CN102279981A - 一种三维图像网格化方法 - Google Patents

一种三维图像网格化方法 Download PDF

Info

Publication number
CN102279981A
CN102279981A CN201110219566XA CN201110219566A CN102279981A CN 102279981 A CN102279981 A CN 102279981A CN 201110219566X A CN201110219566X A CN 201110219566XA CN 201110219566 A CN201110219566 A CN 201110219566A CN 102279981 A CN102279981 A CN 102279981A
Authority
CN
China
Prior art keywords
node
hexahedral
surperficial
voxel
hexahedral mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110219566XA
Other languages
English (en)
Other versions
CN102279981B (zh
Inventor
杜建军
郭新宇
赵春江
何莹莹
吴升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Center for Information Technology in Agriculture
Original Assignee
Beijing Research Center for Information Technology in Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Center for Information Technology in Agriculture filed Critical Beijing Research Center for Information Technology in Agriculture
Priority to CN 201110219566 priority Critical patent/CN102279981B/zh
Publication of CN102279981A publication Critical patent/CN102279981A/zh
Application granted granted Critical
Publication of CN102279981B publication Critical patent/CN102279981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Generation (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本发明涉及计算机图形图像处理技术领域,提出了一种三维图像网格化方法,其包括如下步骤:获取三维图像并分割出感兴趣目标;建立目标的六面体网格模型;六面体网格模型平滑。利用本发明的方法,能够有效地改善正六面体网格模型表面上所固有的“台阶状”特征,能在控制网格生成数量的同时保证表面平滑,并且在内部生成较高质量的协调变形六面体网格,使因网格质量导致的计算误差得到很大程度改善。

Description

一种三维图像网格化方法
技术领域
本发明涉及计算机图形图像处理技术领域,特别涉及一种三维图像网格化方法。
背景技术
在计算机图像的有限元仿真过程中,单元类型的选择对有限元仿真的计算效率、自动化程度、计算精度等都将产生重要影响。在三维有限元仿真领域,常采用的单元类型是四面体或六面体单元。大量研究结果表明:对给定的模型来说,采用六面体单元进行三维有限元仿真可采用较少的网格数量达到较高的计算精度,并且计算结果也最接近试验结果;采用四面体单元需要成倍的网格数量,而且容易产生质量较差的单元(形状畸变),计算效率和精度较差。因此,六面体单元由于变形特性好、计算效率和精度高等优点而在很多三维有限元仿真领域中得到了广泛的应用。对于六面体单元网格的自动生成方法,已有大量研究,但至今仍未得到真正意义上的解决。
目前得到应用的六面体网格生成方法有原型法、扫描法、栅格法等。其中原型法是通过设置网格剖分模板来对简单几何形体进行网格剖分,比如,将每个四面体分解为4个六面体,而直接形成全六面体网格;这种方法得到的网格质量较差,边界拟合能力弱。扫描法是以二维四边形网格为基础网格,通过旋转、扫描、拉伸等操作而形成六面体网格的方法;这种方法已得到大量应用,但只能适合形状简单的三维物体,并且需要人机交互控制,自动化程度低。栅格法是使用正规栅格或者有限八叉树生成覆盖目标区域的栅格;这种方法可以获得质量优良的六面体,但存在边界光顺和不同规格网格相容性问题。
为了提高有限元模型的建模速度和精度,基于逆向工程思想从图像出发构建目标有限元模型的方法得到受到重视。随着断层扫描成像(CT)和核磁共振成像(MRI)等复杂的成像设备的广泛应用,以及切片制作工艺的进步,获取人体、动植物的高精度断层图像已经不是难题,但从图像建立可用于有限元分析的有限元模型方法还没有统一的方法。一般来说,可将三维图像中感兴趣目标的每个体素视为一个六面体单元,从而建立完全由正六面体组成的六面体网格模型,但这类模型的缺点在于其表面呈现“台阶状”,难以保证求解的稳定性。另外,这种方法通常会生成比其他网格剖分算法更多的单元,单元(节点)数目的巨量增加也导致计算代价过高。
发明内容
(一)要解决的技术问题
针对现有技术的缺点,本发明为了解决现有技术中三维图像处理缺乏有效的六面体网格自动生成方法的问题,提出了一种三维图像网格化方法,通过对表面四边形网格的处理,有效消除了正六面体网格所固有的“台阶状”表面,在控制网格生成数量的同时保证表面平滑,并且利用内部网格协调形变,生成较高质量的六面体网格模型。
(二)技术方案
为实现上述目的,本发明采用如下技术方案:
一种三维图像网格化方法,所述方法包括步骤:
S1,获取三维图像并进行目标分割:将切片图像组装成三维图像数据,对感兴趣目标的体素进行分割,并使用重采样插值方法获得用户指定规模的体素分辨率;
S2,建立目标的六面体网格模型:在步骤S1处理后的三维图像数据的基础上,将三维图像数据中体素转换成六面体网格模型中的相应的六面体单元,对六面体网格模型中的单元与节点进行统一编号,并根据六面体网格与体素的对应关系计算各单元与节点的属性值;
S3,六面体网格平滑:在步骤S2处理后的六面体网格模型的基础上,通过边界检测抽取出位于目标与背景之间的所有边界四边形面,并对抽取出的四边形网格模型应用表面平滑方法,再将平滑后的四边形网格模型按照节点对应关系映射到原六面体网格模型上,通过计算表面变形对内部每个六面体单元变形的贡献大小,驱动六面体网格模型表面和内部单元的协调变形,从而建立表面平滑的全六面体网格模型。
优选地,步骤S1中,利用连续的切片图像按照空间关系组装成三维图像数据。
优选地,步骤S1中,所述分割是指将感兴趣目标的体素标记为目标标记值,其他体素标记为背景标记值,根据标记值确定出目标与背景。
优选地,步骤S1中,所述重采样插值方法为最近邻方法、双线性内插方法或三次卷积内插方法;所述用户指定规模是指用户指定的六面体单元大小或者用户指定的生成单元数目。
优选地,步骤S2中,所述将三维图像数据中每个体素转换成六面体网格模型中的一个六面体单元的方法为:
将三维图像数据中每个体素视为一个六面体单元,将该体素的8个顶点视为六面体网格的8个节点,根据三维图像数据的体素数量构造同等规模的六面体网格模型。
优选地,步骤S2中,所述将三维图像数据中每个体素转换成六面体网格模型中的一个六面体单元的方法为:
以三维图像数据中每个体素的中心点作为六面体网格的一个节点,并连接相邻节点构造出六面体网格模型。
优选地,步骤S2中,所述根据网格与体素的对应关系计算各单元与节点的属性值的具体步骤为:
按照六面体网格模型中每个六面体单元与三维图像数据中每个体素之间的对应关系,将每个节点属性值设置为与该节点相连的所有节点在三维图像数据上对应体素强度的均值;将每个单元属性值设置为构成该单元的8个节点属性值的均值。
优选地,各单元按照单元属性值分为背景单元、目标单元和边界单元三类。
优选地,所述边界四边形面是指在每个边界单元的六个四边形面中,节点属性值位于目标与背景之间的四边形面。
优选地,步骤S3中,对抽取出的四边形网格模型上每个顶点进行拓扑和几何分析,确定与每个顶点相连的其他节点和四边形,并将这些信息保存到该顶点的数组中;对于每个顶点,通过遍历该顶点的数组中所有点计算出几何中心,并以所述几何中心作为该顶点移动到的位置对该顶点位置进行调整;重复上述顶点位置调整的操作,遍历全部顶点多次完成平滑操作。
优选地,步骤S3中,所述计算表面变形对内部每个六面体单元变形的贡献大小具体包括步骤:
根据平滑后的四边形网格模型与原六面体网格模型上的节点对应关系,计算出四边形表面网格模型中每个表面节点的位移向量;
基于用户指定的表面节点位移的最远传递距离,计算每个非表面节点的位移向量;其中,表面节点位移的最远传递距离,是指该表面节点的位移量能影响到非表面节点的最远范围;
对于每个非表面节点,如果在指定的最远传递距离内存在表面节点,则建立一个数组保存这些表面节点,遍历数组中每个表面节点,为每个表面节点生成一个从表面节点指向该非表面节点的向量,该向量的方向与表面节点的位移向量方向一致,该向量的大小等于表面节点的位移大小乘以一个比例因子,该比例因子为表面节点和该非表面节点的实际距离与最远传递距离的比值;
通过累加遍历数组过程中生成的所有向量,得到该非表面节点的位移向量,表示该非表面节点的实际位移。
优选地,步骤S3中,所述驱动六面体网格模型表面和内部单元的协调变形具体包括步骤:
根据获得的所有表面节点和非表面节点的位移向量,驱动六面体网格模型中对应节点的位移,从而生成平滑后的六面体网格模型。
(三)有益效果
本发明的方案中,通过将通用的四边形表面网格平滑方法融入六面体网格模型的平滑中,能有效消除了正六面体网格所固有的“台阶状”表面,在控制网格生成数量的同时保证表面平滑,并且利用内部网格协调形变生成较高质量的六面体网格模型,使因网格质量导致的计算误差得到很大程度改善。
附图说明
图1是本发明实施例的三维图像网格化方法的流程示意图;
图2是对玉米茎杆连续切片图像处理后的灰度图像示意图;
图3是将三维图像数据转换成六面体网格模型示意图;
图4是按照单元和节点属性值确定边界六面体单元示意图;
图5是提取出在背景与目标之间的所有表面四边形构成的四边形表面网格模型示意图;
图6是应用表面平滑方法生成的平滑后四边形网格模型示意图;
图7是六面体网格模型平滑后的结果示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,如图1所示,本发明的三维图像网格化方法可自动生成六面体网格模型并对其进行界面平滑,所述方法具体包括以下步骤:
S1,获取三维图像并分割出感兴趣目标:基于三维图像数据或者由系列切片图像组成的三维图像数据,应用图像处理方法对感兴趣目标像素进行标记,获得包括目标与背景两种标记值的三维图像数据,使用重采样插值方法获得用户指定规模的体素分辨率;
S2,建立目标的六面体网格模型:在输入三维数据基础上,通过统一的单元与节点编号将三维图像数据中每个体素转换成六面体网格模型中的一个六面体单元,并根据图像中每个像素标记值计算对应单元与节点的属性值;
S3,六面体网格平滑:在输入的六面体网格模型基础上,通过边界检测抽取出目标表面上的所有四边形,并对得到的四边形表面网格模型应用表面网格平滑方法,再将平滑后的四边形网格模型按照节点对应关系映射到原六面体网格模型上,通过计算表面变形对内部每个六面体单元变形的贡献大小,驱动六面体网格模型表面和内部单元的协调变形,从而建立表面平滑的全六面体网格模型。
其中,步骤S1具体可分为三维图像获取、目标分割和重采样插值步骤:
三维图像获取步骤,是利用连续的切片图像按照空间关系生成三维图像数据,图2显示了玉米茎杆的连续切片图像处理后的灰度图像(黑色像素是感兴趣目标,白色像素是背景),图像大小为551×501;将这些切片图像按照空间关系组装成的三维图像数据,图像维数为551×501×9。
目标分割步骤,是基于三维图像获取步骤生成的三维图像数据,将感兴趣目标的体素标记为255,其他体素标记为0,利用图像分割技术分割出感兴趣目标,其中图像分割技术可以是简单的阈值过滤,或者区域生长等其他图像分割方法;
重采样插值步骤,是基于目标分割步骤的结果,按照用户指定的六面体单元大小或者生成的单元数,利用重采样插值方法减少或者增加三维图像数据中体素的个数:即在三维空间(X,Y,Z)方向上设置体素的采样率:(1,1,1)表示维持原有的数据规模;如果是小于1的数值,表示删减;大于1,表示插值。本实施例中使用的采样率为(0.1,0.1,5),表示在X和Y方向的体素保留10%,在Z方向的体素增加5倍体素,目的是是最后的每个体素的长宽高接近一致,最后得到的三维图像维数为:56×51×41。
其中,步骤S2具体可分为:
模型转换步骤,是将三维图像数据到六面体网格模型。转换方法可以有两种:将三维图像数据中每个体素视为一个六面体单元,将体素的8个顶点视为六面体网格的8个节点,根据三维图像数据的大小构造同等规模的六面体网格模型;以三维数据中每个体素的中心点作为六面体网格的节点,建立的六面体网格数量比前一种方法少;本实施例中,按照第一种方法转换得到的六面体网格模型如图3所示;
单元与节点编号步骤,是对六面体网格模型中每个单元和节点进行统一编号;
单元与节点属性值确定步骤,是按照六面体网格模型中每个六面体网格与三维图像数据中每个体素之间的对应关系,计算每个六面体网格单元和节点的属性值。其中,节点属性值设置为该节点相连的所有节点在三维图像数据上对应体素强度的均值;单元属性值设置为构成该单元的8个节点属性值的均值。按照单元的属性值,可以将单元分为三类,一类表示背景单元(属性值为0),一类表示目标单元(属性值为255),其他的表示边界单元(属性值在0~255之间)。
其中,步骤S3具体可分为:
表面四边形网格抽取步骤,是根据所述步骤S2中建立的目标六面体网格模型,根据单元和节点的属性值确定位于目标与背景之间的所有边界四边形面,图4显示了按照单元和节点属性值,确定边界六面体单元示意图,其中灰色六面体表示边界六面体,黑色为内部六面体单元,图5显示了从边界六面体单元中提取出在背景与目标之间的所有表面四边形构成的四边形表面网格模型。
表面平滑步骤,是对抽取的四边形网格模型应用拉普拉斯表面平滑方法调整节点位置:对抽取出的四边形网格模型上每个顶点进行拓扑和几何分析,确定与每个顶点相连的其他节点和四边形,并将这些信息保存到该顶点的数组中;对于每个顶点,通过遍历该顶点的数组中所有点计算出几何中心,并以所述几何中心作为该顶点移动到的位置对该顶点位置进行调整;重复上述顶点位置调整的操作,遍历全部顶点多次完成平滑操作。图6显示了应用拉普拉斯表面平滑方法调整表面节点的位置,生成的表面平滑后网格模型。
六面体网格平滑步骤又可细分为表面节点位移向量计算、非表面节点位移计算、驱动六面体网格模型表面和内部单元的协调变形。
其中,“表面节点位移向量计算”是根据平滑后的表面模型与平滑前的表面模型上的节点对应关系,计算出表面模型上每个节点(表面模型上的节点都是表面节点;在六面体网格单元中除表面节点外的所有其他节点称为非表面节点)的位移向量。
“非表面节点位移计算”,是基于用户指定的表面节点位移的最远传递距离,计算每个非表面节点的位移向量;其中,表面节点位移的最远传递距离,是指该表面节点的位移量能影响到非表面节点的最远范围;
对于每个非表面节点,如果在指定的最远传递距离内存在表面节点,则建立一个数组保存这些表面节点,遍历数组中每个表面节点,为每个表面节点生成一个从表面节点指向该非表面节点的向量,该向量的方向与表面节点的位移向量方向一致,该向量的大小等于表面节点的位移大小乘以一个比例因子,该比例因子为表面节点和该非表面节点的实际距离与最远传递距离的比值;
通过累加遍历数组过程中生成的所有向量,得到该非表面节点的位移向量,表示该非表面节点的实际位移。
“驱动六面体网格模型表面和内部单元的协调变形”是利用以上计算得到的平滑后的表面四边形网格模型和各非表面节点上位移向量和,驱动六面体网格模型中每个节点的位移,从而生成平滑后的六面体网格模型。图7显示了六面体网格模型平滑后的效果。
更进一步地,在完成六面体网格模型的整体的表面平滑处理后,还可以进行六面体节点的局部协调变形。此时以六面体网格12条边中边长最大值与最小值的比值大小确定需要改进的网格节点,通过调整该节点的位置,使以其为节点的8个六面体单元体积相等或基本相等,然后按照上述方法调整其周围节点的位置进行协调变形,改进六面体网格质量。
从以上实施方式可以看出,本发明通过将通用四边形表面网格平滑方法融入六面体网格模型的平滑中,能有效消除了正六面体网格所固有的“台阶状”表面,在控制网格生成数量的同时保证表面平滑,并且利用内部网格协调形变生成较高质量的六面体网格模型,使因网格质量导致的计算误差得到很大程度改善。
另外,本发明能按照不同的应用需求,生成不同网格规模、不同表面平滑程度、不同内部协调变形范围的六面体网格模型,能满足进行科学研究和工程应用的需求。因此,本发明的方法应用面广、灵活、普适性强,而且,实验证明,应用本发明的方法能够有效控制生成网格数量,并获得性状良好、表面平滑的六面体网格模型,这对基于三维图像的人体、动物和植物的有限元建模与仿真十分有用。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (12)

1.一种三维图像网格化方法,其特征在于,所述方法包括步骤:
S1,获取三维图像并进行目标分割:将切片图像组装成三维图像数据,对感兴趣目标的体素进行分割,并使用重采样插值方法获得用户指定规模的体素分辨率;
S2,建立目标的六面体网格模型:在步骤S1处理后的三维图像数据的基础上,将三维图像数据中体素转换成六面体网格模型中的相应的六面体单元,对六面体网格模型中的单元与节点进行统一编号,并根据六面体网格与体素的对应关系计算各单元与节点的属性值;
S3,六面体网格平滑:在步骤S2处理后的六面体网格模型的基础上,通过边界检测抽取出位于目标与背景之间的所有边界四边形面,并对抽取出的四边形网格模型应用表面平滑方法,再将平滑后的四边形网格模型按照节点对应关系映射到原六面体网格模型上,通过计算表面变形对内部每个六面体单元变形的贡献大小,驱动六面体网格模型表面和内部单元的协调变形,从而建立表面平滑的全六面体网格模型。
2.根据权利要求1所述的方法,其特征在于,步骤S1中,利用连续的切片图像按照空间关系组装成三维图像数据。
3.根据权利要求1所述的方法,其特征在于,步骤S1中,所述分割是指将感兴趣目标的体素标记为目标标记值,其他体素标记为背景标记值,根据标记值确定出目标与背景。
4.根据权利要求1所述的方法,其特征在于,步骤S1中,所述重采样插值方法为最近邻方法、双线性内插方法或三次卷积内插方法;所述用户指定规模是指用户指定的六面体单元大小或者用户指定的生成单元数目。
5.根据权利要求1所述的方法,其特征在于,步骤S2中,所述将三维图像数据中体素转换成六面体网格模型中的相应的六面体单元的方法为:
将三维图像数据中每个体素视为一个六面体单元,将该体素的8个顶点视为六面体网格的8个节点,根据三维图像数据的体素数量构造同等规模的六面体网格模型。
6.根据权利要求1所述的方法,其特征在于,步骤S2中,所述将三维图像数据中体素转换成六面体网格模型中的相应的六面体单元的方法为:
以三维图像数据中每个体素的中心点作为六面体网格的一个节点,并连接相邻节点构造出六面体网格模型。
7.根据权利要求1所述的方法,其特征在于,步骤S2中,所述根据网格与体素的对应关系计算各单元与节点的属性值的具体步骤为:
按照六面体网格模型中每个六面体单元与三维图像数据中每个体素之间的对应关系,将每个节点属性值设置为与该节点相连的所有节点在三维图像数据上对应体素强度的均值;将每个单元属性值设置为构成该单元的8个节点属性值的均值。
8.根据权利要求7所述的方法,其特征在于,各单元按照单元属性值分为背景单元、目标单元和边界单元三类。
9.根据权利要求8所述的方法,其特征在于,所述边界四边形面是指在每个边界单元的六个四边形面中,节点属性值位于目标与背景之间的四边形面。
10.根据权利要求1所述的方法,其特征在于,步骤S3中,对抽取出的四边形网格模型上每个顶点进行拓扑和几何分析,确定与每个顶点相连的其他节点和四边形,并将这些信息保存到该顶点的数组中;对于每个顶点,通过遍历该顶点的数组中所有点计算出几何中心,并以所述几何中心作为该顶点移动到的位置对该顶点位置进行调整;重复上述顶点位置调整的操作,遍历全部顶点多次完成平滑操作。
11.根据权利要求1所述的方法,其特征在于,步骤S3中,所述计算表面变形对内部每个六面体单元变形的贡献大小具体包括步骤:
根据平滑后的四边形网格模型与原六面体网格模型上的节点对应关系,计算出四边形表面网格模型中每个表面节点的位移向量;
基于用户指定的表面节点位移的最远传递距离,计算每个非表面节点的位移向量;其中,表面节点位移的最远传递距离,是指该表面节点的位移量能影响到非表面节点的最远范围;
对于每个非表面节点,如果在指定的最远传递距离内存在表面节点,则建立一个数组保存这些表面节点,遍历数组中每个表面节点,为每个表面节点生成一个从表面节点指向该非表面节点的向量,该向量的方向与表面节点的位移向量方向一致,该向量的大小等于表面节点的位移大小乘以一个比例因子,该比例因子为表面节点和该非表面节点的实际距离与最远传递距离的比值;
通过累加遍历数组过程中生成的所有向量,得到该非表面节点的位移向量,表示该非表面节点的实际位移。
12.根据权利要求11所述的方法,其特征在于,步骤S3中,所述驱动六面体网格模型表面和内部单元的协调变形具体包括步骤:
根据获得的所有表面节点和非表面节点的位移向量,驱动六面体网格模型中对应节点的位移,从而生成平滑后的六面体网格模型。
CN 201110219566 2011-08-02 2011-08-02 一种三维图像网格化方法 Active CN102279981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110219566 CN102279981B (zh) 2011-08-02 2011-08-02 一种三维图像网格化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110219566 CN102279981B (zh) 2011-08-02 2011-08-02 一种三维图像网格化方法

Publications (2)

Publication Number Publication Date
CN102279981A true CN102279981A (zh) 2011-12-14
CN102279981B CN102279981B (zh) 2013-04-24

Family

ID=45105407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110219566 Active CN102279981B (zh) 2011-08-02 2011-08-02 一种三维图像网格化方法

Country Status (1)

Country Link
CN (1) CN102279981B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663707A (zh) * 2012-04-25 2012-09-12 广东威创视讯科技股份有限公司 基于样条曲面的图像重构方法及装置
CN103400413A (zh) * 2013-07-19 2013-11-20 河海大学 组独有边界单元面的无厚度3节点衬砌单元智能构建方法
CN103617603A (zh) * 2013-12-06 2014-03-05 南京大学 一种三维数字几何网格模型结构的自动修复方法
CN105129019A (zh) * 2015-08-05 2015-12-09 广船国际有限公司 一种船舶舱室舾装件完整性的检查方法
CN110163854A (zh) * 2019-05-16 2019-08-23 北京农业信息技术研究中心 玉米节间表型参数获取方法及装置
CN110879978A (zh) * 2019-11-13 2020-03-13 广西中煤地质有限责任公司 一种无人机倾斜摄影三维模型的建筑轮廓线自动提取方法
CN111243094A (zh) * 2020-01-09 2020-06-05 南京理工大学 一种基于点灯法的三维模型精确体素化方法
CN113689537A (zh) * 2015-03-12 2021-11-23 快乐L-领主有限公司 用于基于体素的三维建模的系统、方法和设备
TWI826696B (zh) * 2019-06-20 2023-12-21 南韓商三星電子股份有限公司 用於高效內插之方法以及裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504678A (zh) * 2009-03-09 2009-08-12 西北工业大学 薄壁加筋结构加筋布局优化设计方法
US20090303233A1 (en) * 2008-06-06 2009-12-10 Landmark Graphics Corporation, A Halliburton Company Systems and Methods for Imaging a Three-Dimensional Volume of Geometrically Irregular Grid Data Representing a Grid Volume

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090303233A1 (en) * 2008-06-06 2009-12-10 Landmark Graphics Corporation, A Halliburton Company Systems and Methods for Imaging a Three-Dimensional Volume of Geometrically Irregular Grid Data Representing a Grid Volume
CN101504678A (zh) * 2009-03-09 2009-08-12 西北工业大学 薄壁加筋结构加筋布局优化设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANEHIRO, F. ETC.: "Whole Body Locomotion Planning of Humanoid Robots based on a Grid Map", 《PROCEEDINGS OF THE 2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION》 *
高松 等: "基于VTK的医学图像网格化建模系统开发", 《北京生物医学工程》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663707A (zh) * 2012-04-25 2012-09-12 广东威创视讯科技股份有限公司 基于样条曲面的图像重构方法及装置
CN102663707B (zh) * 2012-04-25 2015-09-09 广东威创视讯科技股份有限公司 基于样条曲面的图像重构方法及装置
CN103400413B (zh) * 2013-07-19 2016-02-10 河海大学 组独有边界单元面的无厚度3节点衬砌单元智能构建方法
CN103400413A (zh) * 2013-07-19 2013-11-20 河海大学 组独有边界单元面的无厚度3节点衬砌单元智能构建方法
CN103617603B (zh) * 2013-12-06 2016-02-24 南京大学 一种三维数字几何网格模型结构的自动修复方法
CN103617603A (zh) * 2013-12-06 2014-03-05 南京大学 一种三维数字几何网格模型结构的自动修复方法
CN113689537A (zh) * 2015-03-12 2021-11-23 快乐L-领主有限公司 用于基于体素的三维建模的系统、方法和设备
CN105129019A (zh) * 2015-08-05 2015-12-09 广船国际有限公司 一种船舶舱室舾装件完整性的检查方法
CN105129019B (zh) * 2015-08-05 2017-06-16 广船国际有限公司 一种船舶舱室舾装件完整性的检查方法
CN110163854A (zh) * 2019-05-16 2019-08-23 北京农业信息技术研究中心 玉米节间表型参数获取方法及装置
TWI826696B (zh) * 2019-06-20 2023-12-21 南韓商三星電子股份有限公司 用於高效內插之方法以及裝置
CN110879978A (zh) * 2019-11-13 2020-03-13 广西中煤地质有限责任公司 一种无人机倾斜摄影三维模型的建筑轮廓线自动提取方法
CN111243094A (zh) * 2020-01-09 2020-06-05 南京理工大学 一种基于点灯法的三维模型精确体素化方法

Also Published As

Publication number Publication date
CN102279981B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
CN102279981B (zh) 一种三维图像网格化方法
WO2019242174A1 (zh) 基于激光雷达的建筑结构自动测量及3d模型生成方法
CN107025685B (zh) 拓扑感知下的机载建筑屋顶点云建模方法
CN100557640C (zh) 一种交互式多视点三维模型重建方法
CN103985155B (zh) 基于映射法的散乱点云Delaunay三角剖分曲面重构方法
CN101339669A (zh) 基于正侧面影像的三维人脸建模方法
CN109613540A (zh) 一种基于WebGL的多普勒天气雷达三维可视化方法
CN102509357B (zh) 基于笔触的铅笔素描模拟和绘制系统
CN102521869B (zh) 一种几何特征引导的三维模型表面纹理空洞填补方法
CN105006016A (zh) 一种贝叶斯网络约束的部件级三维模型构建方法
CN107610221B (zh) 一种基于同构模型表示的三维模型生成方法
CN108986221A (zh) 一种基于模板人脸逼近的不规范三维人脸网格纹理方法
CN103236043B (zh) 一种植物器官点云修复方法
CN103826032A (zh) 深度图后期处理方法
CN103077559A (zh) 基于序列图像的果穗三维重建方法
CN103345774B (zh) 一种三维多尺度矢量化的建模方法
Zheng et al. A morphologically preserved multi-resolution TIN surface modeling and visualization method for virtual globes
Eyiyurekli et al. Interactive free-form level-set surface-editing operators
CN109727255B (zh) 一种建筑物三维模型分割方法
CN102609721B (zh) 遥感影像的聚类方法
CN107016714B (zh) 一种闭合曲线图形填充方法
CN105023288A (zh) 二维矢量实线在三维场景中的视觉误差消除方法
CN103218853A (zh) 一种作物单根可变形建模方法
CN103236078A (zh) 一种基于面元的复杂场景三维重建方法
CN106408644A (zh) 三维控制笼构造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant