction are equal, then choose a point as the point (NA, σ) (k, 1) of the maximum lithographic focal depth; from (NA, σ) (k , 1) , search along the direction d (k, 2) , and get the point (NA, σ) (k, 2) with the maximum lithographic focal depth in this direction, where if all points in this direction correspond to the lithographic When the values of the depth of focus are all equal, then choose a point as the point (NA, σ) (k, 2) of the maximum depth of focus for lithography; 步骤103、若||(NA,σ)(k,2)-(NA,σ)(k,0)||≤ε,则令(NA,σ)=(NA,σ)(k, 2),进入步骤109,其中||||为取模运算;否则进入步骤104;Step 103, if ||(NA, σ) (k, 2) -(NA, σ) (k, 0) ||≤ε, then let (NA, σ)=(NA, σ) (k, 2) , enter step 109, where |||| is a modulo operation; otherwise, enter step 104; 步骤104、计算新的搜索方向d(k,3)=(NA,σ)(k,2)-(NA,σ)(k,0);从(NA,σ)(k,0)出发,沿方向d(k,3)进行搜索,得到在该方向上具有最大光刻焦深的点(NA,σ)(k,3)Step 104, calculate the new search direction d (k, 3) = (NA, σ) (k, 2) - (NA, σ) (k, 0) ; starting from (NA, σ) (k, 0) , Carry out search along direction d (k, 3) , obtain the point (NA, σ) (k, 3) with maximum lithography focal depth on this direction; 步骤105、若||(NA,σ)(k,3)-(NA,σ)(k,2)||≤ε,则令(NA,σ)=(NA,σ)(k, 3),进入步骤109;否则进入步骤106;Step 105, if ||(NA, σ) (k, 3) -(NA, σ) (k, 2) ||≤ε, then let (NA, σ)=(NA, σ) (k, 3) , go to step 109; otherwise go to step 106; 步骤106、当{f((NA,σ)(k,0))-f((NA,σ)(k,1))}≥{f((NA,σ)(k,1))-f((NA,σ)(k,2))}时,令m=1;当{f((NA,σ)(k,0))-f((NA,σ)(k,1))}<{f((NA,σ)(k,1))-f((NA,σ)(k,2))}时,令m=2;其中f((NA,σ)(p,q))表示点(NA,σ)(p,q)所对应的光刻焦深;Step 106, when {f((NA, σ) (k, 0) )-f((NA, σ) (k, 1) )}≥{f((NA, σ) (k, 1) )-f ((NA, σ) (k, 2) )}, let m=1; when {f((NA, σ) (k, 0) )-f((NA, σ) (k, 1) )} <{f((NA,σ) (k,1) )-f((NA,σ) (k,2) )}, let m=2; where f((NA,σ) (p,q) ) represents the focal depth of lithography corresponding to the point (NA, σ) (p, q) ; 步骤107、令 &lambda; = | | ( NA , &sigma; ) ( k , 3 ) - ( NA , &sigma; ) ( k , 0 ) | | | | ( NA , &sigma; ) ( k , 2 ) - ( NA , &sigma; ) ( k , 0 ) | | Step 107, command &lambda; = | | ( NA , &sigma; ) ( k , 3 ) - ( NA , &sigma; ) ( k , 0 ) | | | | ( NA , &sigma; ) ( k , 2 ) - ( NA , &sigma; ) ( k , 0 ) | |
Figure FDA00002880784800021
则进入步骤108;否则,从(NA,σ)(k,1)、(NA,σ)(k,2)以及(NA,σ)(k,3)中选取具有最大光刻焦深的点,令k加1,并将所选取的点作为初始点(NA,σ)(k,0),令此时搜索方向d(k,1)和d(k,2)为原搜索方向d(k-1, 1)和d(k-1,2),返回步骤102;
like
Figure FDA00002880784800021
Then go to step 108; otherwise, select the point with the maximum lithography focal depth from (NA, σ) (k, 1) , (NA, σ) (k, 2) and (NA, σ) (k, 3) , add 1 to k, and take the selected point as the initial point (NA, σ) (k, 0) , let the search directions d (k, 1) and d (k, 2) be the original search directions d ( k-1, 1) and d (k-1, 2) , return to step 102;
步骤108、替换搜索方向:当m=1时,此时令d(k+1,1)=d(k,2),d(k+1,2)=d(k, 3);当m=2时,此时令d(k+1,1)=d(k,1),d(k+1,2)=d(k,3);令k加1,令此时初始点(NA,σ)(k,0)为原初始点(NA,σ)(k-1,0),并返回步骤102;Step 108, replace the search direction: when m=1, then order d (k+1, 1) = d (k, 2) , d (k+1, 2) = d (k, 3) ; when m = 2, this time d (k+1, 1) = d (k, 1) , d (k+1, 2) = d (k, 3) ; let k add 1, let the initial point (NA, σ) (k, 0) is the original initial point (NA, σ) (k-1, 0) , and return to step 102; 步骤109、输出NA-Sigma的值(NA,σ)以及最佳光刻焦深f((NA,σ)),优化结束。Step 109 , output the value of NA-Sigma (NA, σ) and the optimal lithography focal depth f((NA, σ)), and the optimization ends.
2.根据权利要求1所述的优化方法,其特征在于,所述步骤102中,当沿方向d(k,1)搜索到所有点所对应的光刻焦深的值都等于本搜索方向初始点的光刻焦深时,则令(NA,σ)(k,1)等于(NA,σ)(k,0);当沿方向d(k,2)搜索到所有点所对应的光刻焦深的值都等于本搜索方向初始点的光刻焦深时,则令(NA,σ)(k,2)等于(NA,σ)(k,1)2. The optimization method according to claim 1, characterized in that, in the step 102, when searching along the direction d (k, 1), the values of the photolithography focal depths corresponding to all points are equal to the initial search direction When the lithographic focal depth of a point is set, (NA, σ) (k, 1) is equal to (NA, σ) (k, 0) ; when the lithography corresponding to all points is searched along the direction d (k, 2) When the focal depth values are all equal to the photolithographic focal depth of the initial point in this search direction, then make (NA, σ) (k, 2) equal to (NA, σ) (k, 1) . 3.根据权利要求1所述的优化方法,其特征在于,所述方向d(1,1)为沿[0,1]方向,所述方向d(1,2)为沿[1,0]方向。3. optimization method according to claim 1, is characterized in that, described direction d (1,1) is along [0,1] direction, and described direction d (1,2) is along [1,0] direction.
CN 201110231966 2011-08-14 2011-08-14 Optimization method for NA-Sigma configuration of photoetching machine Active CN102289156B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110231966 CN102289156B (en) 2011-08-14 2011-08-14 Optimization method for NA-Sigma configuration of photoetching machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110231966 CN102289156B (en) 2011-08-14 2011-08-14 Optimization method for NA-Sigma configuration of photoetching machine

Publications (2)

Publication Number Publication Date
CN102289156A CN102289156A (en) 2011-12-21
CN102289156B true CN102289156B (en) 2013-06-05

Family

ID=45335670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110231966 Active CN102289156B (en) 2011-08-14 2011-08-14 Optimization method for NA-Sigma configuration of photoetching machine

Country Status (1)

Country Link
CN (1) CN102289156B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932204B (en) * 2014-03-19 2017-08-25 北大方正集团有限公司 The acquisition methods of photo-etching machine exposal parameter
CN110174823A (en) * 2019-05-21 2019-08-27 北京理工大学 A kind of lithography system multi-parameter cooperative optimization method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1438477A (en) * 2002-02-12 2003-08-27 株式会社东芝 Optical aberration detection method in projection optical system
EP1500974A2 (en) * 2003-06-30 2005-01-26 ASML MaskTools B.V. A method, program product and apparatus of simultaneous optimization for na-sigma exposure settings and scattering bars opc using a device layout
EP1755152A1 (en) * 2004-04-23 2007-02-21 Nikon Corporation Measuring method, measuring equipment, exposing method and exposing equipment
CN101013271A (en) * 2007-01-26 2007-08-08 浙江大学 Method for correcting layering optical proximity effect
CN101482696A (en) * 2008-01-07 2009-07-15 中芯国际集成电路制造(上海)有限公司 Setting method for photo-etching system NA-sigma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1438477A (en) * 2002-02-12 2003-08-27 株式会社东芝 Optical aberration detection method in projection optical system
EP1500974A2 (en) * 2003-06-30 2005-01-26 ASML MaskTools B.V. A method, program product and apparatus of simultaneous optimization for na-sigma exposure settings and scattering bars opc using a device layout
EP1755152A1 (en) * 2004-04-23 2007-02-21 Nikon Corporation Measuring method, measuring equipment, exposing method and exposing equipment
CN101013271A (en) * 2007-01-26 2007-08-08 浙江大学 Method for correcting layering optical proximity effect
CN101482696A (en) * 2008-01-07 2009-07-15 中芯国际集成电路制造(上海)有限公司 Setting method for photo-etching system NA-sigma

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EP1500974A2A2 2005.01.26

Also Published As

Publication number Publication date
CN102289156A (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5198588B2 (en) Method and apparatus for enhancing signal strength for improved generation and placement of model-based sub-resolution assist patterns (MB-SRAF)
CN105425532B (en) Light source mask co-optimization method
KR100714480B1 (en) systems and methods for detecting focus variation in photolithograph process using test features printed from photomask test pattern images
CN103926802B (en) The combined optimization method of litho machine light source and mask
CN102298260A (en) Multiple patterning lithography using spacer and self-aligned assist patterns
CN108228981B (en) OPC model generation method based on neural network and prediction method of experimental pattern
CN110750038A (en) Mask plate, standard plate and alignment pattern error compensation method
CN104614930A (en) Method for establishing OPC model and optical proximity correction method for user target graphs
CN102331616B (en) Global plane projection objective lens
CN102289156B (en) Optimization method for NA-Sigma configuration of photoetching machine
CN102323723B (en) Optimization method of optical proximity effect correction based on Abbe vector imaging model
CN101976017A (en) Differential hierarchical processing method for optical proximity correction
CN110174823A (en) A kind of lithography system multi-parameter cooperative optimization method
CN102360171B (en) Optimization method of lithography configuration parameter based on pattern search method
CN102346379B (en) Method for optimizing photoetching configuration parameters based on steepest descent method
CN102346380A (en) Method for optimizing photoetching configuration parameters based on normalization steepest descent method
JP2001272766A (en) Method for manufacturing photomask
JP5644290B2 (en) Photomask manufacturing method
US20200348598A1 (en) Systems and methods for reducing resist model prediction errors
CN105116683A (en) Calibrating method of optical proximity effect correction defocused model
CN104423143B (en) The inspection method of layout graph
CN110209011B (en) Optical parameter optimization method for large-size non-critical layer graph in OPC model establishment process
JP2011237775A (en) Method for adjusting pattern uniformity of semiconductor device
US20050196681A1 (en) OPC based illumination optimization with mask error constraints
Mülders et al. Source-mask optimization incorporating a physical resist model and manufacturability constraints

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant