CN102280588A - Silicon-based nuclear shell nanowire photovoltaic cell and preparation process thereof - Google Patents
Silicon-based nuclear shell nanowire photovoltaic cell and preparation process thereof Download PDFInfo
- Publication number
- CN102280588A CN102280588A CN2011102198032A CN201110219803A CN102280588A CN 102280588 A CN102280588 A CN 102280588A CN 2011102198032 A CN2011102198032 A CN 2011102198032A CN 201110219803 A CN201110219803 A CN 201110219803A CN 102280588 A CN102280588 A CN 102280588A
- Authority
- CN
- China
- Prior art keywords
- silicon
- heterojunction
- silicon substrate
- conductive polymer
- organic conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 134
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 134
- 239000010703 silicon Substances 0.000 title claims abstract description 134
- 239000002070 nanowire Substances 0.000 title claims abstract description 91
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000011258 core-shell material Substances 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 229920000144 PEDOT:PSS Polymers 0.000 claims abstract description 37
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 5
- 238000001039 wet etching Methods 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 15
- 239000011521 glass Substances 0.000 claims description 11
- 230000005525 hole transport Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000003495 polar organic solvent Substances 0.000 claims description 5
- 230000003197 catalytic effect Effects 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 20
- 239000000377 silicon dioxide Substances 0.000 claims 10
- 230000008020 evaporation Effects 0.000 claims 2
- 238000001704 evaporation Methods 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 229920006254 polymer film Polymers 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 claims 1
- 229920001296 polysiloxane Polymers 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract description 4
- 238000003491 array Methods 0.000 description 9
- 229910021419 crystalline silicon Inorganic materials 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 238000003486 chemical etching Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种硅基核壳纳米线光伏电池及其制备方法。该光伏电池包括N型硅衬底,该衬底正面形成有N型硅纳米线阵列作为光活性层,其底面上设有金属背电极,该硅纳米线阵列与空穴传输的有机导电聚合物形成核壳纳米线肖特基异质结,该异质结上设有ITO顶电极。进一步的,该有机导电聚合物包括PEDOT:PSS。该硅纳米线阵列及硅衬底由纯度为3-6N级的单晶或多晶硅形成,纳米线高度为3-5μm,衬底厚度为5-200μm。其制备工艺为:采用湿法刻蚀在N型硅衬底正面制备出硅纳米线阵列,然后与空穴传输的有机导电聚合物形成核壳纳米线异质结,最后在硅衬底底面和异质结上分别组装金属背电极和ITO顶电极。本发明光伏电池原料用量少,成本低廉,转换效率高,且制备工艺简洁。
The invention discloses a silicon-based core-shell nanowire photovoltaic cell and a preparation method thereof. The photovoltaic cell includes an N-type silicon substrate, an N-type silicon nanowire array is formed on the front side of the substrate as a photoactive layer, and a metal back electrode is provided on the bottom surface of the substrate. The silicon nanowire array is combined with a hole-transporting organic conductive polymer A core-shell nanowire Schottky heterojunction is formed, and an ITO top electrode is arranged on the heterojunction. Further, the organic conductive polymer includes PEDOT:PSS. The silicon nanowire array and the silicon substrate are formed of single crystal or polycrystalline silicon with a purity of 3-6N, the height of the nanowire is 3-5 μm, and the thickness of the substrate is 5-200 μm. The preparation process is as follows: a silicon nanowire array is prepared on the front side of an N-type silicon substrate by wet etching, and then a core-shell nanowire heterojunction is formed with a hole-transporting organic conductive polymer, and finally the silicon nanowire array is formed on the bottom surface of the silicon substrate and A metal back electrode and an ITO top electrode are respectively assembled on the heterojunction. The invention has the advantages of less raw material consumption, low cost, high conversion efficiency and simple preparation process.
Description
技术领域 technical field
本发明特别涉及一种N型硅/空穴传输的有机导电聚合物核壳纳米线光伏电池及其制备工艺,属于太阳能转换技术领域。 The invention particularly relates to an N-type silicon/hole transport organic conductive polymer core-shell nanowire photovoltaic cell and a preparation process thereof, belonging to the technical field of solar energy conversion.
背景技术 Background technique
光伏电池能够将太阳光源源不断地转化成电能来解决当前人们面临的能源枯竭和环境污染问题。晶体硅光伏电池的光电转换效率高,占据了整个光伏市场的80%。但目前晶体硅光伏电池成本偏高,阻碍了光伏发电产业的发展。其中,晶体硅光伏电池需要用较多数量(200-300μm厚)和高纯度(>6N级)的晶体硅作为原料,原料成本占整个光伏组件的40%以上,是晶体硅光伏电池成本偏高的一个主要因素。如何在保持晶体硅光伏电池效率的基础上有效地减少原料的使用数量是降低光伏组件成本的一个有效途径。硅纳米线阵列的光伏电池能够实现该途径。已报道的文章(如,“Light trapping in silicon nanowire solar cells”,《Nano Letters》, 2010, 10, p1082–1087)中提及硅纳米线阵列具有卓越的光诱捕性能,几个μm高的硅纳米线阵列即可完全吸收300-1100nm(硅本征吸收的光谱范围)的太阳光子,可有效地减少晶体硅原料的使用数量。同时,这种光伏电池中的光伏结可制作成核壳纳米线结构,光生载流子在硅纳米线径向运动很短的距离即可被光伏结有效分离,从而允许使用低质量的硅原料制备器件,进一步降低硅原料的成本。 Photovoltaic cells can continuously convert sunlight light sources into electrical energy to solve the current problems of energy depletion and environmental pollution that people are facing. Crystalline silicon photovoltaic cells have high photoelectric conversion efficiency and account for 80% of the entire photovoltaic market. However, the current high cost of crystalline silicon photovoltaic cells hinders the development of the photovoltaic power generation industry. Among them, crystalline silicon photovoltaic cells need to use a large amount (200-300 μm thick) and high purity (>6N grade) crystalline silicon as raw materials, and the cost of raw materials accounts for more than 40% of the entire photovoltaic module, which is the high cost of crystalline silicon photovoltaic cells a major factor. How to effectively reduce the amount of raw materials used on the basis of maintaining the efficiency of crystalline silicon photovoltaic cells is an effective way to reduce the cost of photovoltaic modules. Photovoltaic cells of silicon nanowire arrays enable this approach. Reported articles (eg, "Light trapping in silicon nanowire solar cells", "Nano Letters", 2010, 10, p1082–1087) mentioned that silicon nanowire arrays have excellent light trapping performance, and silicon nanowire arrays with a height of several μm The nanowire array can completely absorb the solar photons of 300-1100nm (the spectral range of silicon intrinsic absorption), which can effectively reduce the amount of crystalline silicon raw materials used. At the same time, the photovoltaic junction in this photovoltaic cell can be made into a core-shell nanowire structure, and the photogenerated carriers can be effectively separated by the photovoltaic junction when the silicon nanowire moves a short distance in the radial direction, thus allowing the use of low-quality silicon raw materials Devices are fabricated to further reduce the cost of silicon raw materials.
获得上述硅纳米线光伏电池的关键是设计和构筑核壳纳米线阵列结构的光伏结。公开号CN101257094的发明专利申请中提及一种采用P型硅纳米线阵列/N型有机半导体混合的异质结光伏电池。在这种光伏电池中提及硅纳米线阵列充当太阳光减反层,器件的光活性层(基区)依然为体相晶体硅,依然需要用高数量、高质量的硅原料来制作器件。 The key to obtaining the silicon nanowire photovoltaic cells mentioned above is to design and build photovoltaic junctions with a core-shell nanowire array structure. The invention patent application with the publication number CN101257094 mentions a heterojunction photovoltaic cell using a P-type silicon nanowire array/N-type organic semiconductor hybrid. In this photovoltaic cell, it is mentioned that the silicon nanowire array acts as an anti-reflection layer for sunlight, and the photoactive layer (base region) of the device is still bulk crystalline silicon, and a high quantity and high quality silicon raw material is still required to make the device.
发明内容 Contents of the invention
本发明的目的在于提出一种核壳纳米线光伏电池及其制备工艺,其成本低廉,光电转换效率高,且易于制备,从而克服了现有技术中的不足。 The object of the present invention is to propose a core-shell nanowire photovoltaic cell and its preparation process, which has low cost, high photoelectric conversion efficiency and is easy to prepare, thereby overcoming the deficiencies in the prior art.
为实现上述发明目的,本发明采用了如下技术方案: In order to realize the above-mentioned purpose of the invention, the present invention has adopted following technical scheme:
一种硅基核壳纳米线光伏电池,其特征在于:它包括N型硅衬底,所述N型硅衬底正面形成有硅纳米线阵列作为光活性层,其底面上设有金属背电极,所述硅纳米线阵列上共形覆盖空穴传输的有机导电聚合物形成核壳结构的纳米线异质结作为光伏结,所述异质结上设有ITO顶电极。 A silicon-based core-shell nanowire photovoltaic cell, characterized in that: it includes an N-type silicon substrate, a silicon nanowire array is formed on the front of the N-type silicon substrate as a photoactive layer, and a metal back electrode is provided on the bottom surface of the N-type silicon substrate The silicon nanowire array is conformally covered with a hole-transporting organic conductive polymer to form a nanowire heterojunction with a core-shell structure as a photovoltaic junction, and an ITO top electrode is arranged on the heterojunction.
优选的,所述空穴传输的有机导电聚合物包括PEDOT:PSS。 Preferably, the hole-transporting organic conductive polymer includes PEDOT:PSS.
所述N型硅纳米线阵列及硅衬底均由纯度为3-6N级的单晶或多晶硅形成,其中,硅纳米线高度为3-5μm,硅衬底厚度为5-200μm。 Both the N-type silicon nanowire array and the silicon substrate are formed of single crystal or polycrystalline silicon with a purity of 3-6N, wherein the height of the silicon nanowires is 3-5 μm, and the thickness of the silicon substrate is 5-200 μm.
所述金属背电极包括覆设于N型硅衬底底面上的Al电极层,所述ITO顶电极包括覆设于异质结上的ITO玻璃。 The metal back electrode includes an Al electrode layer covering the bottom surface of the N-type silicon substrate, and the ITO top electrode includes ITO glass covering the heterojunction. the
一种硅基核壳纳米线光伏电池的制备工艺,其特征在于,该工艺为:采用湿法刻蚀在N型硅衬底正面制备出硅纳米线阵列,然后以空穴传输的有机导电聚合物共形覆盖在硅纳米线阵列上,形成核壳纳米线异质结,最后在N型硅衬底底面和异质结上分别组装金属背电极和ITO顶电极,获得目标产品。 A preparation process for a silicon-based core-shell nanowire photovoltaic cell, characterized in that the process is: using wet etching to prepare a silicon nanowire array on the front side of an N-type silicon substrate, and then using hole transport organic conductive polymerization The material is conformally covered on the silicon nanowire array to form a core-shell nanowire heterojunction. Finally, a metal back electrode and an ITO top electrode are respectively assembled on the bottom surface of the N-type silicon substrate and the heterojunction to obtain the target product.
进一步的,该工艺具体包括如下步骤: Further, the process specifically includes the following steps:
ⅰ、在N型硅衬底正面采用具有催化活性的金属援助硅化学刻蚀制备硅纳米线阵列; 1. Prepare silicon nanowire arrays on the front side of the N-type silicon substrate by using catalytically active metals to assist silicon chemical etching;
ⅱ、取空穴传输的有机导电聚合物的溶液填充硅纳米线阵列后,蒸发除去该有机导电聚合物溶液中的溶剂,形成共形覆盖在硅纳米线阵列上的有机导电聚合物薄膜; ii. After filling the silicon nanowire array with a solution of a hole-transporting organic conductive polymer, evaporate and remove the solvent in the organic conductive polymer solution to form an organic conductive polymer film conformally covering the silicon nanowire array;
ⅲ、在N型硅衬底底面和异质结上分别组装金属背电极和ITO顶电极,获得目标产品。 Ⅲ. Assemble a metal back electrode and an ITO top electrode on the bottom surface of the N-type silicon substrate and the heterojunction respectively to obtain the target product.
步骤i具体为:首先在N型硅衬底正面无电镀淀积形成不连续的银薄膜,而后借助银薄膜的催化作用,在N型硅衬底正面湿法刻蚀形成硅纳米线阵列,最后除去银薄膜。 Step i is specifically as follows: firstly, a discontinuous silver film is formed by electroless deposition on the front side of the N-type silicon substrate, and then by means of the catalytic action of the silver film, silicon nanowire arrays are formed on the front side of the N-type silicon substrate by wet etching, and finally Remove the silver film.
所述空穴传输的有机导电聚合物包括PEDOT:PSS,所述金属背电极包括淀积于N型硅衬底底面上的Al电极层。 The hole-transporting organic conductive polymer includes PEDOT:PSS, and the metal back electrode includes an Al electrode layer deposited on the bottom surface of the N-type silicon substrate.
在异质结阵列上组装ITO顶电极的过程为: The process of assembling the ITO top electrode on the heterojunction array is:
取ITO玻璃的导电面上涂覆空穴传输的有机导电聚合物溶液,并将其置于异质结表面,而后蒸发除去该有机导电聚合物溶液中的溶剂,使ITO玻璃的导电面与异质结固定连接。 The conductive surface of the ITO glass is coated with a hole-transporting organic conductive polymer solution, placed on the surface of the heterojunction, and then evaporated to remove the solvent in the organic conductive polymer solution, so that the conductive surface of the ITO glass is in contact with the heterojunction. Mass knot fixed connection.
所述空穴传输的有机导电聚合物溶液包括体积比为1:3-1:1的极性有机溶剂和商用PEDOT:PSS水溶液,所述极性有机溶剂至少选自乙醇、丙酮和异丙醇中的任意一种。 The hole-transporting organic conductive polymer solution includes a polar organic solvent and a commercial PEDOT:PSS aqueous solution with a volume ratio of 1:3-1:1, and the polar organic solvent is at least selected from ethanol, acetone and isopropanol any of the.
本发明硅/PEDOT:PSS核壳纳米线光伏电池的主要特征是:光活性层为位于硅衬底上的硅纳米线阵列,光伏结为核壳纳米线结构的N型硅和空穴传输的有机导电聚合物,特别是PEDOT:PSS异质结,其中PEDOT:PSS导电、透明,且费米能级与硅的导带接近可有效与硅形成窗口层/吸收体型肖特基光伏结,有利于光电转换。另外,硅纳米线及硅衬底是由纯度为3-6N级的单晶或多晶硅形成,纳米线高度为3-5μm,衬底厚度为5-200μm,有利于减少器件成本。此外,该光伏电池还可包含顶电极ITO玻璃、Al底电极等组件。 The main features of silicon/PEDOT:PSS core-shell nanowire photovoltaic cell of the present invention are: the photoactive layer is a silicon nanowire array located on a silicon substrate, and the photovoltaic junction is N-type silicon of core-shell nanowire structure and hole transport. Organic conductive polymers, especially PEDOT:PSS heterojunction, where PEDOT:PSS is conductive and transparent, and the Fermi level is close to the conduction band of silicon can effectively form a window layer/absorber type Schottky photovoltaic junction with silicon, there are conducive to photoelectric conversion. In addition, silicon nanowires and silicon substrates are formed of single crystal or polycrystalline silicon with a purity of 3-6N, the height of the nanowires is 3-5 μm, and the thickness of the substrate is 5-200 μm, which is beneficial to reduce device costs. In addition, the photovoltaic cell may also include top electrode ITO glass, Al bottom electrode and other components.
本发明光伏电池的制造工艺的主要过程是:首先金属援助硅化学刻蚀在硅衬底上制备硅纳米线阵列;随后采用添加极性有机溶剂的以PEDOT:PSS水溶液为例的空穴传输的有机导电聚合物溶液填充金属援助硅化学刻蚀的硅纳米线阵列中,蒸干溶剂后形成硅/PEDOT:PSS核壳纳米线阵列;最后通过在硅衬底背表面热蒸镀制备金属背电极及在硅/PEDOT:PSS核壳纳米线阵列的前表面组装ITO顶电极,形成光伏器件。其中,由于金属援助硅化学刻蚀制备硅纳米线阵列表面具有超疏水性,PEDOT:PSS水溶液难以填充硅纳米线阵列,难以形成核壳纳米线。故而,本发明中将酒精、丙酮或异丙醇等极性有机溶剂添加至PEDOT:PSS水溶液中,从而使PEDOT:PSS溶液有效填充硅纳米线阵列,以形成核壳纳米线。 The main process of the manufacturing process of the photovoltaic cell of the present invention is: first metal assists silicon chemical etching to prepare silicon nanowire array on silicon substrate; The organic conductive polymer solution is filled into the metal-assisted silicon chemically etched silicon nanowire array, and the solvent is evaporated to form a silicon/PEDOT:PSS core-shell nanowire array; finally, the metal back electrode is prepared by thermal evaporation on the back surface of the silicon substrate And assemble the ITO top electrode on the front surface of the silicon/PEDOT:PSS core-shell nanowire array to form a photovoltaic device. Among them, due to the superhydrophobicity of the surface of the silicon nanowire array prepared by metal-assisted silicon chemical etching, it is difficult for the PEDOT:PSS aqueous solution to fill the silicon nanowire array and form the core-shell nanowire. Therefore, in the present invention, polar organic solvents such as alcohol, acetone or isopropanol are added to the PEDOT:PSS aqueous solution, so that the PEDOT:PSS solution can effectively fill the silicon nanowire array to form core-shell nanowires.
本发明光伏电池的工作原理是:太阳光透过ITO玻璃顶电极和PEDOT:PSS层被硅纳米线吸收,产生空穴-电子对,随后空穴-电子对被硅/PEDOT:PSS光伏结分离,空穴转移至PEDOT:PSS层后被ITO顶电极收集,电子则被AL底电极收集,实现整个光电转换。 The working principle of the photovoltaic cell of the present invention is: sunlight passes through the ITO glass top electrode and the PEDOT:PSS layer is absorbed by the silicon nanowires, generating hole-electron pairs, and then the hole-electron pairs are separated by the silicon/PEDOT:PSS photovoltaic junction , the holes are transferred to the PEDOT:PSS layer and collected by the ITO top electrode, and the electrons are collected by the AL bottom electrode to realize the entire photoelectric conversion.
与现有技术相比,本发明的优点在于:该硅基核壳纳米线光伏电池原料用量少,成本低廉,光电转换效率高,且其制备工艺简洁、易操作,可实现光伏电池的规模化生产。 Compared with the prior art, the present invention has the advantages that: the silicon-based core-shell nanowire photovoltaic cell uses less raw materials, has low cost, high photoelectric conversion efficiency, and its preparation process is simple and easy to operate, and the scale of photovoltaic cells can be realized. chemical production.
附图说明 Description of drawings
图1为本发明中硅/PEDOT:PSS核壳纳米线光伏电池的结构示意图,图中:1为AL底电极,2为硅衬底,3为硅/PEDOT:PSS核壳纳米线阵列,31为硅纳米线阵列,32为PEDOT:PSS层,4为顶电极ITO玻璃; Fig. 1 is the structure diagram of silicon/PEDOT:PSS core-shell nanowire photovoltaic cell in the present invention, among the figure: 1 is AL bottom electrode, 2 is silicon substrate, 3 is silicon/PEDOT:PSS core-shell nanowire array, 31 Be silicon nanowire array, 32 is PEDOT:PSS layer, 4 is top electrode ITO glass;
图2a为图1中所示硅/PEDOT:PSS核壳纳米线阵列的扫描电子显微镜照片; Figure 2a is a scanning electron micrograph of the silicon/PEDOT:PSS core-shell nanowire array shown in Figure 1;
图2b为一个单根硅/PEDOT:PSS核壳纳米线的透射电子显微镜照片; Figure 2b is a transmission electron micrograph of a single silicon/PEDOT:PSS core-shell nanowire;
图2c为硅/PEDOT:PSS核壳纳米线界面的透射电子显微镜照片; Figure 2c is a transmission electron micrograph of the silicon/PEDOT:PSS core-shell nanowire interface;
图3为本发明的一个典型硅/PEDOT:PSS核壳纳米线光伏电池在AM 1.5G模拟太阳光照的电流-电压特性曲线图。 Figure 3 is a current-voltage characteristic curve of a typical silicon/PEDOT:PSS core-shell nanowire photovoltaic cell of the present invention under AM 1.5G simulated sunlight.
具体实施方案 specific implementation plan
以下结合附图及一个较佳实施例对本发明的技术方案作详细说明。 The technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings and a preferred embodiment.
参阅图1,该硅/PEDOT:PSS核壳纳米线光伏电池由ITO玻璃、硅/PEDOT:PSS核壳纳米线阵列、N型硅衬底和Al电极构成。 Referring to Fig. 1, the silicon/PEDOT:PSS core-shell nanowire photovoltaic cell is composed of ITO glass, silicon/PEDOT:PSS core-shell nanowire array, N-type silicon substrate and Al electrode.
该光伏电池的主要特征是,光活性层为硅纳米线阵列,光伏结为核壳纳米线结构的N型硅和PEDOT:PSS异质结。其中PEDOT:PSS导电、透明,且费米能级与硅的导带接近,可有效与硅形成窗口层/吸收体型肖特基光伏结,有利于光电转换。前述硅纳米线及硅衬底是由纯度为3-6N级的单晶或多晶硅形成,纳米线高度为3-5μm,衬底厚度为5-200μm,有利于减少器件的原料成本。 The main feature of the photovoltaic cell is that the photoactive layer is a silicon nanowire array, and the photovoltaic junction is N-type silicon with a core-shell nanowire structure and a PEDOT:PSS heterojunction. Among them, PEDOT:PSS is conductive and transparent, and the Fermi level is close to the conduction band of silicon, which can effectively form a window layer/absorber type Schottky photovoltaic junction with silicon, which is beneficial to photoelectric conversion. The aforementioned silicon nanowires and silicon substrates are formed of single crystal or polycrystalline silicon with a purity of 3-6N, the height of the nanowires is 3-5 μm, and the thickness of the substrate is 5-200 μm, which is beneficial to reduce the raw material cost of the device.
该硅/PEDOT:PSS核壳纳米线光伏电池的制备工艺包括如下步骤: The preparation process of the silicon/PEDOT:PSS core-shell nanowire photovoltaic cell comprises the following steps:
(1)硅衬底上制备硅纳米线阵列。首先室温下将清洗好的N型硅片放置在0.02M 硝酸银和5M氢氟酸混合水溶液中,在硅纳米线表面无电镀淀积一层不连续的银薄膜,随后样品放置在4.6M氢氟酸和0.8M双氧水的混合水溶液中,金属援助硅化学刻蚀制备硅纳米线阵列。最后,将刻蚀好的硅片置于40%硝酸中去除银催化剂,然后依次使用5%的氢氟酸、去离子水清洗,在硅衬底上获得硅纳米线阵列31;
(1) Fabricate silicon nanowire arrays on silicon substrates. First, place the cleaned N-type silicon wafer in a mixed aqueous solution of 0.02M silver nitrate and 5M hydrofluoric acid at room temperature, and deposit a discontinuous silver film on the surface of silicon nanowires by electroless plating, and then place the sample in 4.6M hydrogen In a mixed aqueous solution of hydrofluoric acid and 0.8M hydrogen peroxide, metal-assisted silicon chemical etching was used to prepare silicon nanowire arrays. Finally, the etched silicon wafer was placed in 40% nitric acid to remove the silver catalyst, and then washed with 5% hydrofluoric acid and deionized water in sequence to obtain a
(2)制备硅/PEDOT:PSS核壳纳米线阵列:将酒精和商用PEDOT:PSS水溶液以体积比为1:3混合,随后将混合溶液旋涂填充在硅纳米线阵列中,最后将样品放置在120℃的烘箱中蒸干溶剂,获得硅/PEDOT:PSS核壳纳米线阵列3(参阅图2a-2c); (2) Preparation of silicon/PEDOT:PSS core-shell nanowire arrays: Mix alcohol and commercial PEDOT:PSS aqueous solution at a volume ratio of 1:3, then spin-coat the mixed solution to fill the silicon nanowire arrays, and finally place the sample Evaporate the solvent in an oven at 120°C to obtain a silicon/PEDOT:PSS core-shell nanowire array 3 (see Figures 2a-2c);
(3)制备硅/PEDOT:PSS核壳纳米线光伏电池:首先采用热蒸镀在硅衬底背表面淀积Al电极,随后在ITO玻璃上旋涂一层湿的PEDOT:PSS并将其置于硅/PEDOT:PSS核壳纳米线表面,最后将样品放置在120℃的烘箱中蒸干溶剂,即获得了硅/PEDOT:PSS核壳纳米线光伏电池。测试获得器件的光伏性能(见图3),其光电转换效率可达6%以上。 (3) Preparation of silicon/PEDOT:PSS core-shell nanowire photovoltaic cells: first, Al electrodes were deposited on the back surface of the silicon substrate by thermal evaporation, and then a layer of wet PEDOT:PSS was spin-coated on the ITO glass and placed On the surface of the silicon/PEDOT:PSS core-shell nanowires, the sample was finally placed in an oven at 120°C to evaporate the solvent to obtain a silicon/PEDOT:PSS core-shell nanowire photovoltaic cell. The photovoltaic performance of the device was tested (see Figure 3), and its photoelectric conversion efficiency can reach more than 6%.
本发明中光活性层为N型硅纳米线阵列(3-5μm),可充分吸收300-1100nm太阳光,可减少硅原料的使用数量。同时,本发明采用核壳纳米线结构的N型硅/空穴传输的有机导电聚合物形成的肖特基异质结作为光伏结,光活性层中的光生载流子分离路径短,可采用低纯度、低质量的廉价硅原料制作器件。并且,本发明采用有机导电聚合物溶液填充的办法构筑光伏结,工艺简单,可构筑大面积的器件。综上,本发明中的N型硅/空穴传输的有机导电聚合物核壳纳米线光伏电池可实现低成本、高效率。 In the present invention, the photoactive layer is an N-type silicon nanowire array (3-5 μm), which can fully absorb 300-1100nm sunlight, and can reduce the amount of silicon raw materials used. At the same time, the present invention adopts the Schottky heterojunction formed by N-type silicon/hole-transporting organic conductive polymer of the core-shell nanowire structure as the photovoltaic junction, and the separation path of the photo-generated carriers in the photoactive layer is short, and can be used Low-purity, low-quality, cheap silicon raw materials are used to make devices. Moreover, the invention adopts the method of filling the organic conductive polymer solution to construct the photovoltaic junction, the process is simple, and a device with a large area can be constructed. In summary, the N-type silicon/hole transport organic conductive polymer core-shell nanowire photovoltaic cell of the present invention can achieve low cost and high efficiency.
以上仅是通过具体应用范例对本发明的实质特征进行的介绍,对发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围内。 The above is only an introduction to the essential features of the present invention through specific application examples, and does not constitute any limitation to the protection scope of the invention. All technical solutions formed by equivalent transformation or equivalent replacement fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110219803 CN102280588B (en) | 2011-08-02 | 2011-08-02 | Silicon-based nuclear shell nanowire photovoltaic cell and preparation process thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110219803 CN102280588B (en) | 2011-08-02 | 2011-08-02 | Silicon-based nuclear shell nanowire photovoltaic cell and preparation process thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102280588A true CN102280588A (en) | 2011-12-14 |
CN102280588B CN102280588B (en) | 2013-06-12 |
Family
ID=45105885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110219803 Expired - Fee Related CN102280588B (en) | 2011-08-02 | 2011-08-02 | Silicon-based nuclear shell nanowire photovoltaic cell and preparation process thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102280588B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103030100A (en) * | 2013-01-09 | 2013-04-10 | 华北电力大学 | Method for preparing sub-wavelength silicon nano-wire array with antireflection characteristic |
CN103647016A (en) * | 2013-12-12 | 2014-03-19 | 中国科学院半导体研究所 | Preparation method for thermo-electric device based on core shell structure |
CN104600196A (en) * | 2015-01-09 | 2015-05-06 | 浙江大学 | Preparation method of conductive organic matter/silicon nanowire solar cell and product thereof |
WO2015096028A1 (en) * | 2013-12-24 | 2015-07-02 | 香港城市大学 | Solar cell and manufacturing method therefor |
CN105720197A (en) * | 2016-02-19 | 2016-06-29 | 暨南大学 | Self-driven wide-spectral-response silicon-based hybrid heterojunction photoelectric sensor and preparation method therefor |
CN108831955A (en) * | 2018-06-08 | 2018-11-16 | 苏州宝澜环保科技有限公司 | A kind of silicon solar cell and its preparation method |
CN109467159A (en) * | 2018-11-29 | 2019-03-15 | 长春理工大学 | Self-powered semiconductor photocatalytic device with WSA position-sensitive structure |
CN118064899A (en) * | 2024-02-02 | 2024-05-24 | 西安电子科技大学 | Full-spectrum silicon-based composite photoanode array and its preparation method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101132028A (en) * | 2006-08-25 | 2008-02-27 | 通用电气公司 | Single conformal junction nanowire photovoltaic devices |
CN101257094A (en) * | 2008-03-31 | 2008-09-03 | 北京师范大学 | A silicon nanowire solar cell device |
CN101960611A (en) * | 2008-02-29 | 2011-01-26 | 国际商业机器公司 | Photovoltaic devices with high aspect ratio nanostructures |
CN102263204A (en) * | 2011-07-20 | 2011-11-30 | 苏州大学 | A kind of organic-inorganic hybrid solar cell and preparation method thereof |
-
2011
- 2011-08-02 CN CN 201110219803 patent/CN102280588B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101132028A (en) * | 2006-08-25 | 2008-02-27 | 通用电气公司 | Single conformal junction nanowire photovoltaic devices |
CN101960611A (en) * | 2008-02-29 | 2011-01-26 | 国际商业机器公司 | Photovoltaic devices with high aspect ratio nanostructures |
CN101257094A (en) * | 2008-03-31 | 2008-09-03 | 北京师范大学 | A silicon nanowire solar cell device |
CN102263204A (en) * | 2011-07-20 | 2011-11-30 | 苏州大学 | A kind of organic-inorganic hybrid solar cell and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
HONG-JHANG SYU ET.AL: "Silicon Nanowire/Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Core-Sheath Heterojunction Solar Cells", 《CLEO: 2011-LASER SCIENCE TO PHOTONIC APPLICATIONS》 * |
SHU-CHIA SHIU等: "Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) Heterojuntion Solar Cells", 《PROC. SPIE 7772, NEXT GENERATION (NANO) PHOTONIC AND CELL TECHNOLOGIES FOR SOLAR ENERGY CONVERSION》 * |
ZHANG FT ET. AL: "Efficient Hybrid Photovoltaic Devices Based on Poly(3-hexylthiophene) and Silicon Nanostructures", 《CHEMISTRY OF MATERIALS》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103030100B (en) * | 2013-01-09 | 2015-10-21 | 华北电力大学 | A kind of preparation method with the sub-wavelength silicon nanowire array of antireflection characteristic |
CN103030100A (en) * | 2013-01-09 | 2013-04-10 | 华北电力大学 | Method for preparing sub-wavelength silicon nano-wire array with antireflection characteristic |
CN103647016A (en) * | 2013-12-12 | 2014-03-19 | 中国科学院半导体研究所 | Preparation method for thermo-electric device based on core shell structure |
CN103647016B (en) * | 2013-12-12 | 2016-04-20 | 中国科学院半导体研究所 | Based on the thermoelectric device preparation method of nucleocapsid structure |
WO2015096028A1 (en) * | 2013-12-24 | 2015-07-02 | 香港城市大学 | Solar cell and manufacturing method therefor |
CN104600196B (en) * | 2015-01-09 | 2017-08-01 | 浙江大学 | A kind of preparation method and product of conductive organic matter/silicon nanowire solar cell |
CN104600196A (en) * | 2015-01-09 | 2015-05-06 | 浙江大学 | Preparation method of conductive organic matter/silicon nanowire solar cell and product thereof |
CN105720197A (en) * | 2016-02-19 | 2016-06-29 | 暨南大学 | Self-driven wide-spectral-response silicon-based hybrid heterojunction photoelectric sensor and preparation method therefor |
CN105720197B (en) * | 2016-02-19 | 2018-10-09 | 暨南大学 | It is a kind of to respond silicon-based hybrid heterojunction photovoltaic sensor and preparation method thereof from driving wide spectrum |
CN108831955A (en) * | 2018-06-08 | 2018-11-16 | 苏州宝澜环保科技有限公司 | A kind of silicon solar cell and its preparation method |
CN108831955B (en) * | 2018-06-08 | 2020-08-11 | 海门名驰工业设计有限公司 | A kind of silicon solar cell and preparation method thereof |
CN109467159A (en) * | 2018-11-29 | 2019-03-15 | 长春理工大学 | Self-powered semiconductor photocatalytic device with WSA position-sensitive structure |
CN109467159B (en) * | 2018-11-29 | 2021-10-01 | 长春理工大学 | Self-powered semiconductor photocatalytic device with WSA position-sensitive structure |
CN118064899A (en) * | 2024-02-02 | 2024-05-24 | 西安电子科技大学 | Full-spectrum silicon-based composite photoanode array and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN102280588B (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102263204B (en) | A kind of organic-inorganic hybrid solar cell and preparation method thereof | |
CN102280588A (en) | Silicon-based nuclear shell nanowire photovoltaic cell and preparation process thereof | |
CN209709024U (en) | A kind of double-side photic perovskite/p-type crystalline silicon substrates stacked solar cell, cascade solar cell | |
CN104993059B (en) | A kind of silicon substrate perovskite heterojunction solar battery and preparation method thereof | |
CN106058054A (en) | Tandem solar cell and manufacturing method thereof | |
CN103296123B (en) | P-type carbon quantum dot/N-type silicon nanowire array heterojunction solar battery and preparation method thereof | |
CN106575675A (en) | Conductive polymer/si interfaces at the backside of solar cells | |
CN101369610A (en) | A novel structure silicon nanowire solar cell | |
CN102709348B (en) | A kind of Nanocrystalline/quandot dot sensitive silicon substrate battery piece and preparation method thereof | |
CN104332522B (en) | Graphene double-junction solar battery and preparation method thereof | |
CN103296211B (en) | Heterojunction solar battery device of organic-two dimensional crystal-inorganic hybridization and preparation method thereof | |
CN107394013A (en) | A kind of preparation method of SiGe black phosphorus alkene PIN heterojunction solar batteries | |
CN104051580B (en) | Silicon solar cell and manufacturing method thereof | |
CN102280590B (en) | Solar cell by virtue of taking colloid quantum dots and graphene as light anode and manufacturing method thereof | |
CN108878594B (en) | A silicon heterojunction photovoltaic cell and its manufacturing method | |
CN207441751U (en) | A kind of homojunction perovskite thin film solar cell | |
CN101257094A (en) | A silicon nanowire solar cell device | |
CN102157579B (en) | Solar battery based on silicon nano material | |
CN102368506A (en) | n-zinc oxide/p-silica nanowire three-dimensional heterojunction solar energy conversion equipment | |
CN106449790A (en) | Graphene/gallium arsenide solar cell | |
CN205141029U (en) | But place upside down hydridization perovskite solar battery device of solution spin coating | |
CN211480087U (en) | Silicon-based double-sided organic/inorganic heterojunction solar cell | |
CN111180588B (en) | Thick-film organic solar cell based on continuous blade coating double-body heterojunction and preparation method thereof | |
CN202977494U (en) | Crystalline silicon/amorphous silicon double-face double battery | |
CN208111466U (en) | Graphene double-sided solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130612 Termination date: 20200802 |
|
CF01 | Termination of patent right due to non-payment of annual fee |