CN102279053A - Uncooled infrared focal plane array imaging system containing time modulation device - Google Patents
Uncooled infrared focal plane array imaging system containing time modulation device Download PDFInfo
- Publication number
- CN102279053A CN102279053A CN2011100894072A CN201110089407A CN102279053A CN 102279053 A CN102279053 A CN 102279053A CN 2011100894072 A CN2011100894072 A CN 2011100894072A CN 201110089407 A CN201110089407 A CN 201110089407A CN 102279053 A CN102279053 A CN 102279053A
- Authority
- CN
- China
- Prior art keywords
- infrared
- imaging
- focal plane
- plane array
- modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 78
- 230000003287 optical effect Effects 0.000 claims abstract description 69
- 238000005286 illumination Methods 0.000 claims abstract description 16
- 230000035945 sensitivity Effects 0.000 claims abstract description 10
- 238000003331 infrared imaging Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims 2
- 206010038743 Restlessness Diseases 0.000 claims 1
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 13
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 230000032683 aging Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000001931 thermography Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
本发明提供一种含时间调制装置的非制冷红外焦平面阵列成像系统,包括红外调制成像光路1、2和3、照明光路4和5,光学读出光路6,和图像采集及处理系统7。1对外界目标聚焦并经2时间调制后成像于3,3产生相应变化;4发出的光经5准直后射向3,并被3空间调制后经6聚焦成像于7,7输出红外热图像。本发明的核心在于在非制冷红外焦平面阵列成像系统光路中设置了时间调制装置2,使7交替接收红外图像信号和背景及系统噪声信号;7利用背景噪声信号对红外图像信号进行修正,从而消除振动、环境照度变化、红外焦平面阵列器件变形、光源变化、光机结构变形、CCD噪声对系统成像质量的影响,提高系统工作稳定性、可靠性和灵敏度。
The invention provides an uncooled infrared focal plane array imaging system including a time modulation device, including infrared modulation imaging optical paths 1, 2 and 3, illumination optical paths 4 and 5, optical readout optical path 6, and image acquisition and processing system 7. 1 focuses on the external target and is imaged at 3 and 3 after 2 time modulation; the light emitted by 4 is collimated by 5 and then directed to 3, and is modulated by 3 and then focused and imaged at 7 and 7 by 6 to output infrared heat image. The core of the present invention is that a time modulation device 2 is set in the optical path of the uncooled infrared focal plane array imaging system, so that 7 alternately receives infrared image signals and background and system noise signals; 7 uses background noise signals to correct the infrared image signals, thereby Eliminate the effects of vibration, environmental illumination changes, infrared focal plane array device deformation, light source changes, optical-mechanical structure deformation, and CCD noise on system imaging quality, and improve system stability, reliability and sensitivity.
Description
技术领域 technical field
本发明涉及一种含时间调制装置的非制冷红外焦平面阵列成像系统,尤其是一种红外调制成像、光学读出形式的高性能非制冷红外焦平面阵列成像系统。The invention relates to an uncooled infrared focal plane array imaging system including a time modulation device, in particular to a high-performance uncooled infrared focal plane array imaging system in the form of infrared modulation imaging and optical readout.
背景技术 Background technique
红外热成像技术在军事和民用领域都有着非常广泛的应用,并且越来越受到各行各业的重视。但是传统的红外热成像系统由于其工艺、成本、体积、重量、功耗等问题,一支没有得到大规模的、普遍的使用。Infrared thermal imaging technology has a very wide range of applications in both military and civilian fields, and has received more and more attention from all walks of life. However, the traditional infrared thermal imaging system has not been widely used on a large scale due to problems such as its technology, cost, volume, weight, and power consumption.
近年来,基于MOEMS技术的光读出式微悬臂梁焦平面阵列(focal planearray,FPA)热成像系统,采用焦平面阵列器件FPA作为红外图像传感器,大大降低了红外系统的体积、重量,为大规模、普遍使用红外成像系统提供了有力条件。焦平面阵列器件是一种微悬臂梁结构,微悬臂梁由两种热膨胀系数相差较大的材料构成,当微悬臂梁吸收红外辐射后,梁的温度上升,双材料层之间会很快达到热平衡,热平衡后,由于两种材料的热膨胀系数差别较大,它们之间的应力将使梁产生弯曲,弯曲量与微悬臂梁吸收的热量成正比。所以,外界的温度场会导致微悬臂梁阵列产生相应的变形,如果能够精确探测到微悬臂梁阵列中每个的微悬臂梁的变形量,则可以得到外界的温度场分布,换言之,可以得到红外图像。In recent years, the optical readout micro-cantilever focal plane array (focal planearray, FPA) thermal imaging system based on MOEMS technology uses the focal plane array device FPA as the infrared image sensor, which greatly reduces the volume and weight of the infrared system, and provides a large-scale , The widespread use of infrared imaging systems provides strong conditions. The focal plane array device is a micro-cantilever beam structure. The micro-cantilever beam is composed of two materials with a large difference in thermal expansion coefficient. When the micro-cantilever beam absorbs infrared radiation, the temperature of the beam rises, and the two-material layer will quickly reach Heat balance, after heat balance, due to the large difference in thermal expansion coefficients of the two materials, the stress between them will cause the beam to bend, and the amount of bending is proportional to the heat absorbed by the micro-cantilever beam. Therefore, the external temperature field will cause the corresponding deformation of the micro-cantilever array. If the deformation of each micro-cantilever in the micro-cantilever array can be accurately detected, the external temperature field distribution can be obtained. In other words, it can be obtained infrared image.
微悬臂梁变形量的检测主要有电读出和光读出两种方式。前者是通过检测微悬臂梁弯曲处的电容或电阻等电学参数的变化情况,来获得悬臂梁的形变量。该方法外围设备比较简单,但是要在FPA上额外构造复杂电路,加大了FPA的制造难度,并且电路本身的热量会在一定程度上影响红外图像的质量。另一种叫做光读出,是实现红外光--热机械变形--照射可见光的反射光强变化--还原图像的过程。在每一个微悬臂梁上,都有小反射镜。用可见光照射微悬臂梁阵列,微悬臂梁阵列的反射镜会将可见光反射,当每个微悬臂梁的变形量不同时,每个微悬臂梁携带的反射镜对照射的可见光的反射效果也会不同,通过检测反射光的变化量可获得悬臂梁的变形量,再还原为红外图像。该方法需要配置的外围设备比电读出复杂,但不需要在FPA上构造读出电路,避免了读出电路产生的热量对成像质量的影响。There are two main ways to detect the deformation of the micro-cantilever: electrical readout and optical readout. The former obtains the deformation of the cantilever by detecting changes in electrical parameters such as capacitance or resistance at the bend of the micro-cantilever. The peripheral equipment of this method is relatively simple, but an additional complex circuit needs to be constructed on the FPA, which increases the difficulty of manufacturing the FPA, and the heat of the circuit itself will affect the quality of the infrared image to a certain extent. The other is called optical readout, which is the process of realizing infrared light-thermomechanical deformation-the change of reflected light intensity when irradiated with visible light-reverting the image. On each micro-cantilever beam, there is a small mirror. When the micro-cantilever array is irradiated with visible light, the mirrors of the micro-cantilever array will reflect the visible light. When the deformation of each micro-cantilever is different, the reflective effect of the mirrors carried by each micro-cantilever on the irradiated visible light will also be different. Different, the deformation of the cantilever beam can be obtained by detecting the change of reflected light, and then restored to an infrared image. This method needs to configure more complex peripheral devices than electrical readout, but it does not need to construct a readout circuit on the FPA, which avoids the influence of the heat generated by the readout circuit on the imaging quality.
理论上讲,光读出比电读出微悬臂梁FPA系统具有更低的背景噪声,更高的灵敏度,但是就目前国内外技术资料来看,光读出远远未达到预期的成像效果,甚至还低于电读出方式。研究光读出FPA红外成像系统光路的成像原理可以看出,影响系统稳定性、可靠性、灵敏度的因素很多,其原因有两个方面,一方面是工艺、器件性能的制约,另一方面是系统设计水平。是进一步提高光读出非制冷红外焦平面阵列成像系统性能的重要研究方向。Theoretically speaking, optical readout has lower background noise and higher sensitivity than electrical readout microcantilever FPA system, but according to the current domestic and foreign technical data, optical readout is far from the expected imaging effect, Even lower than the electrical readout method. Studying the imaging principle of the optical path of the optical readout FPA infrared imaging system, it can be seen that there are many factors that affect the stability, reliability, and sensitivity of the system. There are two reasons for this. system design level. It is an important research direction to further improve the performance of the optical readout uncooled infrared focal plane array imaging system.
发明内容 Contents of the invention
本发明的目的是针对提高光读出非制冷红外焦平面阵列成像系统工作稳定性、可靠性和灵敏度的问题,提供一种具有时间调制的、可以有效消除环境振动、环境温度与照度变化、红外焦平面阵列器件变形、光源电源纹波、光源老化、光机结构变形、CCD噪声对系统成像质量的影响,提高系统工作稳定性、可靠性和灵敏度的技术。The purpose of the present invention is to improve the working stability, reliability and sensitivity of the optical readout uncooled infrared focal plane array imaging system, and to provide a time-modulated infrared imaging system that can effectively eliminate environmental vibration, environmental temperature and illuminance changes, and infrared The effects of focal plane array device deformation, light source power supply ripple, light source aging, optical-mechanical structure deformation, and CCD noise on system imaging quality, and technology to improve system stability, reliability and sensitivity.
本发明的目的是由以下技术方案来实现:The purpose of the present invention is achieved by the following technical solutions:
①本发明的新型高性能非制冷红外焦平面阵列成像系统,包括红外调制成像光路、照明光路、光学读出光路、图像采集及处理装置。红外调制成像光路包含红外成像镜头、光调制器和红外焦平面阵列传感器,为成像系统按一定的时间频率分时提供红外图像、背景和噪声信号的空间调制信号;照明光路包含光源、准直镜头组,为成像系统提供可见照明成像光束;光学读出光路包含若干成像镜头组和滤波器,用于对被红外调制成像光路空间调制以后的可见照明成像光束进行滤波、聚焦成像,图像成像在CCD靶面上;图像采集和处理装置对信号处理后输出红外图像。① The new high-performance uncooled infrared focal plane array imaging system of the present invention includes an infrared modulation imaging optical path, an illumination optical path, an optical readout optical path, and an image acquisition and processing device. The infrared modulation imaging optical path includes an infrared imaging lens, a light modulator and an infrared focal plane array sensor, which provide the imaging system with spatial modulation signals of infrared images, background and noise signals in time division according to a certain time frequency; the illumination optical path includes a light source, a collimator lens group, which provides visible illumination imaging beams for the imaging system; the optical readout optical path includes several imaging lens groups and filters, which are used to filter and focus imaging on the visible illumination imaging beams spatially modulated by the infrared modulation imaging optical path, and image imaging is performed on the CCD On the target surface; the image acquisition and processing device outputs an infrared image after processing the signal.
②该系统地成像特点是:红外成像镜头对外界目标聚焦成像,位于该聚焦成像光路中的光调制器对红外成像光线进行时间调制后射向红外焦平面阵列器件,红外焦平面阵列器件接收经过时间调制以后的红外成像光线,并且其阵列像元产生相应的变化;从光源发出的光,被扩束、准直以后,射向红外调制成像光路并被空间调制以后进入光学读出光路,成像于CCD表面。由于红外调制成像光路提供的空间调制信号具有分时性,一部分时间是红外图像信号,另一部分时间是背景及系统噪声信号,所以CCD接收的图像信号也是按一定频率交替的红外图像信号、背景和系统噪声信号,且这两个信号具有光程完全相同的特点,时间上也基本同步。② The imaging characteristics of this system are: the infrared imaging lens focuses and images the external target, and the light modulator located in the focusing imaging optical path time-modulates the infrared imaging light and shoots it to the infrared focal plane array device, and the infrared focal plane array device receives the The infrared imaging light after time modulation, and its array pixels produce corresponding changes; the light emitted from the light source, after being expanded and collimated, shoots into the infrared modulation imaging optical path and enters the optical readout optical path after being spatially modulated, imaging on the surface of the CCD. Since the spatial modulation signal provided by the infrared modulation imaging optical path has time division, part of the time is the infrared image signal, and the other part of the time is the background and system noise signal, so the image signal received by the CCD is also an infrared image signal, background and system noise signal alternately at a certain frequency. System noise signal, and these two signals have the characteristics of the same optical path, and they are basically synchronized in time.
③该系统在图像处理过程中,用背景和系统噪声信号对红外图像信号不断地进行修正,从而达到消除环境振动、环境温度与照度变化、红外焦平面阵列器件变形、光源电源纹波、光源老化、光机结构变形、CCD噪声对系统成像质量的影响,提高系统工作稳定性、可靠性和灵敏度的目的。③ During the image processing process, the system uses the background and system noise signals to continuously correct the infrared image signal, so as to eliminate environmental vibration, environmental temperature and illumination changes, infrared focal plane array device deformation, light source power supply ripple, and light source aging , The impact of optical-mechanical structure deformation and CCD noise on the imaging quality of the system, and the purpose of improving the stability, reliability and sensitivity of the system.
有益效果Beneficial effect
采用本发明可以实现对红外图像的修正,扣除环境振动、环境温度与照度变化、红外焦平面阵列器件变形、光源电源纹波、光源老化、光机结构变形、CCD噪声对系统成像质量的影响,提高系统工作稳定性、可靠性和灵敏度。较之早前的非制冷红外焦平面成像系统,在同等条件下,其成像性能得到提高,并且对使用环境要求、系统器件要求也相应降低。The invention can realize the correction of the infrared image, and deduct the effects of environmental vibration, ambient temperature and illuminance changes, infrared focal plane array device deformation, light source power supply ripple, light source aging, optical-mechanical structure deformation, and CCD noise on the imaging quality of the system. Improve system stability, reliability and sensitivity. Compared with the previous uncooled infrared focal plane imaging system, under the same conditions, its imaging performance is improved, and the requirements for the use environment and system components are correspondingly reduced.
附图说明 Description of drawings
图1是现有的光读出非制冷红外焦平面成像系统示意图;FIG. 1 is a schematic diagram of an existing optical readout uncooled infrared focal plane imaging system;
图2是本发明的新型高性能非制冷红外焦平面成像系统示意图;Fig. 2 is the schematic diagram of novel high-performance uncooled infrared focal plane imaging system of the present invention;
其中,附图标记说明如下:图中1.红外成像镜头组;2.光调制器;3.红外焦平面阵列;4.光源;5.准直镜头组;6.光学读出光路;7.图像采集和处理装置。Wherein, the reference signs are explained as follows: 1. Infrared imaging lens group; 2. Optical modulator; 3. Infrared focal plane array; 4. Light source; 5. Collimating lens group; 6. Optical readout optical path; 7. Image acquisition and processing device.
具体实施方式 Detailed ways
下面将详细描述本发明的具体实施例。Specific embodiments of the present invention will be described in detail below.
1.系统组成1. System composition
本发明的新型高性能非制冷红外焦平面成像系统,由红外调制成像光路、照明光路、光学读出光路和图像采集与处理装置组成,具体如图2所示:The novel high-performance uncooled infrared focal plane imaging system of the present invention is composed of an infrared modulation imaging optical path, an illumination optical path, an optical readout optical path, and an image acquisition and processing device, as shown in Figure 2:
红外调制成像光路由红外成像镜头组1、光调制器2和红外焦平面阵列3组成,红外镜头将外界目标的热图像聚焦成像,位于成像光路中的光调制器对红外成像光束进行时间调制,调制以后的光线在7上成像,7的像元阵列产生规律的变化;The infrared modulation imaging optical path is composed of an infrared
照明光路包含光源4和光源准直镜头组5,照明光路为整个系统提供可见、非干涉、平行的照明成像光束;The illumination optical path includes a light source 4 and a light source collimator lens group 5, and the illumination optical path provides visible, non-interfering, parallel illumination and imaging beams for the entire system;
光学读出光路6包含若干成像镜头和滤波器,用于对被红外调制镜头组空间调制以后的可见照明成像光束聚焦成像于图像采集和处理装置中的CCD表面;The optical readout
图像采集和处理装置7,对光学读出光路输出的信号按照一定的规律处理,并输出红外热图像。The image acquisition and processing device 7 processes the signal output by the optical readout path according to certain rules, and outputs an infrared thermal image.
2.成像过程2. Imaging Process
本发明的新型高性能双光束光读出非制冷红外焦平面成像系统,其成像过程如图2所示:The novel high-performance dual-beam optical readout uncooled infrared focal plane imaging system of the present invention has an imaging process as shown in Figure 2:
外界目标的红外热图像通过红外镜头1进入本发明的新型高性能双光束光读出非制冷红外焦平面成像系统(箭头I所示),并被位于成像光路中的光调制器2进行时间调制,然后成像于焦平面阵列3上(箭头II所示),焦平面阵列3由于吸收了热,像元阵列的反射镜在悬臂梁的带动下会发生偏转。The infrared thermal image of the external target enters the novel high-performance dual-beam optical readout uncooled infrared focal plane imaging system (shown by arrow I) of the present invention through the
光源4发出的发散光,被准直镜头组5扩束、准直以后,射入红外调制成像光路(箭头III所示),被焦平面阵列3调制以后的照明成像光束,进入光学读出光路6(箭头IV所示),光学读出光路将其成像于信息采集与处理装置的CCD靶面上。由于红外调制成像光路提供的空间调制信号具有分时性,一部分时间是红外图像信号,另一部分时间是背景及系统噪声信号,所以CCD接收的图像信号也是按一定频率交替的红外图像信号、背景和系统噪声信号。The divergent light emitted by the light source 4, after being expanded and collimated by the collimating lens group 5, enters the infrared modulation imaging optical path (shown by arrow III), and the illuminating imaging beam modulated by the
3.用背景和系统噪声信号修正红外图像3. Correction of infrared images with background and system noise signals
本发明的新型高性能非制冷红外焦平面成像系统,用背景和系统噪声信号修正红外图像如下:The novel high-performance uncooled infrared focal plane imaging system of the present invention corrects the infrared image with the background and system noise signals as follows:
(1)红外图像的获取(1) Acquisition of infrared images
附图1所示的光读出非制冷红外焦平面成像系统的红外图像采集过程为:首先由系统对参考物体成像,此时默认为外界环境对焦平面阵列3无成像,则图像采集和处理装置7各像元获得一个能量EO;然后系统对外界红外物体成像,外界图像经由红外镜头组1成像于焦平面阵列3上,使焦平面阵列3的像元产生相应的角度偏转,导致图像采集和处理装置7的各像元获得的能量Ei与EO产程差异,二者的差即红外热图像,即:The infrared image acquisition process of the optical readout uncooled infrared focal plane imaging system shown in accompanying drawing 1 is: first, the reference object is imaged by the system, and at this time the default is that the external environment
红外热图像Ei0=E0-Ei ………………………(1)Infrared thermal image Ei 0 =E 0 -Ei ……………………(1)
其中:E0=E·η1·η2·η0 ………………………(2)Among them: E 0 =E·η 1 ·η 2 ·η 0 …………………(2)
Ei=E·η1·η2·η ………………………(3)Ei=E · η 1 · η 2 · η ……………………(3)
E为光源4的发光强度,η1为光源准直镜头组5的光传递效率,η2为读出光路6的光传递效率,η0为焦平面阵列3的光传递效率,η为系统对红外物体成像以后焦平面阵列3的光传递效率;E is the luminous intensity of the light source 4, η 1 is the light transfer efficiency of the light source collimating lens group 5, η 2 is the light transfer efficiency of the readout
实质上,式(2)和式(3)中的E,η1,η2,η0,η都会随时间有一定的波动:E会随光源老化、光源电源纹波而变化;η1,η2会因为外界环境变化、结构变形产生变化;η0会由于外界震动产生极大的变化,从而导致式(1)的计算结果失真。特别是当系统需要长时间工作时,系统输出的红外图像会失真,并且越来越模糊,逐渐失去成像能力。In essence, E, η 1 , η 2 , η 0 , and η in formula (2) and formula (3) will fluctuate with time: E will change with the aging of the light source and the ripple of the light source power supply; η 1 , η 2 will change due to changes in the external environment and structural deformation; η 0 will change greatly due to external vibrations, which will lead to distortion of the calculation results of formula (1). Especially when the system needs to work for a long time, the infrared image output by the system will be distorted and become more and more blurred, gradually losing the imaging ability.
(2)用背景和噪声信号修正红外图像(2) Correct the infrared image with the background and noise signal
图2所示的新型高性能非制冷红外焦平面成像系统,在图1的基础上增加了一个光调制器2,对红外成像光线进行时间调制。图像采集和处理装置7分时接收红外图像Es和背景与噪声图像Eo,且这两类信号按一定的时间频率交替出现,即t时刻出现,则t+1时刻出现Es,t+2时刻出现Eo……由于t和t+1时刻的间隔Δt非常小,E,η1,η2,η0,η的变化也将非常小,甚至可以忽略不计,所以,如果按照:The new high-performance uncooled infrared focal plane imaging system shown in Fig. 2 adds a light modulator 2 on the basis of Fig. 1 to time-modulate the infrared imaging light. The image acquisition and processing device receives the infrared image Es and the background and noise image Eo in 7 time divisions, and these two types of signals appear alternately according to a certain time frequency, that is, appear at time t, then Es appears at
E(t+1)=Eot-Es(t+1) ……………………(4)E (t+1) =Eo t -Es (t+1) …………………(4)
计算的结果输出红外图像,则可以在很大程度上克服由于E,η1,η2,η0,η随时间变化引起的图像失真甚至失去成像能力的困难,也就是说本成像系统能够较好的扣除环境振动、环境温度与照度变化、红外焦平面阵列器件变形、光源电源纹波、光源老化、光机结构变形、CCD噪声对系统成像质量的影响,提高系统工作稳定性、可靠性和灵敏度。If the calculated result outputs an infrared image, it can largely overcome the difficulty of image distortion or even loss of imaging ability caused by E, η 1 , η 2 , η 0 , and η changing with time. That is to say, the imaging system can be compared Good deduction of environmental vibration, ambient temperature and illuminance changes, infrared focal plane array device deformation, light source power supply ripple, light source aging, optical mechanical structure deformation, CCD noise on the system imaging quality, improve system stability, reliability and sensitivity.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100894072A CN102279053A (en) | 2011-04-11 | 2011-04-11 | Uncooled infrared focal plane array imaging system containing time modulation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100894072A CN102279053A (en) | 2011-04-11 | 2011-04-11 | Uncooled infrared focal plane array imaging system containing time modulation device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102279053A true CN102279053A (en) | 2011-12-14 |
Family
ID=45104628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100894072A Pending CN102279053A (en) | 2011-04-11 | 2011-04-11 | Uncooled infrared focal plane array imaging system containing time modulation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102279053A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104240206A (en) * | 2014-09-30 | 2014-12-24 | 成都市晶林科技有限公司 | Uncooled infrared focal plane detector image processing system and method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254474A1 (en) * | 2001-05-07 | 2004-12-16 | Eric Seibel | Optical fiber scanner for performing multimodal optical imaging |
WO2007115357A1 (en) * | 2006-04-10 | 2007-10-18 | Mycrolab Pty Ltd | Imaging apparatus with a plurality of shutter elements |
CN101059459A (en) * | 2007-06-05 | 2007-10-24 | 北京理工大学 | Microscopic thermal imaging method and device thereof |
CN101398331A (en) * | 2008-09-26 | 2009-04-01 | 中国科学院微电子研究所 | Dual-material beam uncooled infrared focal plane array with wavefront correction |
US20090091751A1 (en) * | 2007-10-04 | 2009-04-09 | Boris Golovanevsky | Multichip ccd camera inspection system |
CN101430537A (en) * | 2008-12-19 | 2009-05-13 | 北京理工大学 | Optical reading method based on holographic wave-front compensation technique |
JP2009523228A (en) * | 2005-12-27 | 2009-06-18 | ケーエルエー−テンカー テクノロジィース コーポレイション | Method and apparatus for simultaneous high-speed acquisition of multiple images |
CN101866031A (en) * | 2010-06-03 | 2010-10-20 | 北京理工大学 | Optical Readout Method Using Fiber Optic Bundle for Modulation |
-
2011
- 2011-04-11 CN CN2011100894072A patent/CN102279053A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254474A1 (en) * | 2001-05-07 | 2004-12-16 | Eric Seibel | Optical fiber scanner for performing multimodal optical imaging |
JP2009523228A (en) * | 2005-12-27 | 2009-06-18 | ケーエルエー−テンカー テクノロジィース コーポレイション | Method and apparatus for simultaneous high-speed acquisition of multiple images |
WO2007115357A1 (en) * | 2006-04-10 | 2007-10-18 | Mycrolab Pty Ltd | Imaging apparatus with a plurality of shutter elements |
CN101059459A (en) * | 2007-06-05 | 2007-10-24 | 北京理工大学 | Microscopic thermal imaging method and device thereof |
US20090091751A1 (en) * | 2007-10-04 | 2009-04-09 | Boris Golovanevsky | Multichip ccd camera inspection system |
CN101398331A (en) * | 2008-09-26 | 2009-04-01 | 中国科学院微电子研究所 | Dual-material beam uncooled infrared focal plane array with wavefront correction |
CN101430537A (en) * | 2008-12-19 | 2009-05-13 | 北京理工大学 | Optical reading method based on holographic wave-front compensation technique |
CN101866031A (en) * | 2010-06-03 | 2010-10-20 | 北京理工大学 | Optical Readout Method Using Fiber Optic Bundle for Modulation |
Non-Patent Citations (3)
Title |
---|
董立泉等: "基于场景的红外焦平面阵列非均匀性校正算法综述", 《光学技术》 * |
霍雁等: "脉冲和锁相红外热成像检测技术的对比性研究", 《激光与红外》 * |
龚诚等: "微悬臂梁FPA红外成像系统实时图像去噪算法研究", 《光学技术》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104240206A (en) * | 2014-09-30 | 2014-12-24 | 成都市晶林科技有限公司 | Uncooled infrared focal plane detector image processing system and method |
CN104240206B (en) * | 2014-09-30 | 2017-09-19 | 成都市晶林科技有限公司 | Non-refrigerated infrared focal plane probe image processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107632392B (en) | Dynamic local magnification high-resolution imaging system | |
CN102147234B (en) | Laser triangulation sensor | |
CN100568045C (en) | A high-resolution imaging adaptive optics telescope suitable for daytime work | |
CN102103034B (en) | Optical property measuring system and method | |
CN103645561B (en) | Multi-wavelength cascade firing sodium laser guide star and adaptive optics bearing calibration | |
CN102879110B (en) | Adaptive optical system based on modulation and non-modulation combined pyramid wave-front sensor | |
CN104089710A (en) | Far field pulse signal-to-noise ratio measurement method and device based on temporal-spatial resolution | |
CN101718589B (en) | Optical readout method for infrared thermal imagery imager | |
CN101866031B (en) | Optical readout method utilizing fiber optics bundle to carry out modulation | |
CN106643668B (en) | Atmospheric laser occultation signal generation and detection equipment | |
CN102103017A (en) | Novel un-cooled infrared focal plane imaging system | |
CN102288302B (en) | Optical read-out method for modulation by using double-triangular prism system | |
CN104360464A (en) | Continuous zooming optical system | |
CN101398331A (en) | Dual-material beam uncooled infrared focal plane array with wavefront correction | |
CN102650547A (en) | Optical reading method for micro lens array of non-refrigeration infrared imaging system | |
CN212694043U (en) | Active illumination correlation imaging system | |
CN103389311A (en) | Line scanning phase differential imaging device for optical element phase defect detection | |
CN102279053A (en) | Uncooled infrared focal plane array imaging system containing time modulation device | |
CN110764073B (en) | A laser radar optical receiving system | |
CN203606585U (en) | Electrical detection equipment and array detection system | |
CN102252762A (en) | Uncooled infrared focal plane imaging system including optical fiber reference optical paths | |
CN110411994A (en) | Detection device for improving the stability of optical signal | |
CN213750337U (en) | Active illumination correlation imaging system | |
CN212694047U (en) | Active illumination first modulation ghost imaging system | |
CN103557835A (en) | Laser ranging device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111214 |