CN102271732A - 纳米通道装置和相关方法 - Google Patents
纳米通道装置和相关方法 Download PDFInfo
- Publication number
- CN102271732A CN102271732A CN200980154070XA CN200980154070A CN102271732A CN 102271732 A CN102271732 A CN 102271732A CN 200980154070X A CN200980154070X A CN 200980154070XA CN 200980154070 A CN200980154070 A CN 200980154070A CN 102271732 A CN102271732 A CN 102271732A
- Authority
- CN
- China
- Prior art keywords
- ome
- nanochannel
- microchannel
- delivery apparatus
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0087—Galenical forms not covered by A61K9/02 - A61K9/7023
- A61K9/0097—Micromachined devices; Microelectromechanical systems [MEMS]; Devices obtained by lithographic treatment of silicon; Devices comprising chips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00119—Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14276—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/05—Microfluidics
- B81B2201/058—Microfluidics not provided for in B81B2201/051 - B81B2201/054
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/03—Static structures
- B81B2203/0323—Grooves
- B81B2203/0338—Channels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1052—Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
- Y10T156/1062—Prior to assembly
- Y10T156/1064—Partial cutting [e.g., grooving or incising]
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- Nanotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Biomedical Technology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Epidemiology (AREA)
- Vascular Medicine (AREA)
- Micromachines (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种纳米通道递送装置及其制造和使用方法。所述纳米通道递送装置包含入口、出口和纳米通道。所述纳米通道可以定向为平行于该纳米通道递送装置的主平面。入口和出口可以与纳米通道直接流体相通。
Description
与相关申请的交叉参考
本申请要求2008年11月14日提交的题为“Nanochanneled Deviceand Method of Use”的美国临时专利申请系列61/114,687和2009年4月13日提交的题为“Nanochanneled Device and Method of Use”的美国临时专利申请系列61/168,844的优先权,特别通过参考将它们的全部内容引入本文。
背景信息
本发明是在NASA颁发的合约NNJ06HE06A的政府支持下完成的。政府在本发明中具有一定的权利。
在过去30年来,在治疗剂(例如药物)递送技术领域已经取得了相当大的进展,使临床医学取得了很多突破。制造能以可控方式递送治疗剂的治疗剂递送装置仍然是一种挑战。对可植入性药物递送装置的主要要求之一是可控地释放从小药物分子到较大的生物学分子的治疗剂。特别需要的是达到符合零级动力学的连续被动性的药物释放性质,从而血流中药物的浓度在整个较长的递送期内都保持恒定。
这些装置可以改善治疗效力,消除可能的威胁生命的副作用,改善患者的顺应性,减少健康护理人员的介入,减少住院时间并减少从定期给药向药物滥用的转变。
纳米通道递送装置可以在药物递送产品中用于有效施用药物。此外,纳米通道递送装置可以用于需要随时间可控地释放药物的其他应用。
简述
本发明的实施方案包括一种在结构内部具有纳米通道的纳米通道递送装置,配置该装置以获得较高的机械强度和较高的流动速率。可以使用各种制造方案来形成所述纳米通道递送装置。所制造装置的实施方案的特征为水平的纳米通道设计(例如,纳米通道平行于该装置的主平面),高的分子运输速率、高的机械强度、任选的多层设计、能够选择通道内层材料并可以选择透明的顶部封盖。基于硅微制造技术,可以精确地控制纳米通道区域以及附随的微通道区域的尺寸,因此在延长时间内提供了可预测的、可靠的、恒定的药物(或其他)分子释放速率。在一些实施方案中,所述纳米通道递送装置可以用于建立多层的纳米通道结构。多层纳米通道结构可以突破单层纳米通道递送装置或系统对释放速率范围的限制,允许较宽范围的预定多孔性,以使用任何优选的纳米通道尺寸来实现任意的释放速率。
在一些实施方案中,所述纳米通道递送装置是由“三明治”式的材料制成的,包括较薄的顶层、水平的纳米通道和较厚的底部晶圆。较薄的顶层可以容纳微通道阵列,为分子扩散提供入口或出口。它也可通过提供通道的顶部表面而用作纳米通道的盖或上顶部。较厚的底部晶圆可以容纳微通道阵列,提供间接出口或入口。需要注意的是在下文中,入口是指底部晶圆,而出口是指顶层,但是在本发明中并不限于此。在一些实施方案中,通过牺牲层技术制造该纳米通道,所述技术提供了平滑的表面和可精确控制的尺寸。在这两层之间可以形成该纳米通道,该纳米通道将出口微通道与底部晶圆中形成的入口微通道阵列相连,另外允许较薄的表面层独立地用于顶部和顶部表面,目的是优化通道性质例如表面电荷、疏水性、湿润性和导电率。各入口和出口微通道可以连接至一个、两个或多个纳米通道。所述纳米通道的高度、宽度和长度可以用于保持恒定的(零级)递送。借助于纳米级制造法的帮助,10nm或更短的纳米通道长度都是可行的。
在一些实施方案中,设计该纳米通道递送装置以得到较高的强度。这可以通过在较厚的晶圆的底侧获得的支持性结构来实现。该结构可以由测微壁的规则筛孔构成,所述测微壁产生了较大的入口大通道的侧表面。此外,底部晶圆(在其中或其上可以制造纳米通道)的顶部可以设计用于提供良好的机械稳定性。
可以优化纳米通道下方的支持层的厚度,这可以通过控制入口微通道和出口大通道的深度或者通过选择具有适当厚度的埋入性氧化物层的SOI晶圆来实现。也可以优化顶层的材料和厚度以用于上述的属性。
一些实施方案包括纳米通道递送装置,其包含:入口微通道;纳米通道;和出口微通道,其中入口微通道和出口微通道与纳米通道直接流体相通。在具体的实施方案中,所述纳米通道定向为平行于所述纳米通道递送装置的主平面。在具体的实施方案中,由入口微通道经纳米通道至出口微通道的流动路径需要在方向上有最多两个变化。
在具体的实施方案中,入口微通道具有长度、宽度和深度;出口微通道具有长度、宽度和深度;且纳米通道具有长度、宽度和深度。在一些实施方案中,纳米通道长度与入口微通道长度的比为0.01-10.0,纳米通道长度与出口微通道长度的比为0.01-10.0。在具体的实施方案中,纳米通道长度大于入口微通道长度,且纳米通道长度大于出口微通道长度。在具体的实施方案中,纳米通道长度与入口微通道长度或出口微通道长度的比为0.2-5.0,0.3-3.0,0.4-2.0,或0.5-1.0。在一些实施方案中,纳米通道长度大于出口微通道的长度、宽度和深度。在具体的实施方案中,入口微通道通过单个纳米通道与所述出口微通道直接流体相通。
一些实施方案包括一种纳米通道递送装置,包含:入口微通道;纳米通道;出口微通道;和从入口微通道至出口微通道的流体流动路径,其中所述流体流动路径需要在方向上有最多两个变化。在具体的实施方案中,所述纳米通道定向为平行于所述纳米通道递送装置的主平面。在具体的实施方案中,入口微通道和出口微通道与纳米通道直接流体相通。
一些实施方案包括一种纳米通道递送,包含:基本上为平面的主体,包含第一表面和与所述第一表面相对的第二表面;位于所述基本上为平面的主体内的纳米通道;与所述纳米通道流体相通的入口微通道;和与所述纳米通道流体相通的出口微通道。在具体的实施方案中,入口微通道从所述纳米通道延伸到所述第一表面,其中所述出口微通道从所述纳米通道延伸到第二表面。
一些实施方案包括纳米通道递送装置,其包含多个入口微通道;多个纳米通道;和多个出口微通道,其中各入口微通道通过单个纳米通道与出口微通道直接流体相通。在具体的实施方案中,所述纳米通道定向为平行于所述纳米通道递送装置的主平面,和/或入口微通道和出口微通道与共用的纳米通道直接流体相通。在具体的实施方案中,各个入口和出口微通道被布置为垂直于所述纳米通道递送装置的主平面;多个入口微通道形成第一阵列;多个出口微通道形成第二阵列;所述第一阵列和所述第二阵列互相重叠,以使在沿垂直于所述主平面所取的截面观察时各个入口微通道分布于各个出口微通道之间。
一些实施方案包括一种纳米通道递送装置,包含:基本上为平面的主体,包括长度、宽度和厚度,其中长度和宽度都大于厚度;在所述基本上为平面的主体的第一侧上的入口表面,其中入口表面受到所述基本上为平面的主体的长度和宽度的限制;和在所述基本上为平面的主体的第二侧上的出口表面。在具体的实施方案中,所述出口表面受到所述基本上为平面的主体的长度和宽度的限制,并且其中入口表面基本上平行于所述出口表面。具体实施方案包括一种位于所述基本上为平面的主体内的纳米通道,其中所述纳米通道包括入口端和出口端;与所述纳米通道流体相通的入口微通道;和与所述纳米通道流体相通的出口微通道,其中配置入口微通道和纳米通道以使第一线性轴可以在所述纳米通道的入口表面和入口端之间延伸。在具体的实施方案中,配置所述出口微通道和纳米通道,以使第二线性轴可以在所述纳米通道的出口表面和出口端之间延伸。在一些实施方案中,入口微通道的主轴垂直于与所述基本上为平面的主体平行的平面。具体实施方案包括入口表面和入口微通道之间的入口大通道,其中入口大通道包含一般垂直于入口表面的有界壁。在具体的实施方案中,入口大通道是由深度反应性离子蚀刻形成的。在具体的实施方案中,出口微通道的主轴垂直于与所述基本上为平面的主体平行的平面。
一些实施方案包括一种设备,包含插入到封壳中的第一纳米通道递送装置。在具体的实施方案中,所述第一纳米通道递送装置垂直于所述封壳的主轴安装。在具体的实施方案中,所述封壳包含隔件。在一些实施方案中,所述隔件包含自密封物质。在具体的实施方案中,所述隔件包含有机硅橡胶。在一些实施方案中,配置所述隔件以接受治疗剂的注射。
具体实施方案包括覆盖所述隔件的帽。在一些实施方案中,所述帽包含装配用于引导注射针头朝向于隔件的孔口。在具体的实施方案中,所述封壳包含于第一纳米通道装置上延伸的盖子。在具体的实施方案中,所述盖子包含一个或多个孔口。在一些实施方案中,所述一个或多个孔口的尺寸使得在使用期间它们不限制治疗剂从所述封壳中扩散。在一些实施方案中,配置所述盖子以保护所述第一纳米通道递送装置免受机械损害。在具体的实施方案中,配置所述盖子以保护所述第一纳米通道递送装置免于在所述封壳植入到生物体内后生物组织结构的侵入。在一些实施方案中,所述封壳包含第一内贮器。在具体的实施方案中,所述第一纳米通道递送装置与所述第一内贮器流体相通。
在具体的实施方案中,所述封壳包含与第二纳米通道递送装置流体相通的第二内贮器。在一些实施方案中,所述第一和第二内贮器互相不流体相通。在具体的实施方案中,所述第一和第二内贮器通过壁隔离。在具体的实施方案中,所述第一内贮器包含第一治疗剂,所述第二内贮器包含第二治疗剂。在具体的实施方案中,配置所述第一纳米通道递送,以使其以第一扩散速率扩散第一治疗剂,并配置所述第二纳米通道递送装置以使其以第二扩散速率扩散第二治疗剂。
在一些实施方案,可以通过用较大的可移去组件代替封壳的第一可移去组件来改变第一内贮器的容积。在具体的实施方案中,所述第一内贮器包含与治疗物质相容的涂层。在具体的实施方案中,所述封壳包含外涂层,其经配置用于预防有害的组织包裹。在具体的实施方案中,所述封壳包含圆柱形状。在一些实施方案中,所述封壳包含圆盘形状。在一些实施方案中,所述封壳包含矩形表面和弓形表面。在具体的实施方案中,所述封壳包均匀的横截面。
在一些实施方案中,所述封壳包含一种或多种下列物质:不锈钢、钛、聚醚醚酮、聚砜、环氧化物、有机硅橡胶、聚醚酮酮和热塑性聚氨基甲酸酯。在具体的实施方案中,所述封壳包含锚定部件。在一些实施方案中,配置所述锚定部件以接受缝合。在具体的实施方案中,所述封壳包含色码,以指示封壳或纳米通道递送装置的性质。在具体的实施方案中,所述色码指示包含在封壳内的治疗剂的性质。在具体的实施方案中,所述封壳包含延伸于第一纳米通道递送装置上的半透明或透明的盖子。
一些实施方案包括制造纳米通道递送装置的方法。在具体的实施方案中,所述方法包括:提供第一基底;在所述第一基底中形成多个纳米通道;在所述第一基底的纳米通道中形成多个入口微通道;提供第二基底;在所述第二基底中形成多个出口微通道;和将所述第二基底结合到所述第一基底上,其中各入口微通道与纳米通道直接流体相通。
在该方法具体的实施方案中,所述第一基底包含绝缘体上硅型晶圆。在一些实施方案中,各纳米通道的高度是约1-10纳米。在具体的实施方案中,各纳米通道的高度是约10-20纳米,约20-30纳米,约30-50纳米,约50-100纳米,或约100-200纳米。在一些实施方案中,所述第二基底包含在硅上的氧化铟锡膜的牺牲释放层。具体实施方案还包括在所述第二基底中形成多个入口微通道前,在所述第二基底上沉积玻璃膜。在具体的实施方案中,所述第二基底包含玻璃晶圆;和所述玻璃晶圆与第一基底结合,且在形成多个出口微通道前将所述玻璃晶圆研磨以减小厚度。
一些实施方案包括一种制造纳米通道递送装置的方法,其中所述方法包括:提供第一基底;在所述第一基底上形成多个纳米通道;将第一牺牲材料填充到多个纳米通道中;在所述第一基底中形成多个入口微通道;将第二牺牲材料填充到多个入口微通道中;形成覆盖多个纳米通道的帽层;在所述帽层中形成多个出口微通道;从多个纳米通道中去除第一牺牲材料;和从多个入口微通道中去除第二牺牲材料。
在该方法具体的实施方案中,入口微通道被布置成垂直于所述第一基底的主平面。在具体的实施方案中,出口微通道被布置成垂直于所述第一基底的主平面。在该方法的一些实施方案中,入口微通道与纳米通道直接流体相通。在具体的实施方案中,出口微通道与纳米通道直接流体相通。
在该方法的一些实施方案中,所述第一基底包含绝缘体上硅型晶圆,所述晶圆包含内氧化物层。在具体的实施方案中,用光刻工艺来构建入口和出口微通道。在一些实施方案中,形成多个入口微通道包括从所述第一基底蚀刻材料,其中所述蚀刻结束于内氧化物层。在该方法具体的实施方案中,形成多个入口大通道包括从所述第一基底背侧蚀刻材料,其中所述蚀刻结束于内氧化物层。
在一些实施方案中,在蚀刻材料从而形成入口微通道和入口大通道后去除所述内氧化物层打开了入口微通道和入口大通道之间的路径。在该方法具体的实施方案中,各纳米通道为约1-10纳米深,约10-20纳米深,约20-30纳米深,约30-40纳米深,或约40-200纳米深。
在该方法的一些实施方案中,可以随后通过选择性蚀刻来去除第一牺牲材料。在具体的实施方案中,所述第一牺牲材料是钨。在具体的实施方案中,可以随后通过选择性蚀刻来去除第二牺牲材料。在该方法的一些实施方案中,所述第二牺牲材料选自:钨、铜、掺杂的玻璃和无掺杂的玻璃。在具体的实施方案中,所述第二牺牲材料填充到多个入口微通道中,以使所述第二牺牲材料延伸于入口微通道的顶部,并通过化学-机械平坦化技术(CMP)使其变平坦。
在该方法具体的实施方案中,所述帽层选自氮化硅、氧化硅、碳氮化硅、碳化硅和硅。在一些实施方案中,所述帽层包含材料的多重沉积物,所述材料包含拉伸应力和压缩性应力,以使所述帽层的净应力为拉伸性的。在该方法的一些实施方案中,所述帽层为约0.5-1.0微米厚,约1.0-2.0微米厚,约2.0-4.0微米厚,或约4.0-10.0微米厚。在具体的实施方案中,所述帽层大于10.0微米厚。
具体实施方案包括一种制造纳米通道递送装置的方法,其中所述方法包括:提供第一基底;在所述第一基底的第一侧上形成多个纳米通道;将牺牲材料填充到多个纳米通道中;将初始帽层结合到所述第一基底的第一侧上;在所述帽层中形成多个入口微通道;制备具有粘合层的第二基底;将所述第二基底结合到所述第一基底的第二侧上;去除所述第二基底的第一部分;给所述第二基底提供附加的帽层;在所述第二基底中形成多个出口微通道;和去除所述牺牲材料以打开多个纳米通道。
在该方法的一些实施方案中,所述第二基底包含释放层,其中可以选择性地去除所述释放层以使第二基底从第一基底上分离。在该方法具体的实施方案中,出口微通道与所述纳米通道直接流体相通。在该方法具体的实施方案中,第一物质包括绝缘体上硅型晶圆,该晶圆包括内氧化物层。在一些实施方案中,形成多个入口微通道包括从所述帽层蚀刻物质,其中所述蚀刻结束于内氧化物层。
在一些实施方案中,形成多个入口大通道包括从所述第一基底背侧蚀刻物质,其中所述蚀刻结束于内氧化物层。在具体的实施方案中,在蚀刻材料从而形成入口微通道和入口大通道后去除所述内氧化物层打开了入口微通道和入口大通道之间的路径。
在一些实施方案中,所形成的各纳米通道为约1-10纳米深,约10-20纳米深,约20-30纳米深,约30-40纳米深,或约40-200纳米深。
在具体的实施方案中,可以随后通过选择性蚀刻来去除所述牺牲材料。在具体的实施方案中,其中所述牺牲材料是钨。在一些实施方案中,所述初始帽层是通过等离子增强的化学气相淀积法沉积的氮化硅。在该方法的一些实施方案中,所述初始帽层为约0.01-0.5微米厚,约0.5-1.0微米厚,约1.0-2.0微米厚,约2.0-4.0微米厚,或约4.0-10.0微米厚。在该方法具体的实施方案中,所述初始帽层大于10.0微米厚。在该方法的一些实施方案中,所述初始帽层选自氮化硅、氧化硅、碳氮化硅、碳化硅和硅。在具体的实施方案中,所述初始帽层包含材料的多重沉积物,所述材料包含拉伸应力和压缩性应力,以使所述帽层的净应力为拉伸性的。在该方法的一些实施方案中,所述粘合层选自:苯并环丁烯、氧化硅、铜、掺杂的玻璃、金及金的合金。
在一些实施方案中,所述第二基底结合到所述第一基底上的方法选自:阳极结合、融合结合和热压结合。
具体实施方案包括纳米通道递送装置,其包含:多个入口微通道,其中各入口微通道具有长度、宽度和深度,且其中入口微通道的长度大于入口微通道的宽度和深度;多个出口微通道,其中各出口微通道具有长度、宽度和深度;与多个入口微通道和出口微通道流体相通的多个纳米通道。在一个具体实施放案中,排列多个入口微通道,以使入口微通道的宽度和深度限定出平行于所述纳米通道递送装置的主平面的第一表面;和排列多个出口微通道,以使所述出口微通道的宽度和深度限定出平行于所述纳米通道递送装置的主平面的第二表面。
具体实施方案包括一种治疗人疾病的方法,所述方法包括:提供本文所述的纳米通道递送装置;提供与所述纳米通道递送装置流体相通的贮器;在所述贮器中提供材料,其中配置所述物质以治疗所述疾病;和通过所述纳米通道递送装置将所述物质施用于人。在该方法具体的实施方案中,所述物质选自:醋酸亮丙瑞林、来曲唑、拉帕替尼、丁丙诺啡、干扰素和齐多夫定。在一些实施方案中,所述疾病选自:前列腺癌、乳腺癌、阿片类物质依赖、巨大细胞性成血管细胞瘤和HIV。在该方法具体的实施方案中,通过所述纳米通道递送装置将所述物质施用于人包括将所述纳米通道递送装置皮下插入于人体中。
在下文中,术语“结合”定义为连接,尽管并不必然是直接的,而且也不必然是机械性的。
当在权利要求和/或说明书中与术语“包含”相连使用时,单词“一个”或“一种”的使用可以是指“一个”,但是它也符合“一个或多个”或“至少一个”的含义。术语“约”一般是指所述值加或减5%。在权利要求中术语“或”的使用是用于表示“和/或”,除非另有说明是指仅选择一种或选择是互相排斥的,尽管本文的内容支持仅选择一种和“和/或”的定义。
术语“包含”(“comprise”,及comprise的任何形式,例如“comprises”和“comprising”),“具有”(“have”,及have的任何形式,例如“has”和“having”),“包括”(“include”,及include的任何形式,例如“includes”和“including”)和“含有”(“contain”,及contain的任何形式,例如“contains”和“containing”)是端点开放的系动词。因此,“包含”、“具有”、“包括”或“含有”一个或多个步骤或组件的方法或设备具有所述的一个或多个步骤或组件的,但是并不限于仅具有所述的一个或多个组件。此外,“包含”、“具有”、“包括”或“含有”一个或多个特征的方法的步骤或者设备的组件具有所述的一个或多个特征,但是并不仅限于具有所述的一个或多个特征。此外,以一定方式配置的设备或构造是以至少所述方式配置的,但是也可以以未列出的方式配置。
术语“入口微通道”定义为一种微通道,在进入纳米通道递送装置的纳米通道前的分子通过其输送。
术语“出口微通道”定义为一种微通道,在离开纳米通道递送装置前的分子最后通过其运输。
术语“纳米通道”定义为具有一定横截面的通道,所述横截面具有的至少一个尺度(例如,高度、宽度、直径等)为小于200nm。
术语“大通道”定义为具有一定横截面的通道,所述横截面所具有的最大的尺度(例如,高度、宽度、直径等)为大于约10μm。
从下文的详述中本发明的其他目的、特征和优点将变得显而易见。但是,应当理解,详细描述和具体的实施例尽管指示了本发明的具体实施方案,但它们仅是以解释的方式给出的,因为由该详细描述,在本发明的精神和范围内的各种改变和改进对于本领域技术人员将是显而易见的。
附图简述
图1A-1J是根据示例性实施方案的制造方法的概要图。
图2A-2E是制造过程中纳米通道递送装置的第一部分的透视图。
图3A-3F是制造过程中纳米通道递送装置的第二部分的透视图。
图3G是具有所标记的代表性尺寸的纳米通道递送装置的部分透视图。
图4A-4L是根据示例性实施方案的制造方法的概要图。
图5A-5H是根据示例性实施方案的制造过程中纳米通道递送装置的概要横截面图。
图6A-6J是根据示例性实施方案的制造方法的概要图。
图7是纳米通道递送装置的示例性实施方案的概要横截面侧视图。
图8A-8I是根据示例性实施方案的制造方法的概要图。
图8J-8P是制造过程的各个阶段中示例性实施方案的正视图和透视图。
图9是根据示例性实施方案的纳米通道递送装置的透视图。
图10是纳米通道递送装置的示例性实施方案的概要横截面侧视图。
图11是根据示例性实施方案的纳米通道递送装置的一部分的扫描电镜图像。
图12是根据示例性实施方案的纳米通道递送装置的结合晶圆的光学图像。
图13是抛光后根据示例性实施方案的纳米通道递送装置的前表面的光学图像。
图14是根据示例性实施方案的纳米通道递送装置的一部分的扫描电镜图像。
图15是抛光后根据示例性实施方案的纳米通道递送装置的一部分的光学图像。
图16是根据示例性实施方案的纳米通道递送装置的一部分的扫描电镜图像。
图17是根据示例性实施方案的纳米通道递送装置的一部分的扫描电镜图像。
图18是在示例性的实施方案中用于制造方法的材料的列表。
图19是根据示例性实施方案的封壳和纳米通道递送装置的分解透视图。
图20是图19的实施方案的装配透视图。
图21是根据示例性实施方案的封壳的装配透视图。
图22是图21的实施方案的分解透视图。
图23是根据示例性实施方案的封壳和纳米通道递送装置的分解透视图。
图24是根据示例性实施方案的封壳和纳米通道递送装置的分解透视图。
图25是根据示例性实施方案的封壳的装配透视图。
图26是图25的实施方案的分解透视图。
图27是根据示例性实施方案的封壳的装配透视图。
图28是图27的实施方案的分解透视图。
图29是根据示例性实施方案的封壳的透视图。
图30是根据示例性实施方案的封壳在所安装位置的透视图。
图31是根据根据示例性实施方案的封壳的透视图和切面图。
说明性实施方案的详述
方案1:结合的帽层
图1a-1j,2A-2E,和3A-3G提供了在制造纳米通道递送装置的示例性第一方法中进行的步骤的图解。具体的尺寸仅是为说明的目的而提供的,应当理解其他示例性的实施方案可以包含不同的尺寸。
在根据该方案制造的一个示例性的实施方案中,顶层是5μm厚蒸发玻璃层的盖子,底部晶圆是4英寸的SOI晶圆,有30μm的装置层,500μm的容积层,以使所述纳米通道下的支持层具有30μm厚。在这个示例性的结构中,入口和出口微通道是5μm x 5μm,各纳米通道的平面内尺寸是5μm x 5μm。相邻开口之间的距离(例如相邻纳米通道之间的距离)是2μm。支持网下方的入口大通道是约200μm x 200μm,高于500μm厚的容积层。
首先给出该制造方法的一般性概述,然后更详细地讨论纳米通道递送装置中所包括的特征。在这个实施方案中,纳米通道递送装置的制造不使用化学机械抛光(CMP),微制造方案包括下列步骤。由SOI(绝缘体上硅型)晶圆开始(参见图2A),在热氧化过程中保护下方的硅的硬掩蔽层例如氮化硅膜或LTO(低温氧化)膜沉积。如果使用氮化硅,可以在氮化物沉积前沉积二氧化硅垫层。作为替代,如果蚀刻过程的速率可以良好表征,底部基底也可以是用硅晶圆来代替SOI。在这种情况下,通过定时来控制蚀刻深度。
然后可以用光刻工艺在掩蔽层上构建纳米通道区域。(参见图1(a)和2B)并选择性地去除纳米通道区域上的掩蔽材料,但不影响下面的硅。干法蚀刻和短时湿法蚀刻的组合可以用于该目的。然后可以通过热氧化将二氧化硅膜(具有适当控制的厚度)沉积于裸露的硅区域上。在这个实施方案中,氧化层的厚度用于限定纳米通道的高度,并剥去掩蔽层。
然后可以沉积适合深度硅蚀刻的掩蔽层。该掩蔽层应当能够被构建,并在深度硅蚀刻过程中对硅具有高度的选择性。根据深度硅蚀刻的技术,可以使用氧化硅层、光致抗蚀剂层或金属膜层。
在这个实施方案中,如图1(b)和2C所示,在掩蔽层上构建入口微通道,通过深度RIE(反应性离子蚀刻)或ICP(电感偶合等离子体)技术向下蚀刻入口微通道至SOI晶圆的氧化物层。如果使用硅晶圆,则通过蚀刻速率和时间来确定蚀刻的深度。
如图1(c)和2D所示,铺设入口大通道(背部的大开口)并蚀刻至SOI晶圆的氧化物层,通过HF溶液清洗暴露的氧化物区域。(参见图1(d)和2E)。为了建造纳米通道递送装置的顶盖,在这个实施方案中,从支持性晶圆(例如,硅晶圆)开始,沉积牺牲层。(参见图1(e),1(f)和3A)。选择牺牲层(例如,氧化铟锡(ITO)),以使其可以在溶液中去除,所述溶液对于硅和顶盖材料是安全的。
纳米通道递送装置的顶盖沉积于牺牲层上(参见图1(g)和3B),在该结构上构建出口,如图1(h)和3C)所示。作为替代,剥离(lift-off)技术可以用于溅射玻璃或e-束蒸发玻璃。这些材料可以是任何适当的材料,例如,旋涂玻璃、溅射玻璃,e-束蒸发玻璃、ITO-夹层玻璃、硅、聚合物等。这些材料可以包括本领域已知的通过特定方式例如阳极结合或熔化结合而与硅结合的玻璃和玻璃材料。这些材料应当能够通过某些方式与硅结合。例如玻璃,可以使用阳极结合。旋涂玻璃层也可以适用。根据表面的性质,可能需要平坦化方法。
如图1(c)、3D和3E所示,可以通过技术例如阳极结合或Si-Si直接结合或中间层辅助结合将结构晶圆和顶盖结合在一起,并去除顶盖的支持性晶圆(如图1(j)和3F所示)。最后,通过切割晶圆并清洗来获得各个纳米通道递送装置。
在根据该方案制造的另一个示例性实施方案中,如在上述实施方案中所述,在保持底部硅基底为相同的具有30μm装置层的4英寸SOI晶圆和500μm容积层的同时,顶层是10μm厚的玻璃膜。通过将较厚的玻璃层变薄来制造该10μm厚的玻璃膜。为制备这种薄膜,将100μm-500μm厚的玻璃晶圆与结构型硅基底结合。然后将平坦化技术例如背部研磨,或精研,或CMP,或化学蚀刻,或干法蚀刻用于使该玻璃层变薄,直至达到所设定的厚度10μm。然后在该变薄的玻璃膜上构建出口,并向下蚀刻至之下的硅表面,以开放出口。在这个示例性的结构中,入口和出口微通道是5μm x 5μm,各纳米通道的平面内尺寸是5μm x 5μm。相邻开口之间的距离(例如相邻纳米通道之间的距离)是2μm。支持网下方的入口大通道是约200μm x 200μm,高于500μm厚的容积层。
现在具体描述图2A-2E和3A-3F,提供对纳米通道递送装置100特征的更详细视图。先参考图2A,SOI晶圆10包含基底20之上的顶层15,并通过氧化物层35分隔。如图2B所示,在顶层15中使用图像掩模来形成一系列的纳米通道25。如图2C所示在各纳米通道25中使用图像掩模来形成一个或多个入口微通道30,在基底20和顶层15之间暴露出氧化物层35。为了清楚说明的目的,在图中并未标出所有特征,例如入口微通道30。
如图2D所示,使用图像掩模从氧化物层35下方除去一部分的基底20。然后去除氧化物层35(如图2E所示),形成入口微通道30以允许材料通过基底20和顶层15来运输。在这个阶段,完成了纳米通道递送装置100的下部40。
现在描述图3A-3F,从沉积于支持性基底55之上的牺牲层50开始制造纳米通道递送装置100的上部45。此外如图3B所示,可以利用剥离技术在过程中使用附加层60(例如,旋涂玻璃、溅射玻璃、e-束蒸发玻璃,ITO-夹层玻璃、硅、聚合物等)。如图3C所示,在牺牲层(和附加层60,如果使用的话)中形成了出口微通道70。
在这个阶段,准备将纳米通道递送装置100的上部45和下部40结合。应当理解,命名“上部”和“下部”仅是为了清楚地描述附图的目的,而不表示在装置使用期间组件之间的相互关系。如图3D和3E所示,将上部45和下部40结合在一起(通过,例如,阳极结合或Si-Si直接结合或中间层辅助结合)。如图3F和3G所示,从上部45去除支持性基底55,完成纳米通道递送装置100。图3G所示的实施方案包括出口微通道70和纳米通道25之间以及纳米通道25和入口微通道30之间过渡中任选的逐渐变细的表面。
如图3G所示,纳米通道25位于与纳米通道递送装置100的主平面平行的平面(例如,被纳米通道递送装置100的较大尺寸[在这个例子中,L和W]限定出的平面)中。这种结构使得纳米通道25的长度(例如,大约相邻出口70和入口30之间的距离)以及该纳米通道的高度和宽度不同,而不改变纳米通道递送装置100的长度L、宽度W和厚度T。因此纳米通道递送装置100的厚度T可以基于其他标准(例如机械完整性)而不需要控制经纳米通道递送装置100递送的物质的流动。
图3A-3G中所示的实施方案也用于通过单个纳米通道25与任何入口30流体相通的各出口70。这种构造可以用于更有力地控制通过纳米通道递送装置100递送的物质的扩散。例如,与具有多个和单个延伸入口流体相通的纳米通道的构造相比,通过纳米通道递送装置100的扩散速率与纳米通道25的尺寸更为相关。在这些构造中,入口(而非纳米通道)可以变成对流动的一种限制,限制了通过改变纳米通道的尺寸而控制流动的能力。
如图3G的详示图(非按比例)所示,纳米通道25包含长度nL,宽度nW和高度nH。出口微通道70包含长度oL,宽度oW和高度oH。此外,入口微通道30包含长度iL,宽度iW和高度iH。如图3G所示,各通道的“长度”是沿着分子从入口微通道30,通过纳米通道25,通过出口微通道70出去的运动所走的途径的量度。在一些实施方案中,当nH=50nm,nW=4um,nL=5um时oL=4μm,oW=5μm,oH=5μm;以及oL=30μm,oW=5μm,oH=5um。
在一些实施方案中,oL/nL或iL/nL的比可以是0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.9,5.0,5.1.,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9.0,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9,10,20,30,4050,60,70,80,90或100。
方案2:具有结合的帽层的多层结构
在第二个实施方案中,可以通过改变上述方案1来制造多层纳米通道结构。这个实施方案包括下列步骤。从SOI(绝缘体上硅)硅晶圆开始,通过热氧化来沉积二氧化硅层(具有可控的厚度),氧化层得厚度可以用于确定纳米通道的高度。作为替代,如果蚀刻过程速率能良好表征的话,底部基底也可以是硅晶圆,而非SOI。可以用光刻工艺将纳米通道区域构建于氧化物层上。
可以选择性地去除非-纳米通道区域上的氧化硅,而不影响纳米通道区域上的氧化物(参见图4(a))。聚合硅结构层可以沉积于氧化物纳米通道间隔层的顶部。(参见图4(b))。可以再次沉积第二确定厚度的氧化物层,可以用光刻工艺将纳米通道区域构建于氧化物层上。可以选择性地去除非-纳米通道区域上的氧化硅,而不影响纳米通道区域上的氧化物(参见图4(c))。这种方法完成了纳米通道的第二层。可以重复前面两个步骤以完成期望数量的层。
作为前述步骤的替代,氧化硅纳米通道间隔层和多层结构层也可以使用其他材料。例如,铝膜作为纳米通道间隔层,蒸发玻璃膜作为多层结构层。
可以沉积适合深度硅蚀刻的第一掩蔽层。应当能够构建该掩蔽层,并在深度硅蚀刻过程中对硅具有高度选择性。根据深度硅蚀刻的技术,可以使用可以选择氧化硅层、光致抗蚀剂层或金属膜层。
在第一掩蔽层上构建入口微通道,并将第二掩蔽层沉积于第一掩蔽层的顶部。在第一和第二掩蔽层上都构建入口微通道。向下蚀刻出口微通道至接近SOI晶圆的氧化物层的深度,并剥离第二掩蔽层以暴露出第一掩蔽层。通过多层的纳米通道间隔层和结构层来蚀刻出口微通道。可以使用湿法蚀刻和DRIE的组合。这也会将入口向下蚀刻到SOI晶圆的绝缘体层。(参见图4(d))。如果使用硅晶圆,则通过蚀刻速率和时间来确定蚀刻的深度。然后铺设背部的入口大通道并蚀刻至SOI晶圆的氧化物层(参见图4(e)),并清洗暴露区域上的氧化物。(参见图4(f))。
为了制造纳米通道递送装置的顶盖,从支持性晶圆(例如,硅晶圆)开始,沉积牺牲层(参见图4(h))。选择牺牲层以使其可以在对于硅和顶盖材料安全的溶液中去除。纳米通道递送装置的顶盖沉积于支持性晶圆上,并蚀刻入口微通道。剥离技术可以用于某些情况(参见图4(i,j))。这些材料可以包括,例如旋涂玻璃、溅射玻璃、e-束蒸发玻璃、ITO-夹层玻璃、硅等。这些材料应当能够通过一些方式与硅结合。例如,可以通过e-束蒸发来沉积透明玻璃层。也可以使用旋涂玻璃层。根据表面性质,可能需要平坦化。前述步骤的结构晶圆和顶盖可以通过某种技术例如阳极结合、Si-Si直接结合或中间层辅助结合结合在一起。(参见图4(k))。可以去除顶盖的支持性晶圆(参见图4(1)),并通过切割晶圆和清洗来获得该装置。
方案3:整体化制造的帽层
作为第三个实施方案,可以整体性地制造纳米通道结构(例如,不结合),并任选在该方法中使用CMP。这个示例性的微制造方案包括如图5A-5H所示的步骤。
具体尺寸仅是提供用于解释的目的,应当理解,其他示例性的实施方案可以包括不同的尺寸。在这个实施方案中,顶层是约2μm的沉积氮化硅。该实施方案也包括底部晶圆和725μm容积层,底部晶圆是具有30μm装置层的8英寸SOI晶圆,以使纳米通道下的支持层为30μm厚。在这个示例性的结构中,入口和出口微通道的开口是3μm x5μm,各纳米通道的平面内尺寸是3μm x 5μm。相邻微通道开口之间的间隔是2μm。如前述实施方案,支持网下方的入口大通道是约200μm x 200μm,高于725μm厚的容积层。
从SOI(绝缘体上硅)晶圆210开始,沉积纳米通道间隔层220(厚度可控,例如是SOI晶圆210相关部分的±5%)。间隔层220的厚度可以用于限定纳米通道的高度。这种间隔层220是一种牺牲层,会在随后的步骤中去除该材料,以使其下的硅表面直接成为最终形成的纳米通道的“地板”。间隔材料应当对纳米通道递送装置(nDD)中的其他材料具有高度的湿法蚀刻选择性。例如,钨、锗或氧化硅可以用于该纳米通道间隔层220。
如图5A所示,帽层230沉积于纳米通道间隔层220上。帽层230最终会成为纳米通道的“天花板”。氮化硅、氧化硅、碳化硅或对间隔层220的材料具有高度蚀刻选择性的其他材料可以用于帽层230。
沉积适合深度反应性-离子蚀刻(DRIE)的掩蔽层(未标示),并用光刻工艺在掩蔽层上构建入口微通道240。如图5B所示,该DRIE法蚀刻微通道240穿过帽层230、间隔层220和硅,向下蚀刻至SOI晶圆210的埋入的氧化物层250。然后可以去除掩蔽层。
如图5C所示,用可以通过CMP抛光或蚀刻的填充材料260来填充入口微通道240。填充材料260的非限制性离子包括铜、钨、聚合硅或磷硅玻璃,通过本领域已知的技术分别沉积。填充材料260应当能够进行湿法蚀刻,该方法对硅和帽层230的材料具有高度的选择性。在这个示例性的实施方案中,填充材料260仅需要填充于入口微通道240的顶部。CMP或背部蚀刻法可以用于去除扩散到入口微通道240之上或之外的过量填充材料260。剩余填充材料260的表面应当在间隔层220的水平之上。
现在描述图5D,帽层230之上可以沉积其他材料。可以用光刻工艺构建入口微通道240之上和之间帽层230和间隔层220的区域。入口纳米通道240(例如,区域221和231)之外的间隔层220和帽层230可以蚀刻至该硅表面,或稍微低于该硅表面。
现在描述图5E,最终帽层270沉积于晶圆210的整个表面上,以提供结构刚性并封闭纳米通道区域的侧壁。使用光刻工艺,可以构建出口微通道280,并蚀刻穿过帽层230,270并任选通过间隔层220到用于其他方法的范围的硅210中。如图5F所示,在帽层270和出口微通道280上沉积保护层275。
现在描述图5G,然后可以倒置晶圆210,并通过向下至晶圆210的埋入氧化物层250的DRIE来形成晶圆210背面的入口大通道245的大开口。如图5H所示,通过本领域已知的适当方法去除该过程中使用的牺牲层和保护层(例如间隔层220、填充材料260、帽层270和部分的氧化物层250)。如图5H所示,当去除间隔层220时,形成了纳米通道205。然后切割晶圆以得到各个纳米通道递送装置。
如这个实施方案所述,纳米通道205与入口微通道240和出口微通道280直接流体相通。具体而言,入口微通道240和纳米通道205直接连接,以使从入口微通道进入的流体直接进入纳米通道,而不流经中间物体。
作为这个方案的变型,并与上述方案2类似,可以通过重复使用整体性顶层方法来建构多层结构。可以沉积多个帽层230和间隔层220对。可以蚀刻入口微通道穿过所有层,向下至埋入的氧化物,并如上所述用填充材料260填充和抛光。如上所述,可以使用最终帽层270并蚀刻出口微通道280。
方案4:改变纳米通道的长度
在一些实施方案中,可以改进方案1来制造具有不同纳米通道长度的纳米通道递送装置,同时保持其他特征不变。示例性的微制造方案包括下列步骤。
从SOI(绝缘体上硅)晶圆开始,沉积硬的掩蔽层例如氮化硅膜或在热氧化过程中保护其下的硅的LTO(低温氧化)膜。如果使用氮化硅,可以在沉积氮化物前沉积二氧化硅垫层。作为替代,如果蚀刻过程的速率可以良好表征,底部基底也可以是硅晶圆,而非SOI。
可以使用光刻工艺在掩蔽层上构建纳米通道区域。(参见图6(a)),选择性去除纳米通道区域上的掩蔽材料,但不影响下面的硅。干法蚀刻和短时湿法蚀刻的组合可以用于该目的。通过热氧化将二氧化硅膜(具有可控的厚度)沉积于裸露的硅区域。然后可以通过热氧化将二氧化硅膜(具有适当控制的厚度)沉积于裸露的硅区域上。在这个实施方案中,氧化层的厚度用于限定纳米通道的高度,并剥离掩蔽层和氧化物。
沉积适合氢氧化钾(KOH)湿法蚀刻的掩蔽层,例如氮化硅。设计新的掩蔽材料用于在相同的层上布局出入口微通道和出口微通道,并通过相邻入口和出口微通道之间的间隔来限定纳米通道长度。通过标准光刻工艺,使用新的掩蔽材料来构建掩蔽层。选择性去除开口区域上的掩蔽材料。然后应用KOH湿法蚀刻来形成具有斜壁的开口,并剥离该掩蔽层。(参见图6(b))。
可以沉积适合深度硅蚀刻的掩蔽层。该掩蔽层应当能够被构建,并在深度硅蚀刻过程中对硅具有高度选择性。根据用于深度硅蚀刻的技术,可以使用氧化硅层、光致抗蚀剂层、金属膜层或其他适当材料。
在掩蔽层上构建出口微通道,并通过适当的技术例如深度RIE或ICP技术将该出口微通道向下蚀刻至SOI晶圆的氧化物层。(参见图6(c))。如果使用硅晶圆,可通过蚀刻速率和时间来确定蚀刻的深度。
从背部铺设入口大通道并蚀刻至SOI晶圆的氧化物层,通过HF溶液清洗暴露的氧化物区域。(参见图6(d))。为了建造纳米通道递送装置的顶盖,从支持性晶圆(例如,硅晶圆)开始,沉积牺牲层。(参见图6(e,f))。选择牺牲层(例如,ITO),以使其可以在溶液中去除,所述溶液对于硅和顶盖材料是安全的。
纳米通道递送装置的顶盖沉积于牺牲层上。(参见图6(g)),在该结构上构建出口。(参见图6(h))。作为替代,剥离技术可以用于溅射玻璃或e-束蒸发玻璃的情况中。在一些实施方案中,这些材料可以是旋涂玻璃、溅射玻璃,e-束蒸发玻璃、ITO-夹层玻璃、硅、聚合物等。这些材料应当能够通过某些方式与硅结合。例如玻璃,可以使用阳极结合。旋涂玻璃层也可以适用。根据表面的性质,可能需要平坦化方法
步骤(6)的结构晶圆和顶盖可以通过技术例如阳极结合、Si-Si直接结合或中间层辅助结合来结合在一起。(参见图6(i))。去除顶盖的支持性晶圆(参见图6(j)),通过切割晶圆和清洗来得到该装置。
如果纳米通道的优选长度小于500nm,可以使用纳米制造技术例如e-束或纳米印迹。也可以使用各向同性硅蚀刻技术。图7是较短的纳米通道递送装置的概略结构图。如图7所示,入口微通道340在邻近纳米通道305的地方具有喇叭口形或逐渐变细的部分341。类似地,出口微通道380在邻近纳米通道305的地方具有喇叭口形或逐渐变细的部分381。因此由于部分341和381,纳米通道305变短。
方案5:混合的整体性结合的帽层
作为第五个实施方案,可以不使用CMP方法,而是在帽层制造中利用结合作为非关键性步骤来制造纳米通道结构。这个示例性的微制造方案包括如图8A-8P所示的下列步骤。
首先描述图8A,从SOI(绝缘体上硅)基底晶圆410开始,沉积纳米通道间隔层420(厚度可控,例如为SOI基底晶圆410的相关部分±5%)。间隔层420的厚度可以用于限定纳米通道的高度。这种间隔层420是一种牺牲层,会在随后的步骤中去除该材料,以使其下的硅表面直接成为最终形成的纳米通道的“地板”。间隔材料应当对纳米通道递送装置中的所有其他物质具有高度的湿法蚀刻选择性。例如,钨、锗或氧化硅的薄膜可以用于该纳米通道间隔层420。
帽层430沉积于纳米通道间隔层420上。帽层430最终会成为纳米通道的“天花板”。氮化硅、氧化硅、碳化硅或对间隔层420的材料具有高度蚀刻选择性的其他材料可以用于帽层430。用光刻工艺在间隔层420和帽层430上构建纳米通道区域。如图8B所示,非纳米通道区域432和433上的间隔层420和帽层430可以蚀刻至硅晶圆410的硅表面,或稍微低于该硅表面。
现在描述图8C,沉积其他帽材料431,并任选通过CMP平坦化,以提供平坦的表面。通过光刻工艺在掩蔽层(未标示)上构建入口微通道440。DRIE法蚀刻入口微通道440穿过帽层430、间隔层420和硅,向下蚀刻至SOI晶圆410的埋入的氧化物层450。去除掩蔽层,如果需要,可以在该表面上沉积用于结合的附加的适当表面层。
现在描述图8D,在另一个硅基底(例如罩盖晶圆411)上,可以沉积层421(包含,例如氮化硅或氧化硅)。在层421的顶部,沉积粘合层441。可以选择粘合层441的材料,以良好地粘附晶圆410表面上的材料(例如盖子431)。也可以设计粘合层441的材料,以使任何表面颗粒都可以被吸附到粘合层441中,以防止在结合后罩盖晶圆410和基底晶圆411之间发生任何分层。可替代地,可以在没有这种要求时,在结合之前和之中使用高度清洗方法。粘合层441的示例性材料包括聚合性材料、氧化硅和铜。在使用粘合层441和任选的具有非常高的蚀刻速率的材料前,也可以使用“释放层”421,在该释放层顶部上具有附加氮化硅或氧化硅层(未标示)。层421可以包含对纳米通道递送装置的其他材料具有高度选择性的物质。
现在描述图8E,然后罩盖晶圆411和基底晶圆410互相结合。在一些实施方案中,所述结合可以是聚合物-氮化硅结合,例如苯并环丁烯(BCB)-氮化硅、铜-铜热压结合或氧化物-氧化物熔化结合,分别使用本领域技术人员已知的适当的结合前和结合后处理。
现在描述图8F,然后通过适当的方法例如机械薄化、化学蚀刻或其组合来除去罩盖晶圆411的硅部分。在任选加入“释放层”421的情况下,可以选择性去除该释放层,以导致硅罩盖晶圆411与基底晶圆410分离。
现在描述图8G,使用光刻工艺,可以构建出口微通道480,并通过任选的释放层421、粘合层441、盖子431、帽层430并任选通过间隔层420蚀刻到用于其它方法范围的硅中。
现在描述图8H,将保护性帽层470沉积于基底晶圆410的表面上。然后倒置晶圆410(具有层421和晶圆411的粘合层441),可以通过DRIE来形成向下至晶圆410的埋入的氧化物层450的入口大通道445。
现在描述图8I,通过本领域已知的适当方法去除牺牲层(例如间隔层420、帽层470和部分的氧化物层450)。如图8I所示,当去除间隔层420时,形成了纳米通道405。如这个实施方案所示,纳米通道405与入口微通道440和出口微通道480直接流体相通。
现在描述图8J,示出了整个晶圆410的顶部视图。如该图所示,晶圆410(切割前)包含数个纳米通道递送装置400(该图中仅标示了其中一个)。可以切割晶圆410,以将各个纳米通道递送装置400彼此分开。图8K中所示的是具有示例性尺寸的单个纳米通道递送装置400的详细视图。在该图中,在纳米通道递送装置400的一侧可以看到多个入口大通道445。这个纳米通道递送装置400的示例性实施方案是约6.0mm2,入口大通道通常形成了直径为约3.6mm的环形。应当理解,尽管图8J中图示了方案5的晶圆410,但是其他方案也会得到包含多个纳米通道递送装置的晶圆,并可以切割或分离成各个装置。也应当理解,其他示例性的实施方案可以包括与图8K所示不同的尺寸。在一些实施方案中,晶圆410可以保持完整,以有效地形成与硅晶圆类似尺寸的纳米通道递送装置,例如厚度约500-750微米,直径100,150,200,300,450或675mm。
例如,参考图8L和8M,所示的纳米通道递送装置500包含主体501,其基本上为平坦的,并为具有厚度“T”、4mm的长度“L”和3mm的宽度“W”的矩形。厚度“T”可以不同,但是在一些实施方案中为约550-700μm,小于长度L或宽度W。长度L和宽度W确定了纳米通道递送装置500的主平面。如这些图所示,主体501在一侧具有入口表面502,在对侧具有出口表面503。入口表面502和出口表面503一般互相平行,并平行于纳米通道递送装置500的主平面。在图8M中可以看到多个入口大通道545(在图中仅表示出一个)。图8N提供了纳米通道递送装置500沿着图8M中的线8N-8N的部分横截面透视图。图8N中所示的部分包含一个入口大通道545以及多个入口微通道540和出口微通道580。如图8L-8N所示,形成了入口微通道540和出口微通道580,以使各个入口和出口微通道垂直于纳米通道递送装置500的主平面(例如,沿着垂直于该装置的主平面的线来测量微通道的长度)。此外,多个入口微通道540和出口微通道580形成重叠阵列,以使各个入口微通道580分布于各个出口微通道580之间,反之亦然。现在描述图8。如图80的详视图所示,各纳米通道505与入口微通道540和出口微通道580直接流体相通。
现在描述图8P,所示的是纳米通道递送装置500的一个切面的详细切面图。在这个视图中,可以看到3个入口纳米通道540,以及一对出口微通道580和一对纳米通道505。如所示,纳米通道505包含入口端506和出口端507。在这个实施方案中,第一线性轴508在入口端506和入口表面502之间延伸。在图8P中也可以看出,第二线性轴509在出口端507和出口表面503之间延伸。
同时如图8P所示,入口微通道540包含主轴512,出口微通道580包含主轴511。如这个实施方案所示,主轴511和主轴512垂直于平面513,所述平面513平行于纳米通道递送装置500的基本上为平面的主体550。在图8P中,仅显示了基本上为平面的主体的一部分。在图8L和8M中可以看到基本上为平面的主体550的完整视图。
现在描述图9,提供了用于根据上述方案制造的纳米通道递送装置的示例性实施方案的具体尺寸。应当理解,这些尺寸仅是解释所示具体实施方案的,其他实施方案可以加入不同的尺寸。
现在描述图10,纳米通道递送装置500的部分横截面显示了通过纳米通道递送装置500的分子的扩散路径575。应当理解,纳米通道递送装置500可以在使用期间定向于任何方向。如图10所示,在分子进入纳米通道递送装置500的点和分子离开纳米通道递送装置500的点之间流动路径105需要在方向上有最多两个变化。例如,分子进入纳米通道递送装置500,起初位于入口大通道545内。然后该分子进入入口微通道540。在所示的实施方案中,随着该分子进入与入口微通道540直接流体相通的纳米通道505,流动路径575向右90度角转弯。在该分子离开纳米通道505后,随着进入也与纳米通道505直接流体相通的出口微通道580,流动路径再次变化(这次向左90度转弯)。因此,随着分子通过纳米通道递送装置500扩散,流动路径575需要在方向上有最多两个变化。尽管在它通过纳米通道递送装置500的同时分子可以在方向上发生2次以上的变化,但它仅需要在方向上改变2次。
实施例-方案1:结合的帽层
提供下列实施例仅是作为根据方案1(如上所述)制造纳米通道递送装置的方法的一个非限制性实施方案的说明。本实施例仅是用于解释的目的,而非意欲限制本文所述的本发明的范围。
处理从双面抛光的4”SOI晶圆(购自Silicon Quest)开始。该晶圆包含装置层,其为30μm厚,<100>定向P-型,掺杂硼,并具有1-10 Ohm-cm表面电阻率;0.4μm厚的埋入的氧化物层;和处理层,其为500μm厚,P-型,掺杂硼,并具有1-10 Ohm-cm表面电阻率。在新鲜Piranha溶液(3∶198%硫酸∶30%过氧化氢,超过100℃)中清洗该晶圆10分钟,并旋转干燥。然后在其表面上热生长出50nm的垫氧化物层。然后通过低压化学蒸汽沉积法(LPCVD)在该垫氧化物层上沉积100nm低应力氮化物。通过标准光刻工艺,使用EVG 620校准器将5μm宽的纳米通道结构从照相掩蔽材料上转移到氮化硅层上。通过CF4 RIE去除暴露的氮化物区域。
在剥离光致抗蚀剂后,通过在1∶10HF水溶液中浸泡来清洗该垫氧化物。然后将该晶圆放置于热氧化物反应炉中,以产生牺牲氧化物。该牺牲氧化物的厚度确定了纳米通道的高度,即纳米通道的高度=0.46*氧化物厚度。在本实施例中,产生39nm的氧化物来用于18nm的纳米通道。然后在稀HF溶液中去除氮化物和氧化物。然后通过LPCVD在其表面上沉积3μm后的低温氧化物(LTO)层。然后通过3μm旋压Futurrex负性光致抗蚀剂来保护晶圆的背侧。在缓冲氧化物蚀刻(BOE)溶液中去除位于前面的LTO,在piranha溶液中清洗该晶圆。
使用LPCVD在晶圆上沉积500nm LTO膜。在EVG 620校准器上使用标准光刻工艺将5μm x 5μm入口微通道结构转移至晶圆装置侧上的LTO膜,使用CF4 RIE蚀刻LTO。然后将该200μm x 200μm入口大通道结构转移到该晶圆的背侧,进行RIE。
在清洗掉光致抗蚀剂后,使用Oerlikon DSE蚀刻器进行入口微通道的深度硅蚀刻。该蚀刻止于埋入的氧化物层。翻转该晶圆,并用热油脂(AI Technology)将其附着到操作晶圆上。然后在Oerlikon DSE蚀刻器上蚀刻190μm x 190μm入口大通道,并止于氧化物层。图11显示了深度蚀刻的190μm开口的SEM图像。从操作晶圆中分离该晶圆,并清洗。将该晶圆在BOE中浸泡5分钟以开放埋入的氧化物层,并旋转干燥。然后在HF水溶液中切割晶圆两侧的掩蔽LTO膜。
使用EVG 520结合器,通过阳极结合将500μm厚的双面抛光的7740玻璃晶圆结合到硅基底上作为纳米通道的帽。所述阳极结合是在800伏特和325C下进行了10分钟。图12显示了结合的晶圆的视图。使用蜡将该结合的晶圆对附着到晶圆支持器上,使用背部研磨使该玻璃变薄至30μm,然后进行CMP抛光至最终厚度为5-10μm(ValleyDesign Corp)。
图13显示了抛光后前表面的视图。照影显示纳米通道是开放的。使用Ni膜作为掩蔽层,通过CF4/Ar RIE形成5μm x 5μm出口微通道。为完成这一点,首先将铜晶种层沉积到该玻璃表面。在EVG 620校准器上使用标准光刻工艺将该5μm x 5μm出口微通道结构转移到所述铜膜上,并湿法蚀刻。然后将Ni电镀到构建好的铜膜上。使用CF4/Ar RIE将入口微通道蚀刻到该玻璃膜中,以到达硅表面。在剥离掩蔽层后,清洗该晶圆,并用DAD321 Dicing Saw(Disco)切割。所制造的装置总的尺寸为6mm x 6mm。在3.6mm直径的环中排列着总共161个190μm x 190μm的开口。每个这样的开口连接至总共501个5μm x 5μm入口通道,入口通道与纳米通道和出口通道相连。
实施例-方案3:整体性制造的帽层
提供下列实施例仅是作为根据方案3(如上所述)制造纳米通道递送装置的方法的一个非限制性实施方案的说明。本实施例仅是用于解释的目的,而非意欲限制本文所述的本发明的范围
处理从双面抛光的绝缘体上硅(SOI)晶圆开始,使用690μm后的基底晶圆,所述基底晶圆具有30μm厚的顶部硅层和2μm厚的埋入的氧化物。用piranha溶液(3∶198%硫酸∶30%过氧化氢,超过100℃)清洗该晶圆以去除有机和金属污染。在100℃的温度下,使用物理蒸汽沉积(PVD)法将光滑(典型地<5A rms)、均匀(典型地<2%不均匀性)的钨金属层溅射到该晶圆上。选择该钨层的厚度作为纳米通道层的高度,例如5nm。
然后通过低应力(380℃,适当的化学计量)的等离子增强型化学蒸汽沉积(PECVD)氮化硅(“SiN1”)来覆盖该纳米通道间隔层,目标厚度为500nm,不均匀性<2%。然后喷涂正性光刻胶,厚度为2μm。如果需要,在该光刻胶中暴露入口微通道,尺寸从1μm-超过5μm不等。使用该光刻胶以及钨,使用常规的C4F8蚀刻化学,用适当的等离子粉末、其他反应性和惰性气体,来蚀刻所使用的氮化硅。
该方法中的蚀刻要定时为使深度能完全通过钨层,这要花费数分钟。进行另一次蚀刻,仍使用该光刻胶作为掩蔽,以通过在该硅中蚀刻至深度,使得该深度足以进入所述埋入的氧化物。在该步骤中使用每循环5dep/5蚀刻的Bosch蚀刻,因为这种蚀刻会自动终止于埋入的氧化物,并对埋入的氧化物具有高度的选择性。提供最关键结构的10-20%的略微超蚀刻来补偿该方法的不均匀性。然后用氧等离子去除剩余的光刻胶,再用适当的湿化学法进一步清洗该晶圆的聚合物残留。图14表示了在该阶段的处理中装置的一个例子。
下一模块由填充或罩盖这些入口微通道构成。这可以通过用铜填塞入口来实现。通过溅射来沉积厚度为300A的TiN屏障层。通过PVD溅射法沉积名义厚度约4000A的铜晶种层。使用低电流(2A,10 15分钟)电镀法来填充或填塞入口微通道。然后用垫/浆液组合法,在适当压力/速度(2-4psi,30-90rpm)处理下,抛光去除过量的铜负载。在该相同方法中,也可以完全除去非微通道区域(场)中的TiN。最后,在150-250℃下短时焙烤退火约30分钟来使入口微通道变硬,清洗表面。图15表示了用铜填充后该装置的顶视图。
通过PECVD沉积约50nm的薄氮化硅(“SiN2”)层来罩盖铜。然后用光刻工艺与钨纳米通道材料一起,暴露光刻胶中的纳米通道线(1.3μm),以及向硅中蚀刻数十纳米来蚀刻氮化硅(SiN1以及SiN2)层。
然后沉积厚度为约1-1.5μm的较厚的拉伸性的氮化硅(“SiN3”)。选择该层的拉伸应力以使所有介电堆积层能略微拉伸约20Mpa。然后在光刻胶层(名义厚度2μm)上暴露出出口微通道,与W纳米通道层一起进一步蚀刻所有氮化硅层(SiN1、SiN2、SiN3),以使出口微通道的底部在装置中的硅处结尾。在该阶段后剥离光刻胶。图16显示了在该阶段的处理中装置的一个横截面。
将适当的保护层用于该表面-Ti/TiN(250/300A)、钨(5000A),然后使用厚度为1μm的磷硅玻璃(PSG),所述磷硅玻璃可以用作HF保护剂和表面保护剂。然后翻转该晶圆,喷涂厚光刻胶(10μm)。使用前侧对准标志,在背侧暴露大通道。使用Bosch DRIE法,将该大通道一直蚀刻通过该晶圆(约700μm)。该处理达到埋入的氧化物,形成了有效的蚀刻停止。图17显示了在该阶段的处理中装置的一个横截面。然后通过等离子蚀刻去除埋入的氧化物。
进行一系列的湿法蚀刻以去除所有的牺牲材料。进行短时缓冲HF蚀刻,例如5分钟来去除任何残留的(埋入的氧化物中的)氧化物,并去除PSG层。然后将该晶圆在SC-1溶液(热氢氧化铵-过氧化氢混合物)中湿法蚀刻10分钟来去除顶部表面和入口微通道的底部的TiN屏障。将该晶圆进行约20分钟的piranha蚀刻来去除入口微通道中的铜。然后通过另一次SC-1蚀刻从入口微通道的侧壁中去除所有的TiN。最后,通过将该晶圆放置于晶圆过氧化氢中2小时,然后用DI水清洗来去除纳米通道中的钨。然后用异丙醇(IPA)清洗该晶圆,使IPA替换水,让该晶圆干燥。
材料选择
无论用于制造该纳米通道递送装置为何种方案,应当选择制造过程中使用的材料,以在保留非牺牲材料的同时成功去除牺牲材料。如图18所示,纳米通道“位置支持物”(例如,用于填充纳米通道空间的牺牲材料)和纳米通道“天花板”和“地板”材料(例如,基底和帽层)的选择应当与溶剂或蚀刻剂的选择相协调。可以用于在保留基底和帽层的同时去除牺牲材料的适当溶剂和蚀刻剂的例子如图18所示。应当理解,也可以使用材料的其他组合。
后晶圆处理
在后晶圆处理中,用胶带将各晶圆粘结到到带环上。优选UV释放带,因为它粘性更好。由于晶圆的两个表面都具有关键性的装置结构,因此将UV带粘结到顶部和底部表面。然后将该晶圆切割入各个模具并清洗。然后将该晶圆框架暴露于UV光源,以降低带与表面间的粘性。使用自动挑选和放置分捡工具分别挑选各切割物,并放置于空模具支持器中。然后用手去除该模具顶部表面的带。然后将切割物分别放置于最终的清洗容器中,用丙酮清洗,最后用IPA冲洗,以促进通道干燥。通过环氧树脂或其他固定方法将该模具匹配到封壳结合表面上。
封壳构型
现在描述图19和20,纳米通道递送装置500可以形成较大组件,例如,可以用于施用药物或其他治疗剂于人的封壳600的一部分。图19显示了部分分解图中封壳600的一端的详细视图,而图20显示了封壳600的组装视图。应当理解,在其他实施方案中,纳米通道递送装置500可以用于需要精确控制少量的任何物质的扩散或运输的其他用途。
在图19和20所示的实施方案中,封壳600包含一般的圆柱状体620,构造有末端部分630以接受第一帽610和第二帽625。在这个实施方案中,纳米通道递送装置500安装到垂直于封壳600的主轴(例如,平行于圆柱状体620的长且与圆柱状体620同心的轴)的平面上。末端部分630也包含构造的凹陷部分640,以接受纳米通道递送装置500。在一些实施方案中,胶水或其它粘合剂可以用于固定凹陷部分640中的纳米通道递送装置500。当装配时,纳米通道递送装置500可以插入到凹陷部分640,第一帽610可以安装到末端部分630。
在使用期间,药物(或可经封壳600给药的任何其它物质)可以经包含在圆柱状体620中的内体积650从圆柱状体620送至纳米通道递送装置。在扩散通过纳米通道递送装置500并进入第一罩盖610后,所施用物质可以经出口615离开帽610。在示例性的实施方案中,出口615(和封壳600的其他方面,例如内体积650和帽610)的尺寸足够大,以使这些特征不会限制所施用物质从封壳600中扩散。结果,所施用物质的扩散可以通过选择纳米通道递送装置500的尺寸,特别是纳米通道505的尺寸来更精确地控制。帽610也可以提供尺寸精密性,并保护纳米通道递送装置500免于机械损害和植入后生物组织结构的侵入。
在一些实施方案中,构造内体积650以最小化空气气泡的捕捉点。例如,内体积650可以包含圆角(radiused corner)和(在安装封壳600时)不会以可以捕捉空气气泡的方式成角的表面。
现在描述图21和22,封壳700类似于前述的封壳600。但是,在这个实施方案中,封壳700在远离末端部分630的圆柱状体720的末端安装有隔件760。隔件760包括自封闭材料(例如,有机硅橡胶),所述材料允许将治疗剂注射到圆柱状体720的内体积750中。在一些实施方案中,可以在植入封壳700前即刻用皮下注射针注射治疗剂。
现在描述图23,封壳800包含与前述实施方案等效的组件。但是,该实施方案包含覆盖隔件860的帽825。帽825可以包含一个口(在图21的透视图中不可见),构造其用于指导针头或其他用于穿透过隔件860的装置,并将治疗剂注射到圆柱状体820的内体积850中。
现在描述图24,a封壳900包含与分离的末端组件935和帽925相配的圆柱状体922。在这个实施方案中,圆柱状体922可以用具有不同长度的另一圆柱状体替代,以改变封壳900的内容积(和封壳900可以包含的治疗剂的量)。与前述实施方案类似,末端组件935包含构造用于接受帽910的末端部分930。末端组件935也包含构造用于接受纳米通道递送装置500的凹陷部分940。
现在描述图25和26,封壳1000包含具有帽1010的盘形体1020,其包含一系列的出口1015。在这个实施方案中,盘形体1020包含隔件1060,治疗剂可以通过隔件1060注射。如图26的部分分解图所示,支持体1050可以用于保持纳米通道递送装置500接近出口1015。以这种方式,在即将离开封壳1000之前,包含于封壳1000中的治疗剂被迫使通过纳米通道递送装置500。
在图27和28所示的实施方案中,封壳1100包含矩形平坦表面1121和弓形表面1120。封壳1100也包含闭合端1125和可以插入到开放端1161中的隔件1160。在所示的实施方案中,隔件1160覆盖整个开放端1161。在其他实施方案中,隔件可以覆盖部分的开放端,帽可以覆盖剩余的部分。与前述实施方案类似,隔件1160是自封闭的,并可以用针头扎孔以插入治疗剂。封壳1100也包含构造用于接受纳米通道递送装置500的第一凹陷部分1140和构造用于接受包含出口1115的帽1110的第二凹陷部分1130。孔口1135延伸通过凹陷部分1140进入受矩形平坦表面1121、弓形表面1120、闭合端1125和隔件1160界定的内体积1150。在这个实施方案中,治疗剂可以包含在内体积1150中并通过孔口1135、纳米通道递送装置500和出口1115分配。
现在描述图29,封壳1200的另一个实施方案一般等效于封壳1100,但是包含容纳两个纳米通道递送装置(未标示)的特征。在这个实施方案中,封壳1200包含矩形平面表面1221、弓形表面1220、闭合端1225和隔件1260。封壳1200也包含分别构造用于接受纳米通道递送装置(未标示)的一对第一凹陷部分1240和分别构造用于接受具有出口(未标示)的帽的第二对凹陷部分1230。各凹陷部分1240包含孔口1235,以使内体积1250和封壳1200周围的环境之间流体相通。
在一些实施方案中,内体积1250包含分离的内贮器,其中各贮器与孔口1235流体相通。内贮器可以通过孔口1235内的内壁分隔。在这些实施方案中,各贮器可以用不同的治疗剂填充。可以构造各纳米通道装置,以提供优选剂量的各种治疗剂。
现在描述图30,在所安装位置显示了封壳1300的另一个实施方案,以使其部分延伸至封壳1300已插入其中的患者的表皮表面1301之下。封壳1300包含多个具有出口1315的盖子1310。各盖子1310之下,纳米通道递送装置插入到与封壳1300的内体积流体相通的孔口上(与图27-29所述的实施方案类似)。封壳1300的内体积可以分成不同的室,以使各纳米通道递送装置可以用于给药特效且不同的治疗剂。封壳1300也包含锚定部件1305,其构造用作安装封壳1300时缝线(未标示)与封壳1300相连的点。锚定部件1305也可以与绳或其他用与去除或回收封壳1300的装置(未标示)相连。
现在描述图31,所示的是封壳1400的另一个实施方案。该封壳是纳米通道装置的背面和侧面的最小盖子,以限定用于包含药物的“贮器”为芯片(例如,纳米通道递送装置)的背部上大通道的体积,在图8K所示的实施方案中所述体积为约4.5mm3。这个实施方案可以做成特别小,例如2mm x2 mm x 0.5mm,因此特别适合用于将非常高效的药物植入到敏感位置,例如将青光眼用药物植入到眼睛的内部。
上述封壳的示例性实施方案可以是一定尺寸,以使封壳可以皮下植入。在具体的实施方案中,封壳的直径可以是0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0或20.0mm。在其他实施方案中,封壳的直径可以大于20.0mm。
在一些实施方案中,封壳的厚度可以是0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7.,7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9.0,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9或10.0mm。在其他实施方案中,封壳的厚度可以大于10.0mm。
在具体的实施方案中,封壳的宽度可以是1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100mm。在其他实施方案中,封壳的宽度可以大于100mm。
在具体的实施方案中,封壳的长度可以是1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199或200mm。在其他实施方案中,封壳的长度可以大于200mm。
应当注意,在本文中所述的封壳的各种实施方案包含沿名义上与封壳的长度方向不变的横截面。这种任选的构造可以便于从体内的手术位点滑动取出而不损伤周围组织。
在示例性的实施方案中,封壳可以包含适当的材料例如不锈钢、钛、聚醚醚酮、聚砜及其他塑料和金属。在一些实施方案中,封壳可以包含内部之上的涂层,以为治疗性物质提供最佳的环境;和/或外部之上的涂层,以防止有害的组织包囊化。在具体的实施方案中,该封壳可以包含色码以指示封壳的形式或特殊性质(例如,治疗剂、施用药物的速率、封壳的容量等)。在一些实施方案中,封壳可以包含半透明或透明部分或组件(例如帽),以便于观察封壳内所包含治疗剂的数量。例如,覆盖纳米通道递送装置的半透明或透明帽可以允许人通过定向封壳来确认是满的,所述定向使得纳米通道递送装置向封壳的顶部防止。然后针头(或其他负载装置)可以穿过隔件,可以将治疗剂注射到封壳中。当在纳米通道递送装置的顶部出现流体(如通过帽所观察)时,填充封壳的人会得到提示:该封壳已满。
在示例性的实施方案中,封壳可以用于使用一种或多种下列物质:肾上腺皮质类固醇;肾上腺皮质抑制剂;醛固酮;烷化剂;拮抗剂;氨基酸;合成代谢剂;兴奋剂,镇痛剂;麻醉剂;anorexogenic;抗痤疮剂;抗肾上腺素;抗过敏剂;防脱发剂;抗阿米巴剂;抗贫血剂;抗心绞痛剂;抗血管生成剂;抗焦虑剂;抗关节炎药;抗哮喘剂;抗动脉粥样硬化剂;抗菌剂;抗生素;抗癌药;抗胆碱剂;抗凝血剂;抗惊厥药;抗抑郁药;降抗糖尿病剂;止泻剂;利尿剂;抗运动障碍剂;抗呕吐剂;抗癫痫剂;抗纤维蛋白溶解剂;抗真菌剂;止血剂;抗组织胺剂;抗高血钙剂,抗高血脂剂;抗高血压药;抗高甘油三酯血症剂;抗低血压药;抗感染药;抗炎剂;抗缺血药;抗微生物剂;抗偏头痛药;抗有丝分裂药;抗霉菌药;止恶心药;抗肿瘤药;抗中性粒细胞减少药;抗肥胖剂;抗骨质疏松剂,抗寄生虫剂;抗增殖剂;抗精神病药;抗逆转录病毒药;抗resorptives;抗风湿剂;抗皮脂溢剂;抑制分泌剂;解痉药;抗坏血病药;抗血栓剂;抗肿瘤剂;抗溃疡剂;抗病毒剂;抑制食欲药;双膦酸盐;血糖调节剂;支气管扩张剂;心血管药;中枢神经系统药;避孕药;拟胆碱药;浓缩助剂;镇静剂;诊断辅助器;利尿剂;含DNA的药,多巴胺剂;雌激素受体激动剂;生育剂;纤溶酶;荧光剂;氧自由基清除剂;胃酸抑制剂;肠胃蠕动效应剂;糖皮质激素;谷氨酸能剂;头发生长刺激剂;止血剂;组胺H2受体拮抗剂;激素;降胆固醇剂;降血糖剂;降血脂剂;降血压剂;显像剂;免疫剂;免疫调节剂;免疫刺激剂;免疫抑制剂;白细胞介素,角质分离剂;LHRH激动剂;情绪调节器;粘液溶解剂;散瞳剂;鼻充血消除剂;神经肌肉阻断剂;神经保护剂;NMDA拮抗剂;非激素固醇衍生物;益智剂;拟副交感神经剂;纤溶酶原激活物;血小板活化因子拮抗剂;血小板聚集抑制剂;含铂剂,促精神药;放射性试剂;raf拮抗剂,含RNA药,杀疥螨药;硬化剂;镇静剂;镇静催眠药;选择性腺苷Al拮抗剂;选择性雌激素受体调节剂,5-羟色胺拮抗剂;5-羟色胺抑制剂;5-羟色胺受体拮抗剂;类固醇,兴奋剂;凝血酶剂;甲状腺激素;甲状腺抑制剂;拟甲状腺激素药;镇静剂;血管收缩剂;血管扩张剂;伤口愈合剂;黄嘌呤氧化酶抑制剂等;阿巴卡韦,硫酸阿巴卡韦,阿贝西普,阿卡波糖,扑热息痛,阿昔洛韦,阿达木单抗,阿达帕林,阿仑膦酸,阿仑膦酸钠,阿夫唑嗪,阿利吉仑,别嘌呤醇,爱维莫潘,安立生坦,氨基己酸,盐酸阿米替林,氨氯地平,苯磺酸氨氯地平,阿莫西林,阿莫西林(amoxicilline),苯丙胺,阿那曲唑,阿立哌唑,阿莫非尼,阿扎那韦,阿替洛尔,托莫西汀,阿托伐他汀钙,阿托伐他汀,硫酸阿托品,氮卓斯汀,阿奇霉素,巴柳氮,贝那普利,盐酸苯达莫司汀,盐酸Benzepril,贝伐单抗,比卡鲁胺,比马前列素,比索洛尔,富马酸比索洛尔,波生坦,肉毒杆菌毒素,布地奈德,丁双胍,丁丙诺啡,安非他酮,氢溴酸安非他酮,盐酸安非他酮,卡麦角林,卡泊三醇,骨化三醇,坎地沙坦酯,卡培他滨,卡托普利,卡比多巴,卡立普多,卡维地洛,卡泊芬净,头孢地尼,头孢哌酮,头孢替安,头孢丙烯,头孢呋辛,塞来昔布,头孢氨苄,培化舍珠单抗,西替利嗪,盐酸塞替利嗪,西妥昔单抗,盐酸氯丙嗪,马来酸氯苯那敏,环索奈德,西司他丁,西咪替丁,钙模拟物药物,环丙沙星,氢溴酸西酞普兰,克拉霉素,克林霉素,克林霉素,盐酸克林霉素,盐酸氯米帕明,盐酸可乐定,氯吡格雷,硫酸氢氯吡格雷,邻氯青霉素钠,阿莫西林棒酸钾合剂,磷酸可待因,秋水仙碱,考来维仑,盐酸环苯扎林,环磷酰胺,环孢素,达促红素α,达非那新,DCRM 197蛋白,地氯雷他定,地氯雷他定,硫酸去氨加压素,去羟米松,地塞米松,双氯芬酸,枸橼酸乙胺嗪,二氟泼尼酯,苯海拉明,潘生丁,DL-蛋氨酸,多烯紫杉醇,多奈哌齐,多尼培南,多佐胺,多沙唑嗪,甲磺酸多沙唑嗪,doxycydine,屈螺酮,度洛西汀,度他雄胺,依库珠单抗,依法韦仑,恩曲他滨,依那普利,马来酸依那普利,依诺肝素钠,依普罗沙坦,埃罗替尼,,红霉素,促血红细胞生长素,依地普仑,埃索美拉唑,雌二醇,雌激素,艾司佐匹克隆,依那西普,盐酸Ethembutol,乙琥胺,乙炔基雌二醇,依托孕烯,艾托考昔,依曲韦林,依泽那太,依泽替米贝,依泽替米贝,VII因子,法莫替丁,法莫替丁,非诺贝特,非诺贝特,芬太尼,柠檬酸芬太尼,硫酸亚铁,非索非那定,盐酸非索非那定,非格司亭,非那雄胺,氟康唑,盐酸氟西汀,氟替卡松,氟伐他汀,叶酸,促卵泡素α,促卵泡素β,福莫特罗,福辛普利钠,加巴喷丁,加巴喷丁,吉西他滨,甘精胰岛素,格拉默,格列美脲,戈舍瑞林,醋酸组氨瑞林,人生长激素,盐酸肼苯哒嗪,二氢可待因酮,羟基脲,盐酸羟嗪,伊班膦酸盐,伊马替尼,伊米苷酶,亚胺培南,咪喹莫特,硫酸茚地那韦,英夫利昔单抗,干扰素β-1a,异丙托铵,厄贝沙坦,伊立替康,异烟肼,异山梨醇moninitrate,伊沙匹隆,氯胺酮,酮康唑,酮咯酸,乳糖醛酸,拉米夫定,拉米夫定,拉莫三嗪,醋酸兰瑞肽,兰索拉唑,拉帕替尼,拉罗匹仑,拉坦前列素,来曲唑,醋酸亮丙瑞林,左旋沙丁胺醇,盐酸左旋咪唑,左乙拉西坦,二盐酸左西替利嗪,左旋多巴,左氧氟沙星,左炔诺孕酮,左甲状腺素,左甲状腺素钠,利多卡因,利奈唑胺,利右苯丙胺二甲磺酸,赖诺普利,速效胰岛素,洛匹那韦,氯雷他定,劳拉西泮,洛沙坦钾,马拉韦罗,屈大麻酚,盐酸美克洛嗪,美洛昔康,美金刚胺,美罗培南,美他沙酮,二甲双胍,盐酸二甲双胍,美沙酮,甲氧基聚乙二醇红细胞生成素β,哌甲酯,盐酸哌甲酯,美托洛尔,酒石酸美托洛尔,甲硝唑,甲硝唑,米格列醇,米诺环素,盐酸米诺环素,mirtazepine,莫达非尼,莫米松,孟鲁司特,孟鲁司特钠,吗啡,莫西沙星,霉酚酸酯,纳络酮,纳络酮钠,那他珠单抗,溴新斯的明,烟酸,烟酰胺,硝苯地平,硝呋替莫,一水合盐酸尼洛替尼,呋喃妥因,盐酸地昔帕明,制霉菌素,奥氮平,Olanzepine,奥美沙坦,奥美沙坦酯,盐酸奥洛他定,奥马佐单抗,ω-3酸乙基酯,奥美拉唑,昂丹司琼,奥利司他,奥塞米韦,奥沙利铂,奥卡西平,Oxybytynin chloride,盐酸羟考酮,紫杉醇,帕利珠单抗,泮托拉唑,扑热息痛,帕罗西汀,盐酸帕罗西汀,聚乙二醇干扰素α-2a,培美曲塞,青霉胺,青霉素V钾,苯乙双胍,苯妥英钠,吡格列酮,哌拉西林,氯化钾,普拉克索,普伐他汀,普伐他汀钠,泼尼松龙,富马酸喹硫平,普瑞巴林,磷酸伯氨喹,孕激素,异丙嗪,盐酸异丙嗪,盐酸Proponolol,盐酸丙氧芬,伪麻黄碱,盐酸伪麻黄碱,溴吡斯的明,盐酸维生素B6,喹硫平,富马酸喹硫平,盐酸喹那普利,雷贝拉唑,雷洛昔芬,拉替拉韦,雷米普利,雷尼替丁,盐酸雷尼替丁,重组因子VIII,瑞他莫林,利莫那班,利塞膦,利塞膦酸钠,利培酮,利托那韦,利妥昔单抗、利凡斯的明、酒石酸利伐斯的明、利扎曲坦,罗匹尼罗,罗格列酮,马来酸罗格列酮,罗苏伐他汀,轮状病毒疫苗,罗替戈汀,沙丁胺醇,硫酸沙丁胺醇,沙美特罗,二盐酸沙丙蝶呤,舍曲林,盐酸舍曲林,司维拉姆,七氟醚,西地那非,柠檬酸西地那非,辛伐他汀,辛伐他汀,西他列汀,丙戊酸钠,索利那辛,生长抑素,生长激素,司他夫定,Sulfomethoxazole,舒马普坦,琥珀酸舒马普坦,他克莫司,他达拉非,枸橼酸他莫昔芬,坦索罗辛,盐酸坦索罗辛,替加色罗,替米沙坦,替马西泮,替莫唑胺,坦西莫司,替诺福韦,盐酸特拉唑嗪,特比萘芬,特立帕肽,睾酮,盐酸四环素,沙利度胺,胸腺喷丁,马来酸噻吗洛尔,噻托溴胺,替拉那韦,托特罗定,酒石酸托特罗定,托吡酯,拓扑替康,曲马多,盐酸曲马多,曲妥珠单抗,盐酸曲唑酮,甲氧苄啶,伐昔洛韦,盐酸伐昔洛韦,丙戊酸半钠,缬沙坦,万古霉素,伐地那非,瓦伦尼克林,文拉法辛,盐酸文拉法辛,盐酸维拉帕米,维格列汀,伏格列波糖,伏立康唑,乙酰水杨酸钠,华法令钠,扎来普隆,齐多夫定,齐拉西酮,唑来膦酸盐,唑吡坦或其药学上可接受的盐;16-α氟雌二醇,17-α二氢马烯雌酮,17-α雌二醇,17-β雌二醇,17-羟孕酮,1-十二吡咯烷酮,22-奥沙骨化三醇,3-异丁基-γ丁酸,6-氟熊去氧胆酸,7-甲氧基他克林,阿巴卡韦,硫酸阿巴卡韦,阿巴克丁,阿巴诺喹,阿贝西普,阿贝卡尔,阿比特龙,阿鲁司特,阿鲁司特钠,阿卡地新,阿坎酸,阿卡波糖,醋丁洛尔,盐酸胺酰醋苯胺,aceclofenae,醋氨苯砜,醋氨苯砜,乙酰谷酰胺铝,醋孟南,对乙酰氨基酚,乙酰唑胺,醋酸己脲,乙酰氧肟酸,acetomepregenol,马来酸乙酰奋乃静,醋胺磺氨苯砜钠,氯化乙酰胆碱,乙酰半胱氨酸,乙酰-L-肉碱,醋美沙朵,阿昔洛韦,阿昔呋喃,阿昔莫司,阿昔替酯,阿昔替酯,阿西维辛,阿柔比星,乙乳胆铵萘二磺酸盐,盐酸阿考达唑,阿考烟肼,吖啶琐辛,阿伐斯汀,阿克罗宁,阿克索胺,阿托地近,阿昔洛维,酰基富烯,盐酸阿达色林,金刚芬酯,阿达木单抗,阿达帕林,阿达色林,adecypenol,adecypenol,阿德福韦,阿地米屈,腺苷蛋氨酸,阿糖腺苷,阿地唑仑,盐酸Adipheinine,adiposin,阿多来新,阿屈非尼,肾上腺酮,二丙酸Aiclometasone,airbutamine,阿拉普利,阿来霉素,丙氨酸,阿拉丙酯,alaptide,阿苯达唑,白唇竹叶青素,沙丁胺醇,Alclofenae,铝克洛沙,aldecalmycin,阿地白介素,尿囊素铝,盐酸烯丙苯乙胺,阿伦膦酸盐,阿仑膦酸钠,阿仑棒酸,阿仑替莫,盐酸阿仑替莫,阿库氯铵,阿来西定,α-骨化醇,α-骨化醇,阿夫唑嗪,阿孕奈德,阿糖脑苷酶,阿列氟烷,阿利那斯汀,醋美沙朵,阿利帕胺,阿利吉仑,尿囊素,二丙烯基巴比妥,别嘌呤醇,阿洛米酮,阿洛司琼,盐酸阿洛司琼,阿洛夫定,阿尔哌汀,α-idosone,阿吡坦,阿普唑仑,盐酸烯丙心安,盐酸阿普诺辛,前列地尔,阿司他丁钠,酒石酸阿坦色林,阿替普酶,阿尔噻嗪,六甲蜜胺,阿托霉素B,柠檬酸Alverinc,爱维莫潘,阿韦舒托,醋酸阿马地酮,盐酸金刚烷胺,氨莫司汀,安波霉素,安立生坦,安布鲁星,安布茶碱,安布赛特,安西法尔,安西奈德,氮卓西林,氮卓西林酯,盐酸氨甲达林,阿洛米松,氨托利,安麦角,醋酸阿美蒽醌,甲硫阿美铵,安非他酮,氨芬酸钠,氨氟替唑,阿米环素,甲磺酸Amidephrine,amidox,氨氟沙星,氨磷汀,Amilcacin,盐酸阿米洛利,盐酸氨基吖啶,氨苯甲酸钾,氨基苯甲酸钠,氨基己酸,氨鲁米特,氨基马尿酸钠,氨基乙酰丙酸,氨茶碱,阿米雷司,氨基水杨酸钠,氨基水杨酸,胺碘酮,盐酸氨普立糖,盐酸氨喹新,阿米舒必利,双甲脒,盐酸阿米替林,氨来呫诺,氨氯地平,甲磺酸氨氯地平,异戊巴比妥钠,阿莫地喹,盐酸阿莫地喹,阿莫罗芬,阿莫沙平,阿莫西林,胺苯氯醛,苯丙胺,硫酸苯丙胺,安福霉素,两性蛋白B,氨苄青霉素,ampiroxieam,硫酸二甲胺嗪,氨喹酯,氨力农,氨柔比星,安吖啶,淀粉酶,淀粉不溶素,amythiamicin,醋酸阿那孕酮,阿那格雷,阿那白滞素,ananain,阿那立肽,醋酸阿那立肽,阿那曲唑,阿那佐林钠,安克洛酶,穿心莲内酯,雄烯二酮,血管紧张素酰胺,阿尼多昔,阿尼利定,盐酸阿尼洛泮,阿尼西坦,阿尼罗酸,甲溴辛托品,阿尼普酶,阿尼普酶,双炔失碳酯,拮抗剂D,拮抗剂G,安雷利克斯,磷酸安他唑啉,抗蠕霉素,蒽林,安曲霉素,抗雄激素,抗雌激素,抗瘤酮,安替比林,反义寡核苷酸,阿帕多林,阿帕泛,阿帕西林钠,阿帕茶碱,阿扎丙宗,甘氨酸阿非迪霉素,Apixifylline,盐酸阿扑吗啡,阿可乐宁,盐酸阿可乐宁,安普,阿普林定,盐酸阿普林定,阿普硫钠,抑肽酶,马来酸阿普氮平,阿替加奈,嘌呤酸,嘌呤酸,阿雷地平,阿拉诺丁,阿巴前列素,arbekicin,阿比朵尔,盐酸阿布他明,阿氯苯宁,阿地肝素钠,阿加曲班,精氨酸,鞣酸精氨加压素,阿立酮,阿立哌唑,阿莫非尼,阿罗洛尔,Arpinocid,阿替夫林,富马酸阿替利特,阿西马朵林,aspalatone,天冬酰胺酶,天门冬氨酸,门冬托星,asperfuran,阿司匹林,阿扑西林,Asprelin,息斯敏,硫酸阿司米星,asulacrine,阿他美坦,阿扎那韦,氨酰心安,阿替韦啶,阿替美唑,马来酸阿替丙嗪,阿托利特,托莫西汀,阿托伐他汀,阿托伐他汀钙,阿托西班,阿托伐醌,atpeninB,苯磺阿曲库铵,阿莫司汀,阿曲肌醇,阿托品,硫酸阿托品,金诺芬,金担子素A,金硫葡糖,阿维拉霉素,阿伏帕星,阿夫立定,爱希,axinastatin 1,axinastatin 2,axinastatin 3,阿扎苯胺,Azacitidinie,盐酸氮氯嗪,阿扎康唑,azadirachtine,二盐酸阿扎兰司他,富马酸阿扎克生,马来酸阿扎那托,阿扎硝唑,阿扎哌隆,阿扎立平,重氮乙酰丝氨酸,阿扎司琼,马来酸阿扎他定,硫唑嘌呤,硫唑嘌呤钠,阿扎毒素,重氮酪氨酸,壬二酸,氮卓斯汀,阿折地平,氮卓吲哚,阿扎替派,阿齐利特,阿奇霉素,阿洛西林,阿佐利明,阿佐塞米,阿佐霉素,氨曲南,阿珠莫林钠,盐酸巴氨西林,巴卡亭III,杆菌肽,巴氯芬,假马齿苋皂素A,假马齿苋皂素B,bactobolamine,balanol,巴拉齐朋,balhimycin,巴洛沙星,巴柳氮,班贝霉素,班布特罗,硫酸巴美生,盐酸巴米茶碱,班硝唑,宝藿甙1,巴马斯汀,巴尼地平,次水杨酸铋,巴西芬净,盐酸巴他必利,巴布司特,马来酸巴替拉平,巴马司他,白僵菌素,盐酸胺甲噻吨酮,贝卡普勒明,贝康唑,二丙酸氯地米松,贝氟沙通,Beinserazide,贝磷地尔,颠茄,贝洛酰胺,贝美司琼,贝米曲啶,贝莫拉旦,盐酸贝那利秦,贝那普利,盐酸贝那普利,贝那普利拉,苯达洛尔加磺酸盐,盐酸苯达莫司汀,苄达酸,苄氟噻嗪,本芴醇,贝尼地平,贝诺睾酮,苯噁洛芬,苯噁洛芬,盐酸奥布卡因,苯哌利多,苯他西泮,苯替酪胺,贝奴司他,苯溴马隆,盐酸Benzepril,苄索氯铵,盐酸苄替米特,苯咯溴铵,盐酸苄吲吡林,苯异噁唑,苯佐卡因,苯佐利定,盐酸苯佐他明,苯佐替派,benzoidazoxan,苯佐那酯,过氧苯甲酰,benzoylstaurosporine,苯喹胺,苄噻嗪,苯扎托品,甲磺酸苄托品,盐酸苄达明,苯甲酸青霉噻唑酰多赖氨酸,苄普地尔,盐酸苄普地尔,贝拉康坦,贝前列素,贝瑞福林,柏拉非农,柏托沙米,去氧红霉素,贝西吡啶,beta alethine,beta clamycin B,倍他米松,倍他米隆,倍他洛尔,盐酸倍他洛尔,胆碱氯化物,硫酸倍他尼定,桦木酸,贝伐单抗,贝凡洛尔,盐酸贝凡洛尔,苯扎贝特,盐酸比拉米可,比阿培南,比卡鲁胺,盐酸比西发定,盐酸二氯地尔,比地索胺,二苯美仑,联苯苄唑,比卡林,比马前列素,bimithil,宾达利,比尼霉素,比螺酮,bioxalomycin,盐酸比培那醇,比哌立登,苯柳胺酯盐酸,比立哌隆,比生群,比沙雷米,bisaziridinylspermine,双苯并咪唑A,双苯并咪唑B,双奈法德,乳酸比索布啉,比索洛尔,富马酸比索洛尔,硫酸镁双巯氧吡啶,bistramide D,bistramide K,bistrateneA,硫双二氯酚钠,十一碳烯酸去甲睾酮,乙雌异烯醇,勃金刚酯,波吲洛尔,波生坦,肉毒杆菌毒素,波克昔定,布雷菲德菌素,breflate,布喹那钠,溴他西尼,甲苯磺酸溴苄胺,盐酸布芬太尼,溴莫尼定,纤酶,溴克立新,溴克利那,溴苯噁嗪酮,马来酸溴朵林,溴西泮,溴氯唑酮,菠萝蛋白酶,溴芬酸,Brominidione,溴隐亭,盐酸溴苯醇胺,溴沙尼特,溴哌利多,癸酸溴哌利多,马来酸溴苯那敏,溴哌莫,溴匹立明,溴替唑仑,马来酸布卡尼,布新洛尔,盐酸布克力嗪,布色酮,布地奈德,布地品,布度钛,丁福明,布美他尼,布那司特,布那唑嗪,盐酸布诺洛尔,丁吡考胺,盐酸布比卡因,丁丙诺啡,盐酸丁丙诺啡,安非他酮,氢溴酸安非他酮,盐酸安非他酮,布拉氨酯,醋酸布舍瑞林,盐酸丁螺环酮,白消安,仲丁巴比妥,布他西丁,盐酸布他拉莫,布他比妥,氨苯丁酯,柠檬酸布他米酯,布他哌嗪,布他前列素,布替膦酸四钠,布替萘芬,布替利嗪,buthionincsulfoximine,布替卡星,丁苯宁,硫酸布替罗星,布替西雷,丙酸布替可特,硝酸康唑盐,布托酯,布托巴胺,盐酸布托丙茚,布托啡诺,盐酸布托沙明,盐酸布替林,卡麦角林,放线菌素C,卡地姆,碘,咖啡因,红厚壳属植物提取物A,骨化二醇,卡泊三醇,卡泊三醇,降钙素,骨化三醇,十一烯酸钙,钙磷酸蛋白C,卡普睾酮,坎苯达唑,Cammonam Sodium,卡莫格雷,金丝雀痘IL-2,坎地沙坦,坎地沙坦酯,克念菌素,坎沙曲,坎沙曲拉,Caniglibose,坎利酸钾,坎利酮,卡培他滨,克冠酸钠,克冠酸,硫酸卷曲霉素,卡罗单抗,辣椒素,卡托普利,卡普脲,羧甲司坦,卡醋胺,卡巴胆碱,卡巴多司,卡马西平,过氧化氢脲,十二烷基硫酸氯苯戊氨脲,卡巴匹林钙,卡巴折伦,咔唑霉素C,羧苄青霉素钾,甘珀酸钠,卡贝替姆,卡贝缩宫素,卡比多巴,卡比多巴,左旋多巴,马来酸卡比沙明,盐酸卡必芬,卡波氯醛,石炭酸,品红,卡铂,卡孕,卡波佛,羧酰胺-氨基-三唑,羧氨基三唑,羧甲基β-1,3-葡聚糖,盐酸卡布特罗,CaRest M3,柠檬酸卡芬太尼,卡立普多,卡金刚酸,卡氮芥,CARN 700,卡硝唑,卡罗沙酮,卡培立肽,马来酸丙酰奋乃静,卡洛芬,琥珀酸卡沙群,卡它唑酯[,卡替洛尔,盐酸卡替洛尔,盐酸卡柔比星,卡维地洛,卡伏曲林,盐酸卡伏曲林,卡折来新,卡泊芬净,澳粟精胺,caurumonam,西巴西坦,抗菌肽B,西地芬戈,头孢克洛,头孢羟氨苄,头孢孟多,头孢帕罗,头孢曲秦,头孢氮氟钠,头孢唑啉,头孢卡品酯,甲苯磺酸喷替头孢达肟,头孢地尼,头孢托仑酯,头孢吡肟,头孢他美,头孢替考,头孢克肟,头孢瑞南,盐酸头孢甲肟,头孢美唑,头孢米诺,头孢地嗪,头孢尼西钠,头孢哌酮,头孢哌酮钠,头孢雷特,头孢噻利,头孢噻肟钠,头孢替坦,头孢替安,头孢西丁,头孢唑兰,头孢咪唑,头孢匹胺,头孢匹罗,头孢泊肟酯,头孢丙烯,头孢沙定,头孢磺啶,头孢他啶,头孢特仑,头孢布烯,头孢唑肟钠,ceftriaxooe,头孢呋辛,雷公藤红素,塞来昔布,celikalim,塞利洛尔,cepacidiineA,头孢乙腈钠,头孢氨苄,头孢甘酸,头孢噻啶,头孢噻吩钠,头孢匹林钠,头孢拉定,西文氯胺,西立伐他汀,蛙皮素,西罗普利,培化舍珠单抗,舍托肝素钠,西他苯钠,西他氯铵,盐酸塞他洛尔,Cethuperazone,西替地尔,西替利嗪,乙酰霉素,盐酸西曲酸酯,盐酸塞替利嗪,西曲瑞克,西妥昔单抗,氯化十六烷基吡啶,鹅脱氧胆酸,盐酸氯酚二苯胺醇,氯醛甜菜碱,苯丁酸氮芥,氯霉素,氯海因,利眠宁,葡萄糖酸氯己定,二氢卟酚,醋酸氯地孕酮,chloroorienticin A,盐酸氯普鲁卡因,Chloropropamide,氯喹,chloroquinoxaline sulfonamide,氯噻嗪,氯烯雌醚,二氯羟喹,氯二甲酚,马来酸氯苯那敏,氯苯甘油氨酯,马来酸氯苯那敏,氯丙嗪,盐酸氯丙嗪,氯磺丙脲,氯普噻吨,硫酸氢金霉素,氯噻酮,氯唑沙宗,消胆胺树脂,盐酸卡波罗孟,西苯唑啉,西卡前列素,盐酸环拉福林,苯嘧吲哚,环索奈德,西氯他宁,环吡酮,环洛芬,环丙洛尔,西多福韦,盐酸西多塞平,西苯唑啉,环格列酮,盐酸西拉多巴,西兰司琼,西司他丁,西司他丁钠,西拉普利,西尼地平,甲磺酸西洛巴明,西洛雷定,西洛芬净,西洛他唑,西马特罗,西咪替丁,西托溴铵,钙模拟物药物,西那司特,盐酸辛那色林,马来酸桂哌酯,环桂氟胺,烯孕醇,西尼必利,桂美君,桂利嗪,西诺西泮,西诺沙星,桂哌林,桂溴胺,辛喷他宗,辛曲胺,塞奥罗奈,西潘茶碱,琥珀酸环丙法朵,环丙奈德,环丙贝特,环丙沙星,西前列烯,西拉马朵,西罗霉素,顺铂,西沙必利,苯磺顺阿曲库胺,顺康唑,顺卟啉,西替克新,西酞普兰,氢溴酸西酞普兰,西替酰胺,胞二磷胆碱,citreamicin α,克拉屈滨,盐酸氯胺羟喹,克拉霉素,黄皮酰胺,克拉维酸钾,克拉唑仑,氯苯唑胺,氯波必利,氯马斯汀,马来酸克仑硫卓,克利溴铵,克林沙星,克林霉素,盐酸克林霉素,氯碘羟喹,氯碘沙尼,克利洛芬,氯巴占,丙酸氯倍他索,丁酸氯倍他松,醋酸氯可托龙,氯达诺林,盐酸氯达酮,氯膦酸,氯法齐明,安妥明,磷酸氯非铵,醋酸氯孕酮,磷酸氯马克仑,醋酸氯美孕酮,氯甲孕酮,氯甲噻唑,氯米芬类似物,氯氨雷司,克罗米酚,盐酸氯米帕明,氯硝西泮,可乐定,盐酸可乐定,氯硝甘油,氯尼塞利,氯尼辛,氯帕胺,氯哌噻吨,盐酸氯哌喹酮,氯吡格雷,硫酸氢氯吡格雷,氯哌莫齐,甲磺酸氯哌帕生,氯吡酸,氯泼尼醇,氯前列烯醇钠,二钾氯氮卓氯乙双酯,氯索隆,盐酸氯哌隆,盐酸氯丙那林,氯舒隆,盐酸氯特胺,氯氰柳胺,乙酰甘氨酸氯西拉敏,氯噻平,马来氯胺噻吨,丙酸氯硫卡松,克霉唑,苄星邻氯青霉素,邻氯青霉素钠,氯羟喹,氯氮平,阿莫西林棒酸钾合剂,可卡因,球孢菌素,可待因,磷酸可待因,可多克辛,秋水仙素,考来维仑,2-甲基咪唑和1-氯-2,3-环丙烷的聚合物,盐酸考来替泊,考来酮,考福新,棕榈酸考福西利,粘菌素甲磺钠,硫酸粘菌素,collismycin A,collismycin B,甲磺酸可尔特罗,考布他汀A4,complestatin,conagenin,盐酸Conorphone,考替特罗,contortrostatin,醋酸可米松,可的瑞林Ovine Tnflutate,促肾上腺皮质激素,可的松,醋酸可的伐唑,可托多松,cosalane,costatolide,合成促皮质素,可替宁,香豆定,香豆霉素,crambescidin,克伐他汀,克立那托,克罗米腈钠,色甘酸钠,克罗米通,cryptophycin,cucumariosid,堆囊粘菌素铜,curacin A,硫酸凝胶多糖,curiosin,环青霉素,环佐辛,cyclazosin,胺氢咔唑,马来酸赛利拉敏,赛克力嗪,环苯达唑,环苯扎林,盐酸环苯扎林,cyclobut A,cyclobut G,cyclocapron,双羟萘酸环氯弧,放线菌酮,cyclopentanthraquinones,环戊噻嗪,盐酸环喷托酯,盐酸环丙奋乃静,环磷酰胺,cycloplatam,环丙烷,环丝氨酸,cyclosin,环孢素,cyclothialidine,环噻嗪,cyclothiazomycin,环庚米特,cypemycin,盐酸Cyponamine,环丙西泮,盐酸赛庚啶,盐酸环丙利多,环丙孕酮,环丙米特,半胱胺,盐酸半胱氨酸,胱氨酸,阿糖胞苷,盐酸阿糖胞苷,阿糖胞苷ocfosfate,细胞松弛素B,磷酸己烷雌酚,达卡巴嗪,达昔单抗,达替咪星,更生霉素,大豆黄素,,苯磺酸达来达林,达福普汀,达肝素钠,达曲班,达伐他汀,达那肝素,达那唑,丹曲林,daphlnodorin A,达哌唑,达匹坦,盐酸达泊西汀,氨苯砜,达托霉素,达促红素α,达格列酮钠,达非那新,darlucin A,达罗地平,达西多明,盐酸柔红霉素,马来酸达扎醇,盐酸氮卓尼尔,达美格雷,富马酸达佐必利,盐酸达唑氧苯,DCRM197蛋白,硫酸异喹胍,地西他滨,去铁酮,地夫可特,去氧胆酸,dehydrodidemnin B,去氢表雄酮,地拉普利,盐酸地拉普利,甲磺酸地拉韦定,地来夸明,地发哌嗪,醋酸地马孕酮,地莫匹醇,飞燕草甙元,地美溴铵,地美环素,去甲环素,地莫西泮,地奴真菌素,脱氧吡啶啉,双丙戊酸钠,地泼罗酮,地前列素,depsidomycin,德伦环烷,硫酸皮肤素,地昔洛韦,地西奈德,地氟醚,盐酸地昔帕明,地西卢定,去乙酰毛花苷,地洛他定,地洛瑞林,去氨加压素,硫酸去氨加压素,去氧孕烯,地奈德,去羟米松,desoxoamiodarone,醋酸去氧皮质酮,酒石酸detajmium,盐酸地特诺,醋酸地肽瑞里,地伐西匹,地塞米松,右旋米唑,马来酸右氯苯那敏,马来酸右氯苯那敏,盐酸环庚吡奎醇,右苄替米特,盐酸右芬氟拉明,dexifosfamide,苯双咪唑,右酮洛芬,右氯谷胺,美托咪啶,右奥马铂,盐酸右奥沙屈,右泛醇,右培美酸,盐酸右普萘洛尔,右雷佐生,右索他洛尔,糊精2-硫酸,右旋苯丙胺,右美沙芬,盐酸右啡烷,右甲状腺素钠,右维拉帕米,地扎胍宁,地秦胺,地佐辛,盐酸二醋洛尔,环己氨磺酸二胺卡因,氯氨磺苯酰胺,泛影葡,泛影酸,二氨藜芦啶,地西泮,地吖醌,二氮嗪,盐酸二苯西平,二苯并噻吩,二丁卡因,Dichliorvos,氯醛比林,二氯磺胺,地西利酮,双氯芬酸,双氯芬酸钠,双氯西林,dicranin,双香豆素,盐酸双环胺,去羟肌苷,代代宁B,didox,己二烯雌酚,地诺孕素,柠檬酸乙胺嗪,diethylhomospermine,diethylnorspermine,盐酸安非拉酮,己烯雌酚,盐酸氰苯哌酰胺,地芬诺辛,双醋二氟拉松,盐酸二氟沙星,盐酸Difluanine,二氟可龙,二氟米酮钠,二氟尼柳,二氟泼尼酯,地弗他酮,洋地黄,洋地黄毒苷,地高辛,盐酸双己维林,D1受体激动剂,二氢-5-氮胞苷,双氢酒石酸,甲磺酸二氢麦角胺,Dihydroestosterone,硫酸双氢链霉素,二氢速留醇,苯妥英钠,盐酸地来洛尔,盐酸地尔硫卓,二甲法登,盐酸二甲弗林,晕海宁,二巯丙醇,二甲双酮,马来酸二甲茚定,地美炔酮,二甲基亚砜,二甲基同型精胺(dimethylhomospermine),二甲基前列腺素铝,地来西坦,盐酸Dimoxamine,地诺前列素,地诺前列酮,盐酸地奥沙屈,dioxamycin,苯海拉明,苯海拉明柠檬酸,地芬尼多,盐酸地芬诺酯,diphenylspiromustine,盐酸地匹福林,地匹福林,dipliencyprone,地丙苯酮,dipropylnorspermine,潘生丁,双吡硫翁,安乃近,地红霉素,discodermolide,地索布胺,地索苯宁,丙吡胺,二噁沙利,戒酒硫,地替吉仑,双丙戊酸钠钠,地佐环平马来酸,DL-蛋氨酸,多巴酚丁胺,多卡巴胺,多西苯醌,多西紫杉醇,多康唑,二十二烷醇,多非利特,多拉司琼,多奈哌齐,多尼培南,多佐胺,多沙唑嗪,甲磺酸多沙唑嗪,doxycydine,屈螺酮,度洛西汀,度他雄胺,依巴斯汀,依比拉肽,乙溴替丁,依布硒,依卡派特,依卡倍特,依卡曲尔,ecdisteron,echicetin,锯鳞(蝮蝰)血抑(环)肽,碘依可酯,马来酸依氯那明,乙唑司特,依考莫司汀,益康唑,海鞘素722,依库珠单抗,依达拉奉,依达曲沙,依地福新,醋酸依地福龙,埃巴单抗,依度尿苷,依决洛单抗,依酚氯铵,醋酸edroxyprogesteone,依法韦仑,依非加群,依氟鸟氨酸,依福地平,egualcen,依兰群,eleatonin,榄香烯,依立曲坦,依高地平,依利罗地,依沙芦星,eltenae,依鲁卡因,emailcalim,依美斯汀,盐酸吐根碱,乙格列酯,甲苯磺酸Emilium,乙嘧替氟,依莫白介素,恩曲他滨,盐酸依那朵林,Enailciren,依那普利,马来酸依那普利,依那扎群,恩环丙酯,甲磺酸恩屈嗪,甲地松,安氟醚,恩格列酮,恩康唑,依尼前列素,恩莫单抗,恩洛铂,乙诺司特,依诺利康钠,依诺沙星,依诺沙星,依诺肝素钠,依诺肝素钠,依诺昔酮,磷酸恩哌罗林,恩丙茶碱,恩普氨酯,恩他卡朋,肠抑素,恩韦拉登,恩韦肟,麻黄碱,依匹西林,表美雌醇,肾上腺素,硼酸Epinephryl,依匹哌啶,依匹唑,表阿霉素,盐酸差向四环素,依匹噻嗪,促红细胞生成素α,促红细胞生成素的β,依前列醇,依前列醇钠,epoxymexrenone,爱普列特,依普沙坦,依斯的明,去氢马烯雌酮,马烯雌酮,厄布洛唑,厄多司坦,甲磺酰麦角碱,马来酸麦角新碱,酒石酸麦角胺,厄洛替尼,艾生利特,厄索夫明,赤藓糖醇,赤鲜醇四硝酸酯,红霉素,促血红细胞生长素,艾司西酞普兰,盐酸艾司洛尔,埃索美拉唑,盐酸依索比星,盐酸乙硫酰丙喹,舒乐安定,雌二醇,雌莫司汀,雌秦醇氢溴酸,雌三醇,雌呋酯,雌激素,雌酮,哌嗪雌酮硫酯,乙磺普隆,艾司佐匹克隆,盐酸乙非君,依那西普,依他硝唑,依坦特罗,依他洛汀,盐酸依他唑酯,依特比妥,乙沙西嗪,利尿酸钠,利尿酸,盐酸乙胺丁醇,香草二乙胺,乙醇胺油酸,Ethehlorvynol,盐酸Ethembutol,炔雌醇,乙碘油,乙硫异烟胺,硝酸依托南,盐酸普罗吩胺,乙琥胺,乙琥胺,乙苯妥英,盐酸乙氧二氨偶氮苯,乙苄托品,氯乙烷,地布酸乙酯,乙雌烯醇,Ethyndiol,去氢氯炔诺酮,乙炔雌二醇,双醋炔诺醇,依苯达唑,依替卡因,依替膦酸二钠,依替膦酸,依替菲宁,盐酸依汀替丁,依替唑仑,依托度酸,依托芬那酯,盐酸依托福明,依托咪酯,依托孕烯,盐酸依托哌酮,依托泊苷,氯苯乙嘧胺,艾托考昔,盐酸乙苯噁啶,依托唑啉,依曲巴明,依曲韦林,依曲替酯,醋酸乙色胺,盐酸尤卡托品,丁香酚,盐酸尤普罗辛,eveminomicin,依沙美肟,艾沙瑞林,盐酸己丙洛尔,依西美坦,艾塞那肽,依泽替米贝,依泽替米贝,VII因子,法倔唑,faeriefungin,泛昔洛韦,法莫替丁,氨吡啶,泛托法隆,盐酸泛曲酮,法罗培南,法西多曲,法舒地尔,法扎拉滨,非多托秦,非氨酯,非氨酯,联苯乙酸,非洛地平,苯赖加压素,非那拉胺,非那莫,芬苯达唑,芬布芬,芬西布醇,芬氯酸,芬克洛宁,苯克洛酸,芬度柳,芬雌酸,盐酸苯丙胺乙茶碱,盐酸芬氟拉明,酚加宾,非尼米特,非尼雷司,盐酸氯苯氧甲唑,苯甲吗酮,非诺班,硫酸苯辛替明,非诺贝特,非诺多泮,非诺洛芬,非诺特罗,苯吡噁二酮,盐酸苯呤司特,芬前列林,芬喹唑,芬维A胺,芬司匹利,芬太尼,枸橼酸芬太尼,芬替酸,芬替克洛,芬替康唑,盐酸非尼啶醇,非普地醇,ferpifosate钠,ferristene,ferrixan,硫酸亚铁,超顺磁性氧化铁,超顺磁性氧化铁,盐酸四苯氧酯,非索非那定,盐酸非索非那定,富马酸非唑拉明,非西他滨,非阿尿苷,fibmoxef,纤维蛋白原,非格司亭,非律平,非那雄胺,fiorfenicol,fiorifenine,fiosatidil,fiumecinol,氟苯桂嗪,fiuparoxan,fiupirtine,fiurithromycin,fiutrimazole,fiuvastatin,fiuvoxamine,马来酸黄酮地洛,flavopiridol,黄酮哌酯盐酸,夫拉扎酮,氟卡尼,氟丁特罗,氟罗沙星,氟辛克生,硫酸氟司洛尔,氟乙西泮,氟卓斯汀,flobufen,夫洛非宁,氟地平,氟司喹南,氟氯西林,氟尿苷,fluasterone,氟扎可特,盐酸氟巴尼酯,氟苯咪唑,氟西吲哚,氟西吲哚,氟康唑,氟胞嘧啶,氟氘丙氨酸,磷酸氟达拉滨,氯氟哒唑,氟[18F]脱氧葡糖,氟多雷司,醋酸氟氢可的松,氟芬那酸,氟苯柳,氟马西尼,氟甲喹,氟美立酮,氟米松,氟美吗酮,氟甲氮平,氟氨雷司,氟咪唑,氟莫奈德,氟硝唑,氟尼缩松,氟硝西泮,氟尼辛,fluocalcitriol,氟轻松丙酮,醋酸氟轻松,氟考丁酯,氟可龙,荧光素,盐酸fluorodaunorunicin,氟多巴,氟米龙,尿嘧啶,盐酸氟曲辛,氟西汀,盐酸氟西汀,氟甲睾酮,氟哌醇胺,醋酸氟培龙,癸酸氟奋乃静,氟泼尼龙,氟丙喹宗,氟前列醇钠,氟喹宗,盐酸氟朵林,氟羟可舒松,盐酸氟西泮,氟比洛芬,氟瑞托芬,氟西他滨,氟法胺,醋酸氟孕酮,三氟乙醚,氟乙烯醚,氟司哌隆,氟司必林,氟替卡松,丙酸氟替卡松,氟曲林,氟伐他汀,氟伐他汀钠,氟齐胺,叶酸,卵泡调节蛋白,制卵泡素,促卵泡激素α,促卵泡激素β,甲吡唑,甲磺酸二甲替嗪,福拉沙坦,福酚美克,forfenirmex,福美司坦,福莫可他,福莫特罗,磷利酯,膦西泮,膦甲酸钠,磷霉素,膦乙酸钠,福辛普利,福辛普利钠,福辛普利拉,磷苯妥英,磷喹酮,福司地尔,福司曲星,福莫司汀,品红,呋莫西林,真菌霉素,呋喃洛芬,痢特灵,呋唑氯铵,呋格雷酸钠,呋罗布芬,呋罗达唑,呋塞米,夫西地酸钠,夫西地酸,加巴喷丁,钆贝酸二葡甲胺,钆贝酸,钆布醇,钆双胺,钆texaphyrin,马根维显溶液Dimegiumine,钆特酸,钆特醇,钆弗塞胺,加兰他敏,加丹司琼,盐酸加丹司琼,戈拉碘铵,硝酸镓,戈洛帕米,加洛他滨,更非辛,加莫烯酸,更昔洛韦,加尼瑞克,四甲癸二醇,吉西他滨,吉美前列素,吉非罗齐,硫酸庆大霉素,龙胆紫,吉哌隆,孕氯酮,孕二烯酮,己酸孕诺酮,孕三烯酮,盐酸吉伏曲林,吉立索泮,甘精胰岛素,格拉莫德,格拉默,glaucocalyxin A,格来色林,格列胺脲,格列波脲,格列他尼钠,格列氟胺,格列美脲,格列吡嗪,格洛莫南,胰高血糖素,glutapyrone,格鲁米特,优降糖,glycopine,glycopril,格隆溴铵,格列己脲,格列嘧啶钠,格列辛脲,格列帕脲,Gold Au-198,Gonadoctrinins,戈那瑞林,促性腺激素,戈舍瑞林,短杆菌肽,格拉司琼,格帕沙星,灰黄霉素,愈创哌特,愈创茶碱,胍那苄,醋酸胍那苄,硫酸胍那决尔,胍西定,单硫酸胍乙啶,盐酸胍法辛,硫酸胍异喹,硫酸胍氯酚,盐酸胍诺克汀,胍诺沙苄,硫酸胍生,硫酸胍诺西芬,三盐酸胍立莫司,哈拉西泮,哈西奈德,halichondrin B,丙酸Halobetasol,氯氟菲醇,盐酸氯氟菲醇,降脂酰胺,氢溴酸溴氯哌喹酮,halomon,卤培米特,氟哌啶醇,卤泼尼松,卤孕酮,卤普罗近,氟烷,哈喹诺,哈霉素,hatomamicin,hatomarubigin A,hatomarubigin B,hatomarubigin C,hatomarubigin D,肝素钠,hepsulfam,神经生长因子,海他西林,Heterooium Bromide,六氯酚:过氧化氢,溴化己芴胺,亚甲基二乙酰胺,海克西定,海索苯定,硫酸海索那林,己雷琐辛,磷酸组胺,组氨酸,组胞浆菌素,组氨瑞林,醋酸组氨瑞林,氢溴酸后马托品,盐酸胡喹嗪,人绒毛膜促性腺激素,人生长激素,海恩酮,盐酸肼屈嗪,肼屈嗪Polistirex,氢氯噻嗪,氢酒石酸,氢化可的松,氢氟噻嗪,盐酸氢吗啡酮,氢溴酸羟基苯丙胺,硫酸羟氯喹,奥芬氨酯,羟己酸,羟基脲,盐酸羟,羟甲香豆素,莨菪碱,金丝桃素,依巴沙星,伊班膦酸钠,伊菠加因,Ibopam,异丁司特,异丁芬酸,布洛芬,富马酸伊布利特,艾替班特醋酸,鱼石脂,艾可替定,去甲氧柔红霉素,艾多昔芬,疱疹净,伊决孟酮,伊非曲班,异环磷酰胺,Ilepeimide,illimaquinone,伊莫福新,伊洛马司他,伊洛达普,伊潘立酮,伊洛前列素,盐酸苯双咪唑,伊马替尼,盐酸伊马唑旦,咪达普利,imidazenil,imidazoacridone,咪癸碘,盐酸咪多卡,盐酸咪多林,咪脲,伊米苷酶,盐酸咪洛克生,亚胺培南,盐酸丙咪嗪,咪喹莫特,盐酸英普咪定,茚达立酮,吲达帕胺,盐酸英地卡尼,盐酸茚洛秦,靛胭脂钠,茚地那韦,硫酸茚地那韦,吲哚菁绿,盐酸吲哚普利,吲哚利旦,消炎痛,吲哚美辛钠,吲哚洛芬,吲哚拉明,盐酸吲哚瑞酯,吲哚克索,盐酸茚屈林,英夫利昔单抗,伊诺特隆,伊诺加群,伊诺莫单抗,肌醇烟酸酯,胰岛素,干扰素β-1A,吲四唑,盐酸英曲替林,碘苄胍,碘苯扎酸,碘比醇,碘,iodoamiloride,碘阿霉素,碘拉醇,碘美普尔,碘喷托,碘普罗胺,iopyrol,碘赛特,碘昔兰,依帕利特,伊培沙宗,伊匹达克林,胺碘苯丙酸钙,甘薯苦醇,异丙托品,异丙托溴铵,依普黄酮,伊普吲哚,异丙苯甘酸,异丙硝唑,异丙铂,盐酸异丙沙明,伊沙匹隆,厄贝沙坦,依立替康,伊洛沙星,伊罗普拉,伊索格拉定,伊替马唑,伊沙司坦,双丁噁唑,伊波格雷,异帕米星,isobengazole,氨苯异丁酯,异卡波肼,异康唑,乙基异丙肾上腺素,isofloxythepin,醋酸异氟泼尼龙,异氟醚,异氟磷,isohomohalicondrin B,异亮氨酸,盐酸伊索马唑,盐酸异戊拉明,异烟肼,异丙胺碘,异丙醇,异丙基乌诺前列酮,盐酸异丙肾上腺素,异山梨醇,单硝酸异山梨酯,依索喹胺,异维A酸,伊索克酸,伊索昔康,盐酸异克舒令,伊拉地平,伊他美林,伊他司琼,伊他格雷,伊托必利,伊曲康唑,伊维菌素,伊沙匹隆,jasplakinolide,Jemefloxacin,Jesopitron,交沙霉素,kahalalide F,卡拉芬净,硫酸卡那霉素,氯氨酮,酮色林,酮佐辛,凯他唑仑,乙氧丁酮醛,富马酸氧丙咪嗪,酮康唑,酮基布洛芬,酮啡诺,酮咯酸,富马酸酮替芬,吉他霉素,盐酸拉贝洛尔,拉西地平,拉西地平,乳糖醇,拉替维辛,乳糖酸,拉埃内克,拉呋替丁,1-α羟基维生素D2,lamellarin-N三乙酸盐,拉米非班,拉米夫定,拉莫三嗪,拉诺康唑,地高辛,兰吡立松,兰瑞肽,兰瑞肽醋酸,兰索拉唑,拉帕替尼,拉罗匹仑,拉坦前列素,lateritin,月桂氮酮,溴化十二烷基异喹啉,琥珀酸拉伏替丁,拉扎贝胺,来西贝特,leinamycin,来米地平,莱敏拉唑,来那西普,来尼喹新,来格司亭,仑哌隆,香菇多糖硫酸,来普汀,leptolstatin,乐卡地平,麦角腈,来立司琼,盐酸来替米特,来曲珠利,来曲唑,亮氨酸,leucomyzin,亮丙瑞林,醋酸亮丙瑞林,亮丙瑞林,左旋沙丁胺醇,琥珀酸左苯丙胺,左旋咪唑,乳糖酸左多巴酚丁胺,Leveromakalim,左乙拉西坦,Leveycloserine,左倍他洛尔,左布诺洛尔,左布比卡因,左卡巴斯汀,左卡尼汀,左西替利嗪,二盐酸左西替利嗪,左旋多巴,左羟丙哌嗪,左氧氟沙星,左呋喃他酮,左亚叶酸钙,醋酸左旋乙酰美沙酮,,盐酸醋酸左旋乙酰美沙酮,,左莫普洛尔,盐酸左南曲朵,左旋异肾上腺素,左炔诺孕酮,左丙氧芬,左普匹西林钾,左美洛昔芬,酒石酸左啡诺,左西孟旦,左旋舒必利,左旋甲状腺素,左甲状腺素钠,盐酸左沙屈尔,来昔帕泛,来红霉素,利阿唑,赖苯普利,盐酸利达脒,利多卡因,利多苯宁,利多氟嗪,Lifarizin,利贝特,利非贝罗,林那罗汀,林可霉素,利奈唑胺,利诺格列,利诺吡啶,利诺曲班,林西多明,林替曲特,林托必利,碘塞罗宁I-125,碘甲腺氨酸钠,复方甲状腺素,利沙必利,利右苯丙胺二甲磺酸,赖诺普利,赖脯胰岛素,lissoclinamide,硫酸利沙齐农,洛铂,氯苯扎利钠,洛布卡韦,locarmate葡甲胺,locarmic Acid,lodamide,氯德拉苯,lodipamide葡甲胺,lodixanol,碘化安替比林(lodoantipyrine)I-131,lodocholesterol I-131,lodohippurate Sodium I-131,lodopyracetI-125,lodoquinol,lodoxamate葡甲胺,洛度沙胺,lodoxamie Acid,盐酸洛非咪唑,草酸洛芬太尼,盐酸洛非帕明,盐酸lofetamine I-123,盐酸洛非西定,loglicic Acid,loglucol,loglucomide,loglycamic Acid,logulamide,lohexol,蚯蚓磷脂,洛美沙星,洛美利嗪,lomethinI-125,盐酸洛美曲林,洛美曲索,洛蒙霉素,Lomoxicam,洛莫司汀,氯萘帕林,氯那唑酸,氯尼达明,碘拉酸,lopanoicAcid,盐酸洛哌丁胺,lophendylate,洛匹那韦,loprocemic Acid,lopronic Acid,lopydol,lopydone,氯碳头孢,盐酸劳拉义明,氯雷他定,劳拉西泮,劳氨酯,盐酸劳卡尼,氯瑞唑,Loreinadol,氯戊米特,氯甲西泮,氯诺昔康,氯诺昔康,氯他拉明,氯扎封,氯沙坦,洛沙坦钾,losefamic Acid,loseric Acid,氯西加酮,洛索蒽醌,losulamide葡甲胺,盐酸洛硫嗪,losumetic Acid,lotasul,氯替泼诺,lotetric酸,lothalamate钠,lothalamic Acid,lotrolan,lotroxic Acid,洛伐他汀,碘佛醇,洛韦胺,loxagiate Sodium,loxaglate葡甲胺,loxaglic Acid,洛沙平,洛索立宾,loxotrizoicAcid,芦贝鲁唑,盐酸硫蒽酮,鲁非罗尼,甲磺酸卢罗司琼,勒托替康,镥,醋酸黄体瑞林,2-苯基-N-乙酰色胺,阿朴酸钠,氨棕己胺,利地霉素,利迪霉素,利奈孕酮,赖氨加压素,赖氨酸,lysofylline,溶葡球菌酶,马杜霉素,磺胺米隆,马加宁2酰胺,水杨酸镁,硫酸镁,厚朴酚,美坦新,聚马来乙烯,mallotoaponin,野梧桐色烯,马洛替酯,马洛替酯,锰福地吡,马尼地平,maniwamycin A,甘露醇,mannostatin A,手霉素E,手霉素F,马哌斯汀,马普替林,马拉韦罗,马立马司他,屈大麻酚,马索罗酚,maspin,massetolide,美登素,琥珀酸马扎哌汀,马吲哚,甲苯咪唑,盐酸美贝维林,甲溴菲宁,美布氨酯,盐酸美加明,盐酸氮芥,盐酸美克洛嗪,甲氯环素,甲氯灭酸钠,甲氯喹酮,二丁酸甲氯松,盐酸美达西泮,美多力农,美屈孕酮,美沙洛尔,甲孕酮,甲羟松,盐酸美克洛嗪,甲灭酸,甲苯地尔,盐酸美芬雷司,美非沙胺,盐酸甲氟喹,美夫西特,巨霉素磷酸二氢钾,醋酸甲地孕酮,葡甲胺,美格鲁托,甲烯雌醇乙酸酯,美洛昔康,美法仑,美金刚,盐酸美莫汀,盐酸美大麻坦,美诺克酮,美诺立尔,促生育素,硫酸甲氧苯汀,美帕曲星,溴美喷酯铵,盐酸哌替啶,硫酸美芬丁胺,美芬妥英,甲苯比妥,盐酸甲哌卡因,安宁片,盐酸美普他酚,美喹多司,汞林钠,merbarone,巯嘌呤,氯酚汞,羟基-(2-羟丙基)汞,美罗培南,美沙拉嗪,美西拉宗,美索达嗪,美睾酮,美雌醇,盐酸美舒令,盐酸美他洛尔,奥西那林烯复合物,酒石酸间羟胺,美他沙酮,甲烯前列素,美替瑞林,二甲双胍,氯醋甲胆碱,甲烯土霉素,美沙酮,醋美沙朵,美沙噻嗪,盐酸去氧麻黄碱,甲喹酮,醋甲唑,甲地嗪,乌洛托品,醋酸美替诺龙,美替妥英,甲氧苯青霉素钠,他巴唑,蛋氨酸酶,蛋氨酸,甲吲噻踪,盐酸甲哌噻吨,美索巴莫,美索比妥钠,甲氧夫啉,甲氨蝶呤,左美丙嗪,methoxatone,甲氧基聚乙二醇-促红细胞生成素β,甲氧氟烷,甲琥胺,甲氯噻嗪,帕莫酸甲酯,硝甲阿托品,甲苄索氯铵,甲基多巴,盐酸甲基多巴,亚甲基蓝,马来酸甲基麦角新碱,甲基组胺,一磷酸甲基肌苷,哌甲酯,甲基强的松龙,甲睾酮,Methynodiol Diacelate,美西麦角,马来酸美西麦角,甲硫米特,甲硫平,美替普林,metipamide,美替洛尔,盐酸美替唑啉,醋酸美克法胺,胃复安,碘甲筒箭毒,16,16-二甲诺龙,美托拉宗,美托哌丙嗪,氯苯氨啶,美托洛尔,酒石酸美托洛尔,Metouizine,美曲磷酯,甲泛葡胺,甲泛影钠,甲硝唑,美妥替哌,美替拉酮,甲酪氨酸,盐酸美西律,孕甲酯丙酸钾,美洛西林,盐酸米安色林,米贝拉地尔,二盐酸米贝拉地尔,米勃酮,michellamine B,达克宁,microcolin A,咪达氟,盐酸咪达唑仑,米多君,米非司酮,米福酯,米格列醇,米拉醋胺,米拉美林,米屈肼,咪仑哌隆,米利哌汀,米那普仑,米力农,米替福新,盐酸米姆本,米那普令,米那索龙,米诺罗米,米诺环素,米诺环素,盐酸米诺地尔,盐酸米氟嗅,米卡霉素,米普拉苷,米芬太尼,米立司亭,盐酸米林霉素,马来酸米立司琼,米氮平,米索硝唑,米索前列醇,米丁度胺,米托克星,丝裂红素,米托洁林,米托胍腙,二溴卫矛醇,米托马星,丝裂霉素,米托萘胺,米托司培,米托坦,米托蒽醌,米库氯铵,米伐折醇,mixanpril,米克昔定,咪唑斯汀,咪唑立宾,吗氯贝胺,莫达非尼,硫酸莫达林,莫地卡尼,莫昔普利,莫法罗汀,盐酸莫非吉兰,莫苯唑酸,莫拉司亭,吗林那宗,盐酸吗茚酮,吗多明,糠酸,马来酸莫那匹尔,莫能菌素,甘油辛酸酯和甘油癸酸酯混合物,孟鲁司特,孟鲁司特钠,孟替瑞林,莫哌达醇,莫雷西嗪,酒石酸莫仑太尔,莫雷西嗪,吗尼氟酯,吗啡,鱼肝油酸钠,莫沙帕明,莫沙比利,motilide,莫维A胺,拉氧头孢二钠,莫沙佐辛,莫西沙星,莫昔普令,吗硝唑,莫索尼定,流行性腮腺炎皮试抗原,莫唑胺,mycaperoxide B,霉酚酸酯,霉酚酸,myriaporone,大麻折尼,大麻隆,盐酸大麻坦,盐酸大麻克酯,萘丁美酮,N-acetyldinaline,Nadide,那氟沙星,纳多洛尔,那屈肝素钙,那法道曲,萘莫司他,那法瑞林,萘夫西林钠,萘酚平,盐酸萘咪酮,萘非可特,苹果酸萘甲羟胺,盐酸萘福昔定,草酸萘呋胺酯,盐酸萘替芬,萘哌地尔,那格列钒,nagrestip,盐酸纳布啡,Nalidixate Sodium,萘啶酸,纳美芬,盐酸纳美酮,纳洛酮,纳曲酮,纳莫雷特,苯丙酸诺龙,盐酸南曲朵,盐酸萘帕他定,萘二磺酸盐,盐酸奈帕咪唑,napaviin,盐酸萘甲唑啉,naphterpin,萘普生,萘普生钠,萘普索,奈沙加群,盐酸萘拉诺,甲基盐霉素,那拉曲坦,那托司亭,那沙普酶,那他珠单抗,纳他霉素,那替普酶,盐酸那高利特,奈必洛尔,尼拉霉素,奈达铂,奈多罗米,盐酸奈法唑酮,盐酸奈氟齐特,盐酸奈福泮,马来酸奈来扎林,盐酸奈马唑啉,奈莫柔比星,棕榈酸新霉素,新斯的明溴,奈立膦酸,硫酸奈替米星,中性霉素,Neyirapin,盐酸奈西利定,烟酸,硝溴生,盐酸尼卡地平,尼麦角林,氯硝柳胺,尼可地尔,烟酰胺,烟醇,硝苯地平,Nifirmerone,尼氟利地,硝呋拉定,硝呋地腙,硝呋太尔,硝呋隆,硝呋达齐,硝呋米特,硝呋吡醇,硝呋奎唑,硝呋噻唑,硝呋替莫,尼罗替尼,一水合盐酸尼罗替尼,尼鲁米特,尼伐地平,尼马宗,尼莫地平,尼培替丁,尼拉伏林,尼立达唑,nisamycin,甲磺酸尼司特罗,乳酸链球菌素,尼索氨酯,尼索地平,Nisoxetin,尼司特林醋酯,硝苯胂酸,硝唑尼特,硝替卡朋,盐酸硝呋坦,盐酸硝拉明,盐酸硝拉咪唑,硝西泮,尼群地平,Nitrocydine,硝旦,呋喃妥因,呋喃西林,硝酸甘油,硝甲酚汞,硝米特,柠檬酸硝米芬,氧化亚氮,一氧化二氮抗氧化剂,nitrullyn,尼伐可醇,双甲硝茚酮钠,尼扎替丁,诺柏斯汀,噻氨酯哒唑,诺拉霉素,诺利溴铵,马来酸诺米芬辛,盐酸诺美沙朵,二乙诺酮,酒石酸去甲肾上腺素,炔诺酮,异炔诺酮,Norfiurane,诺氟沙星,诺孕酯,诺孕美特,炔诺孕酮,盐酸去甲替林,那可丁,尼尔雌醇新生霉素,制霉菌素,双复磷,奥卡哌酮,盐酸奥芬太尼,奥西普隆,辛酸,奥他酰胺,盐酸奥替尼啶,奥托君,奥曲肽,磷酸奥克替林,氟嗪酸,奥福宁,okicenone,Olanzepine,奥美沙坦,奥美沙坦酯,奥洛他定,盐酸奥洛他定,奥普力农,奥沙拉嗪,奥沙拉嗪钠,奥伐尼,奥马珠单抗,ω-3酸乙基酯,奥美拉唑,奥那司酮,昂丹司琼,昂唑司特,卵母细胞盐酸奥匹哌醇,oracin,硝酸奥康唑,奥古蛋白,Orlislat,奥马铂,奥美普林,奥硝唑,奥帕诺辛,柠檬酸奥芬那君,奥沙特隆,奥司他韦,奥腾折帕,苯唑西林钠,氧格雷酯,奥沙利铂,盐酸奥沙香豆素,奥沙米索,奥沙尼喹,氧雄龙,双羟萘酸奥克太尔,盐酸羟丙替林,奥沙普秦,奥沙巴唑,奥沙米特,oxaunomycin,奥沙西泮,奥卡西平,奥生多龙,乙氧连氮,富马酸奥昔托隆,奥芬达唑,羟苯甘氨酸,奥苯达唑,奥昔康唑,羟多巴胺,奥昔磷酸,盐酸奥昔芬净,奥昔啡烷,肟莫南,肟莫南钠,奥哌咪酮,奥拉西坦,奥昔拉米,奥昔舒仑,盐酸奥美替丁,奥索地平,苯丙酸奥索孕酮,奥索利酸,盐酸氧烯洛尔,胆茶碱,氯化奥昔布宁,奥昔氯生,羟考酮,羟考酮盐酸盐,盐酸羟甲唑啉,羟甲烯龙,盐酸羟吗啡酮,奥昔哌汀,羟布宗,别嘌呤二醇,土霉素,催产素,奥扎格雷,Ozlinone,紫杉醇,palauamine,帕地霉素,帕利那韦,帕利珠单抗,palmitoylrhizoxin,帕莫酸钠,帕马苷,硫酸帕马洛尔,帕米格雷,帕米膦酸二钠,帕米磷酸,帕那普隆,帕那美新,人参炔三醇,泮考必利,泮库溴铵,帕尼培南,pannorin,帕诺米芬,泛硫乙胺,泮托拉唑,盐酸罂粟碱,parabactin,扑热息痛,对氯酚,三聚乙醛,醋酸帕拉米松,盐酸瑞尼托林,溴帕拉喷酯,双羟萘酸副品红,帕苯达唑,盐酸帕康唑,复方樟脑酊,硫酸帕立太特,盐酸帕吉林,帕肝素钠,硫酸巴龙霉素,帕罗西汀,盐酸帕罗西汀,小白菊内酯,帕曲星,保洛霉素,帕折普汀,帕秦克隆,帕佐昔特,帕珠沙星,培氟沙星,培门冬酶,培戈汀,聚乙二醇干扰素α-2a,盐酸培兰色林,培得星,Peliomycipelretin,盐酸培力农,培美酸,硝酸哌美立特,培美曲塞,吡嘧司特,匹莫林,培那西林,硫酸喷布洛尔,喷昔洛韦,五氟利多,青霉胺,苄星青霉素G,青霉素G钾,普鲁卡因青霉素G,青霉素G钠,青霉素VHydrabamine,苄星青霉素V,青霉素V钾,喷他氨酯,季戊四醇四硝酸酯,喷他夫西,喷他脒,戊吗酮,溴新斯的明,甲硫戊哌铵,喷他佐辛,三胺五乙酸,马来酸喷硫平,喷替吉肽,喷替米星,戊胺唑酮钠,戊巴比妥,喷托孟,喷托普利,戊聚糖,喷司他丁,己酮可可碱,戊硝醇,pentrozole,硫酸培洛霉素,胃酶抑素,全氟溴烷,perfofamide,培磷酰胺,培高利特,马来酸哌克昔林,紫苏醇,培哚普利,培哚普利拉,Perlapin Permethrin,哌罗匹隆,奋乃静,苯乙酰脲,phenaridine,phenazinomycin,盐酸那吡啶,甘油保泰松钠,芬卡米特,盐酸苯环己哌啶,酒石酸苯甲曲秦,硫酸苯乙肼,苯乙双胍,盐酸芬美曲秦,苯巴比妥,盐酸酚苄明,苯丙香豆素,phenserine,phensuccinal,苯琥胺,芬特明,盐酸芬特明,甲磺酸酚妥拉明,Phentoxifylline,苯基氨基水杨酸,苯乙酸,苯丙氨酸,phenylalanylketoconazole,保泰松,盐酸去氧肾上腺素,盐酸苯丙醇胺,苯丙醇胺Polistirex,盐酸非尼拉朵,苯妥英,苯妥英纳,毒扁豆碱,甲丙哌酚,毕西巴尼,二乙醇胺匹考群,胡黄连活素,吡库特罗,匹多莫德,哌法宁,毛果芸香碱,吡西卡尼,匹马吉定,盐酸匹美汀,匹米前列素,匹莫苯,匹莫齐特,吡那地尔,匹那朵林,吲哚洛尔,pinnenol,pinocebrin,盐酸哌氧平,吡格列酮,匹泮哌隆,哔哌氮嗪酯,哌库溴铵,哌西他嗪,哌拉西林,哌拉西林钠,马来酸哌拉酰胺,Piperazinc,哌泊溴烷,哌泊舒凡,棕榈酸哌泊噻嗪,盐酸哌泊索仑,哌普唑林,盐酸匹喹酮,哌喹齐尔,盐酸哌喹齐尔,吡拉西坦,盐酸吡喃达明,吡柔比星,吡拉莫南钠,吡拉唑酸,吡苄西林钠,醋酸吡布特罗,匹仑哌隆,盐酸哌仑西平,吡咯他尼,吡非尼酮,吡地西林钠,Piridronate钠,吡前列素,吡曲克辛,盐酸吡利霉素,吡吲哚,吡吗格雷,盐酸吡美诺,四甲苯喃酯,羟甲辛吡酮,吡罗达韦,吡咯司特,酒石酸吡咯格列,匹罗酯,吡拉酰胺,P盐酸吡罗蒽醌,吡罗昔康,匹罗昔酮,吡洛芬,吡喹诺唑,哌多明,盐酸匹氨西林,匹伏普利,苯噻啶,placetin A,普卡霉素,普洛美坦,泊比司特乙二胺,普达非洛,太平洋漆树提取物,甲硫酸波尔定,聚氨葡糖,Polignate钠,硫酸多粘菌素B,泊利噻嗪,泊那司他,卟菲尔钠,泊非霉素,氯化钾,碘化钾,高锰酸钾,聚维酮碘,普拉洛尔,氯磷定,普拉克索,盐酸普拉西坦,盐酸丙吗卡因,氯解磷定,马来酸普拉朵林,普伐他汀,普伐他汀钠,普拉西泮,哌唑嗪,盐酸哌唑嗪,泼那扎特,泼尼卡酯,泼尼莫司汀,强的松,强的松龙,富马酸奎硫平,强的松,强的松龙戊酸酯,普瑞巴林,琥珀酸孕烯醇酮,盐酸普瑞特罗,普尼拉明,盐酸普地利定,普罗度酸,盐酸普罗法朵,普罗加胺,盐酸普立地芬,普立非酮,盐酸丙胺卡因,奥美拉唑,磷酸伯氨喹,普米洛尔,扑米酮,赖诺普利,普林米特氨丁三醇,普啉索旦,pritosufloxacin,盐酸普齐地洛,盐酸普罗地芬,丙磺舒,普克罗米钙,普罗布考,盐酸普鲁卡因胺,盐酸普鲁卡因,盐酸甲基苄肼,盐酸丙卡特罗,丙氯拉嗪,普西奈德,丙氯诺,盐酸丙环定,盐酸普地利定,普罗度酸,盐酸普罗法朵,卤加比,黄体酮,丙谷胺,胰岛素原(人),脯氨酸,盐酸普罗林坦,盐酸丙嗪,异丙嗪,盐酸异丙嗪,盐酸普罗帕酮,丙帕锗,丙泮尼地,溴丙胺太林,盐酸丙美卡因,硝酸Propatyl,丙戊茶碱,盐酸环苯哌酯,普匹卡星,丙酰马嗪,丙酸,propionylcarnitine,丙吡兰,丙吡兰,丙哌维林,异丙酚,盐酸Proponolol,盐酸丙氧卡因,盐酸丙氧芬,盐酸普萘洛尔,西沙必利,propylbis-吖啶酮,丙己君,丙碘酮,丙基硫氧嘧啶,普罗喹宗,丙利酸钾,盐酸普罗克生,海葱次苷,前列他林,prostratin,硫酸鱼精蛋白,内源性抗微生物多肽,普罗瑞林,盐酸普罗替林,普罗沙唑,柠檬酸普罗沙唑,普昔罗米,酒石酸普罗啡烷,普卢利沙星,伪麻黄碱,盐酸伪麻黄碱,嘌呤霉素,吡拉布隆,双羟萘酸噻嘧啶,吡嗪酰胺,吡唑霉素,吡唑啉吖啶,吡啶斯的明,盐酸吡哆醇,甲氧苄二胺马来酸,乙胺嘧啶,吡诺林,吡硫钠,吡硫锌,盐酸吡咯戊酮,马来酸吡咯沙敏,吡咯卡因,盐酸吡咯苯丙酯,吡咯尼群,扑蛲灵,甲磺酸夸达佐辛,夸西泮,喹齐酮,夸唑定,喹唑司特,喹硫平,富马酸喹硫平,喹夫拉朋,喹高利特,喹那定蓝,喹那普利,盐酸喹那普利,盐酸喹唑嗪,奎勃龙,Quinctolate,醋酸喹地卡明,喹度溴铵,盐酸喹洛雷,炔雌醚,喹法米特,醋酸奎孕醇,葡萄糖酸奎孕酮,盐酸Quinielorane,硫酸奎宁,盐酸喹吡罗,硫酸喹丙那林,奎纽溴铵,奎奴普丁,马来酸喹哌嗪,雷贝拉唑,雷贝拉唑钠,消旋甲砜霉素,消旋肾上腺素,雷复尼特,雷利托林,雷洛昔芬,拉替拉韦,雷替曲塞,雷马曲班,雷米普利,雷莫拉宁,雷莫司琼,雷奈酸,雷尼霉素,雷尼替丁,盐酸雷尼替丁,雷诺嗪,萝芙木蛇根碱,瑞卡南,盐酸瑞卡南,瑞氯西泮,重组VIII因子,瑞加韦单抗,瑞拉司亭,松弛素,瑞洛霉素,盐酸瑞马西胺,盐酸瑞芬太尼,瑞前列醇,瑞莫必利,瑞吡司特,瑞普米星,盐酸瑞普特罗,利血平,resinferatoxin,间苯二酚,瑞他莫林,去甲基化瑞替普汀,reticulon,瑞维肝素钠,瑞维齐农,铼依替膦酸钠,根霉素,RI retinamide,利巴米诺,利巴韦林,利波腺苷,利卡司琼,利多格雷,利福布汀,利福美坦,利福克昔,利福米特,利福平,利福喷丁,利福昔明,利洛吡司,利鲁唑,金刚乙胺,盐酸林卡唑,利美索龙,氢溴酸利米特罗,利莫那班,利莫罗近,利奥地平,利奥前列素,利帕西泮,利匹沙坦,利塞膦酸钠,利塞膦酸钠,利塞膦酸,利索卡因,盐酸利索利特,利喷西平,利培酮,利培酮,利坦色林,利替培南,利托君,利托司特,利托那韦,美罗华,卡巴拉汀,酒石酸卡巴拉汀,利扎曲普坦,苯甲酸利扎曲普坦,盐酸罗卡斯汀,罗库溴铵,罗多卡因,罗氟烷,罗谷亚胺,rohitukine,罗他霉素,Roletamicide,罗加米定,罗利普令,咯利普兰,罗利环素,罗咯定,氯马扎利,罗莫肽,罗硝唑,罗匹尼罗,盐酸罗匹妥英,罗哌卡因,罗匹嗪,罗喹美克,罗沙米星,罗格列酮,马来酸罗格列酮,罗索沙星,瑞舒伐他汀,轮状病毒疫苗,罗替戈汀,罗托沙敏,roxaitidine,洛克沙生,罗克吲哚,罗红霉素,rubiginone B1,ruboxyl,芦氟沙星,rupatidine,芦他霉素,卢扎朵仑,沙贝鲁唑,沙芬戈,沙非罗尼,saintopin,沙丁胺醇,硫酸沙丁胺醇,柳胆来司,马来酸二乙氨乙柳胺,水杨醇,水杨酰胺,水杨酸葡甲胺,水杨酸,沙美特罗,沙那西定,双水杨酯,沙美利定,山帕曲拉,山环素,山费培南,血根氯铵,沙康唑,普立沙坦,沙丙蝶呤,盐酸沙丙蝶呤,沙奎那韦,盐酸沙拉沙星,沙丙蝶呤,肌植醇A,沙格司亭,沙莫西林,沙匹西林,沙格雷酯,沙芦普酶,沙特力农,沙替格雷,沙妥莫单抗喷地肽,司可芬净,氢溴酸东茛菪碱,盐酸Scrazaipine,司骨化醇,司可巴比妥,Seelzone,segiline,醋酸司格列肽,盐酸司来吉兰,硫化硒,硒代蛋氨酸硒-75,塞福太,司美利特,生度米星,司莫地尔,司莫司汀,氯化三苯唑,盐酸氯氟哌醇,司普立糖,盐酸塞罗西汀,醋酸丝拉克肽,马来酸麦角克索,丝氨酸,丝美辛,醋酸舍莫瑞林,舍他康唑,舍吲哚,舍曲林,盐酸舍曲林,S-ethynyluracil,司普替林,司托哌隆,司维拉姆,司韦单抗,七氟醚,司佐胺,西波吡啶,盐酸西布曲明,硅雄酮,西地那非,枸橼酸西地那非,西立匹特,西替普酶,硝酸银,西孟旦,辛曲秦,辛伐他汀,辛卡利特,西奈芬净,西硝地尔,sinnabidol,西帕曲近,雷帕霉素,西索米星,西他列汀,西托糖苷,西佐喃,索布佐生,硝普钠,碘化钠I-123,硝普钠,羟丁酸钠,苯乙酸钠,水杨酸钠,丙戊酸钠,索非那,solverol,酒石酸索立哌汀,猪丙氨生长素,盐酸索金刚胺,生长调节素B,生长调节素C,生长抑素,人蛋氨生长素,生长激素,猪诺生长素,牛度生长素,索比尼尔,索立夫定,索他洛尔,盐酸索特瑞醇,Sparfioxacin,磷乙酰天冬氨酸钠,膦门冬酸,Sparsomy,硫酸司巴丁,盐酸大观霉素,spicamycin D,螺哌隆,甲磺酸螺朵林,螺旋霉素,盐酸螺普利,螺普利拉,盐酸锗螺胺,螺莫司汀,安体舒通,螺铂,螺沙宗,splenopentin,spongistatin,镝双胺,角鲨胺,盐酸司他霉素,焦磷酸亚锡,锡硫胶体,康力龙,匍枝青霉菌素,星形孢菌素,司他夫定,司替霉素,醋酸司腾勃龙,司替罗宁,司替碘铵,司洛碘铵,stipiamide,司替戊醇,stobadine,硫酸链霉素,链霉素异烟肼,链黑菌素,链脲霉素,氯化锶Sr-89,succibun,二巯丁二酸,氯化琥珀胆碱,硫糖铝,硫糖酯钾,舒多昔康,舒芬太尼,舒福替丁,硫西泮,舒巴坦酯,硝酸硫康唑,磺胺苯,磺胺苯酰,磺胺醋酰,磺胺乙胞嘧啶,磺胺嘧啶,磺胺多辛,磺胺林,磺胺甲基嘧啶,磺胺对甲氧嘧啶,磺胺二甲嘧啶,磺胺甲二唑,磺胺甲基异噁唑,磺胺间甲氧嘧啶,磺胺噁唑,磺胺酸锌,磺胺硝苯,柳氮磺胺吡啶,磺胺异噻唑,磺胺吡唑,盐酸硫氧洛尔,sulfinosine,磺吡酮,磺胺异噁唑,磺粘菌素,磺粘菌素,盐酸磺酰特罗,sulfoxamine,Sulinldac,硫马林,舒硝唑,舒洛地尔,磺氯苯脲,硫培南,草酸舒洛昔芬,舒必利,硫前列酮,舒他西林,舒噻美,舒托必利,硫鲁司特,舒马罗汀,舒马普坦,琥珀酸舒马普坦,森西林钠,舒普罗酮,舒洛芬,suradista,苏拉明,舒福姆,马来酸舒立卡尼,舒立托唑,马来酸舒罗吖啶,硫酸琥甲哌酯,苦马豆素,symakalim,氯氧三嗪,盐酸昔美汀,盐酸Taciamine,盐酸他克林,他克莫司,他达拉非,盐酸酞氨西林,左环十四酮酚,他利霉素,他莫司汀,他美辛,他尼氟酯,盐酸他洛普仑,他洛柳酯,盐酸他美曲林,他莫昔芬,柠檬酸他莫昔芬,富马酸坦帕明,坦索罗辛,盐酸坦索罗辛,盐酸坦达明,坦度螺酮,tapgen,他前列烯,他索沙坦,牛碘莫司汀,紫杉烷,Taxoid,琥珀酸他扎朵林,他扎司特,他扎罗汀,他齐茶碱,盐酸他齐茶碱,他唑巴坦,他唑非隆,盐酸他佐洛尔,特丁非隆,替布喹,替克洛占,Tecogalan钠,Teecleukin,替氟烷,替加氟,替加色罗,卡马西平,替考拉宁,替仑西平,tellurapyrylium,替美司坦,替米沙坦,盐酸替洛蒽醌,盐酸替鲁地平,盐酸替马沙星,Tematropium Methyl sulfate,替马西泮,替美斯汀,替莫普利,替莫西林,替莫泊芬,替莫唑胺,坦西莫司,替尼达普,替尼泊苷,泰诺福韦,替诺柳,替诺昔康,替吡吲哚,替泊沙林,替普罗肽,特拉唑嗪,盐酸特拉唑嗪,特比萘芬,硫酸特布他林,特康唑,特非那定,terfiavoxate,特麦角脲,特立帕肽,醋酸特立帕肽,特拉吉仑,特利加压素,特罗地林,盐酸特罗扎林,替罗昔隆,特他洛尔,替昔康,苄叉异喹酮,睾内酪,睾酮,丁卡因,tetrachlorodecaoxide,四环素,盐酸四环素,盐酸四氢唑啉,盐酸四咪唑,葡甲胺四唑司特,tetrazomine,替曲膦,四羟醌,四氧普林,四氢甲吲胺,菌体胚素,沙利度胺,益多酯,茶碱,噻菌灵,硫咪嘌呤,甲砜霉素,硫戊巴比妥,盐酸胺苯硫卓酮,ThiazinamiumChloride,硫乙拉嗪,Thiithixene,硫汞苯磺钠,硫柳汞,噻可拉林,thiofedrine,硫鸟嘌呤,thiomarinol,硫喷妥钠,噻普酰胺,硫利达嗪,噻替哌,盐酸双苯乙硫酯,Thiphencillin Potassium,福美双,托扎啉酮,苏氨酸,凝血酶,血小板生成素,胸腺法新,胸腺五肽,胸腺曲南,盐酸甲状米登,甲状腺素,硫克司特,硫克司特钠,噻加宾,噻美尼定,噻奈普汀,tiapafant,盐酸噻帕米,盐酸噻拉米特,噻唑羧胺核苷,硫苯司特钠,替勃龙,替贝酸,丙酸替卡贝松,替卡波定,替卡西林甲酚钠,替克拉酮,噻氯匹定,替尼酸,替诺洛尔,替呋酸钠,替吉莫南Dicholine,替孕醇,盐酸替来他明,盐酸替利定,替利洛尔,替洛芬阿酯,盐酸替洛隆,替鲁膦酸二钠,替鲁膦酸,替美呋酮,醋酸替莫贝松,噻吗洛尔,马来酸噻吗洛尔,替大麻酚,替硝唑,亭扎肝素钠,噻康唑,硫达唑嗪,氯化氯苯噻碘,盐酸硫哌立酮,硫平酸,盐酸替螺酮,硫替丁,Tiotropium,噻托溴铵,噻昔达唑,盐酸噻戊托辛,替拉那韦,替泼尼旦,盐酸替普洛尔,葡甲胺替普司特,盐酸替普地尔,替奎安,盐酸替喹胺,tirandalydigin,替拉扎明,替拉扎特,替罗非班,苯酰胺桂胺,二氯二茂钛,硫氧钴酸,特戊酸替可的松,盐酸替扎尼定,盐酸Tnmethobenzamide,妥布霉素,妥卡尼,托莰非,盐酸托芬那辛,妥拉洛尔,妥拉磺脲,盐酸妥拉苏林,甲苯磺丁脲,托卡朋,托西拉酯,托法胺,托加比特,托利咪酮,托林达酯,托美丁,托萘酯,碘苄聚乙烯吡咯烷酮,甲苯磺吡胺,托瑞司他,托特罗定,酒石酸托特罗定,托鲁司特,盐酸托莫西汀,甲磺酸托那佐辛,托吡酯,托泊替康,盐酸拓扑替康,topsentin,托普雄酮,托喹嗪,托拉塞米,托瑞米芬,托拉塞米,托西芬,托氟沙星,全能性干细胞因子(TSCF),曲卡唑酯,曲弗明,曲洛奈德,曲马多,盐酸曲马多,盐酸曲马唑啉,群多普利,氨甲环酸,曲尼司特,群司卡尼,曲妥单抗,曲撤诺,盐酸曲唑酮,盐酸曲苯佐明,盐酸曲芬太尼,曲洛酯,马来酸曲匹泮,醋酸曲托龙,维甲酸,三醋酸甘油酯,triacetyluridine,三嗪芬净,去炎松,硫酸曲安吡嗪,氨苯喋啶,三唑仑,三苄糖苷,tricaprilin,三甲氧苯醋酰胺,三氯噻嗪,毛透明蛋白,曲西立滨,Tricitrates,三氯酚哌嗪,三氯福司钠,曲恩汀,三苯格雷,triflavin,三氟洛辛,三氟巴占,三氟米酯,盐酸三氟拉嗪,三氟哌多,三氟丙嗪,盐酸三氟丙嗪,曲氟尿苷,盐酸苯海索,曲洛司坦,盐酸曲马唑嗪,曲美孕酮,酒石酸阿利马嗪,三甲双酮,樟脑磺酸替奥芬,甲氧苄啶,曲美托嗪,三甲曲沙,曲米帕明,曲莫前列素,盐酸曲莫沙明,三油酸甘油酯,甲磺酸曲沃昔芬,曲帕胺,盐酸曲吡那敏,盐酸曲普利啶,曲普瑞林,三磺嘧啶,曲氯新钾,曲格列酮,三乙醇胺,醋竹桃霉素,trombodipine,氨丁三醇,盐酸托烷色林,托吡卡胺,茛菪醇,托烷司琼,丙大观霉素,曲伐沙星,曲韦定,色氨酸,结核菌素,氯筒箭毒碱,盐酸妥布氯唑,tucarcsol,妥洛特罗,妥罗雄脲,泰巴氨酯,tylogenin,吡罗培克钠,酪氨酸,短杆菌素,tyrphostins,乌苯美司,乌达西泮,十一烯酸,乌拉莫司汀,乌拉地尔,尿素,乌瑞替派,尿苷三磷酸,尿促卵泡素,尿激酶,熊去氧胆酸,伐昔洛韦,盐酸万乃洛韦,缬氨酸,戊诺酰胺,丙戊酸半钠,丙戊酸,缬沙坦,伐米胺,vanadeine,万古霉素,vaninolol,盐酸伐哌前列素,伐普肽,伐地那非,瓦伦尼克林,variolin B,加压素,维库溴铵,维拉雷琐,马来酸维吖啶,文拉法辛,盐酸万拉法新,盐酸维拉朵林,藜芦明,盐酸维拉帕米,verdins,盐酸维立洛泮,维鲁司特,维罗茶碱,veroxan,维替泊芬,维司力农,vexibinol,阿糖腺苷,氨己烯酸,维格列汀,盐酸维洛沙秦,硫酸长春碱,柠檬酸长春布宁,乙烯磷,长春考酯,硫酸长春新碱,长春地辛,长春地辛硫酸,硫酸长春匹定,硫酸长春甘酯,硫酸长春罗新,长春瑞滨,长春西汀,长春培醇,vinxaltine,硫酸长春利定,维前列醇,维吉尼亚,绿黄菌素,韦罗肟,vitaxin,伏格列波糖,伏拉佐辛,伏立康唑,伏氯唑,伏高利特,Wafarin,扎莫特罗,呫诺美林,异丙氧蒽酸钠,占替诺烟酸酯,珍米洛非班,联苯利平,联苯丁酸,希洛班,希莫洛芬,希帕胺,甲磺酸佐尔啡诺,对甲苯磺酸Xylamidine,盐酸甲苯噻嗪,盐酸赛洛唑啉,木糖,yangambin,扎比普利,扎考必利,扎鲁司特,扎西他滨,扎来普隆,扎螺酮,盐酸唑替丁,扎托洛芬,扎那米韦,占吉仑,扎诺特隆,扎特克,扎替雷定,扎替雷定,扎托司琼,马来酸扎托司琼,折那司他,甲磺酸泽来索兴,折尼铂,玉米赤霉醇,齐多夫定,齐罗硅酮,齐仑太尔,亚苄维c,齐留通,盐酸齐美定,十一烯酸锌,嗪多群,盐酸齐诺康唑,净司他丁,盐酸净特罗,净韦肟,齐拉西酮,Zobolt,佐芬普利钙,佐芬普利拉,盐酸佐拉敏,盐酸唑拉西泮,唑来膦酸盐,盐酸佐勒汀,佐米曲普坦,唑吡坦,佐美酸钠,氯苯吡卓,盐酸佐尼氯唑,唑尼沙胺,佐匹克隆,唑泊司他,佐尔博霉素,盐酸佐柔比星,佐替平,珠卡赛辛,齐多美辛,及其药学可接受的盐。
实施例1
本文所述的封壳用于施用醋酸亮丙瑞林,治疗前列腺癌。醋酸亮丙瑞林(USP 31)是一种促黄体生成激素释放因子(LNHR)的合成型九肽激动剂类似物。醋酸亮丙瑞林分子的重量是约1209 Daltons,尺寸为2-3纳米。它以约10mg/mL的浓度可溶于水性介质。在1997年1月30日提交的U.S.专利5,728,396中公开了通过延长释放施用亮丙瑞林的现有方法,将其通过参考引入本文。
如本文所述,将纳米通道递送装置芯片安装到封壳中,并填充5mg/mL醋酸亮丙瑞林溶液(NDC号0703-4014-18),用于治疗前列腺癌。该封壳的尺寸是约2.8mL,以使填充后的封壳包含约14mg的醋酸亮丙瑞林。如果使用更强浓度的醋酸亮丙瑞林溶液,可以相应减小封壳的体积。将该封壳皮下植入到上臂或大腿的内部或植入到腹部。在临床门诊过程中通过小切口,并任选使用组织分离器植入该封壳,2-3月后通过小切口去除。为进行植入和移植,使用少量的麻醉剂,例如,在该位点注射1%利多卡因。
在一些实施方案中,选择该纳米通道递送装置的小和纳米通道尺寸(例如,根据[Grattoni,A.Ferrari,M.,Liu,X.Quality controlmethod for micro-nano-channels silicon devices.US专利申请61/049,287(April 2008)]所述的方式),以提供约120μg/天的释放速率,可以持续约90天。
在本实施例中,具有这种行为的纳米通道递送装置的构型使用了6x 6mm芯片尺寸,具有161个大通道,各大通道分别具有190 X 190μm的开口,各大通道内具有约23排的纳米通道结构,所述结构由各10个通过约20个如本文所述的纳米通道连接的入口和出口微通道组成。入口和出口的横截面是约5 X 5μm,入口约30μm长,出口约1.6μm长,纳米通道约5μm长、5μm宽且13nm高。具有不同尺寸的其他构型可以由数学模型来产生,在其他实施例中得到约相同的释放速率和持续时间。
实施例2
如实施例1所述,构造封壳和纳米通道递送装置并植入。但是,不施用醋酸亮丙瑞林,该封壳和纳米通道递送装置施用来曲唑治疗乳腺癌。治疗乳腺癌的化学疗法的有限成功强调需要新的预防策略来减小癌症发生。近来的研究已经证明,芳香酶抑制剂是通过抑制雌激素生物合成而用于乳腺癌的有希望的化学预防剂。特别地,研究提示,来曲唑是高风险组例如BRCA1阳性的妇女化学预防的理想候选药物。但是,与来曲唑的常规全身性给药有关的低效力和副作用是其长期施用的限制因素。
乳腺癌生长高度依赖于雌激素,因此抑制雌激素对于预防乳腺肿瘤发生是非常有效的。近来的研究已经表明,芳香酶抑制剂例如阿那曲唑、来曲唑和依西美坦作为有希望的分子可以用于乳腺癌的化学预防。芳香酶通过细胞色素P450酶复合(芳香酶)介导由雄激素生物合成雌激素最有效的形式-雌二醇。芳香酶存在于乳腺组织中,非甾体和甾体芳香酶抑制剂分别降低循环雌激素水平至治疗前水平的1%-10%。因此,抑制芳香酶是雌激素依赖性乳腺癌中减少雌激素的生长刺激效应的一种重要途径,所述雌激素依赖性乳腺癌占乳腺癌的约60-70%。在芳香酶抑制剂中,来曲唑是一种非常有效的非甾体抑制剂,抑制约99%的雌激素生物合成。此外,对转移性乳腺癌的化学治疗的数个研究和临川试验表明,与他莫昔芬相比,来曲唑效力更高,副作用更少。因此,研究提示,对于乳腺癌风险增加的妇女而言,来曲唑是研究化学预防性疗法的候选药物。但是,常规口服来曲唑显示心脏问题和骨质疏松的风险增加。成功化学预防乳腺癌的关键依赖于在防止副作用的同时长期递送特异性药物。与无效率的口服相反,在乳腺组织中持续地局部释放化学预防剂(即来曲唑)可以显著减少乳腺肿瘤和全身性副作用的发生。这显示出了改善患者生活质量的希望。
我们相信,根据本发明的可植入的纳米通道装置能在乳腺组织中持续和长期地局部释放来曲唑,并显著减少雌激素依赖性上皮细胞增殖,同时降低毒性。
临床前研究使用每日剂量2.5mg的来曲唑。我们相信,与口服递送相比,在乳腺组织中持续地局部释放来曲唑(利用本发明的纳米通道装置)仅需要较低的剂量。在第一次分析中,我们相信每日局部释放范围为35-50μg是有效的。
通过使用长期、持续释放植入剂来局部施用化学预防剂来完成有效的化学预防性疗法会显著改善高风险组妇女的生活质量。我们相信,使用本发明的纳米通道递送装置会导致治疗效力改善,有效降低药物剂量并通过真正的持续释放来减少副作用。由于有效的预防性疗法,通过降低治疗费用、减少医疗就诊和较少工作时间损失,乳腺癌发生数减少也对患者、他们的雇主和保险公司具有良性的经济影响。
研制可靠的延长释放的可植入技术为乳腺癌的药物递送增加了新的手段。肿瘤治疗和抑制转移和/或肿瘤复发是一直在进行的研究。对初始平台的技术增强能提供可调节和程序性的释放,包括远距离、相互作用地控制植入的装置,进一步确保同时使用多种药物的能力。体内再充填也能延长该纳米通道装置的功能,并减少与移植有关的不利事件。作为一种一般性的药物递送方法,可以鉴定出其他适应症,扩展这项创新的适用范围。
实施例3
如实施例1所述,构造封壳和纳米通道递送装置并植入于患者。但是,不施用醋酸亮丙瑞林,该封壳和纳米通道递送装置施用拉帕替尼来治疗乳腺癌。
实施例4
如实施例1所述,构造封壳和纳米通道递送装置并植入于患者。但是,不施用醋酸亮丙瑞林,该封壳和纳米通道递送装置施用bupenorphine来治疗阿片依赖。
实施例5
如实施例1所述,构造封壳和纳米通道递送装置并植入于患者。但是,不施用醋酸亮丙瑞林,该封壳和纳米通道递送装置施用干扰素α植入体来用于巨大细胞性成血管细胞瘤。
实施例6
如实施例1所述,构造封壳和纳米通道递送装置并植入于患者。但是,不施用醋酸亮丙瑞林,该封壳和纳米通道递送装置在阴道治疗中施用齐多夫定来预防孕妇向婴儿传输HIV。
* * * * * * * * * * * * * * *
本文使用的术语“直接流体相通”应当解释为这两个直接相连的物体之间流体相通,例如使得流体可以从一个物体中出来并立即进入第二个物体,而不流经中间物体。例如,在图3A-3G所示的实施方案中,出口70与纳米通道25直接流体相通。但是,出口70与入口30不是直接流体相通,因为流体在流出入口30后和进入出口70前必须流经中间物体(纳米通道25)
此外,本文使用的术语“入口”应当解释为纳米通道递送装置的室或贮器,其保存在通过该纳米通道递送装置递送前的物质。类似地,“出口”应当解释为纳米通道递送装置内的室或贮器,其保存即将离开该纳米通道递送装置的物质。
根据本发明公开的内容,无需过多实验即可进行并完成本文所述和要求保护的所有设备、系统和/或方法。尽管根据具体实施方案已经描述了本发明的装置、系统和/或方法,但是本领域技术人员显而易见的是,改变可以用于本文所述的这些装置、系统和/或方法的步骤或方法的步骤顺序,而不脱离本发明的概念、精神和范围。对于本领域技术人员显而易见的这些类似的变更和改进都认为在所附权利要求所限定的本发明的精神、范围和概念范围内。
参考文献
将下列参考文献的内容通过参考引入本文:
[1]Santen,R.J.,Yue,W.,Naftolin,F.,Mor,G.,Berstein,L.The potential of aromatase inhibitors in breast caneerprevention.Endocrine-Related Cancer.6,235-243(1999).
[2]Goss,P.E.,Strasser,K.Aromatase Inhibitors in theTreatment和Prevention of Breast Cancer.J.Clin.Oncol.19,881-894(2001).
[3]Chlebowski,R.T.Reducing the Risk of Breast Cancer.N.Engl.J.Med.,343,191-198(2000).
[4]Dowsett,M.,Jones,A.,Johnston,S.R.,Jacobs,S.,Trunet,P.,Smith,I.E.In vivo measurement of aromataseinhibition by来曲唑(CGS 20267)in postmenopausal patientswith breast cancer.Clin.Cancer Res.1,1511 1515(1995).
[5]Brueggemeier,R.W.,Hackett,J.C.,Diaz-Cruz,E.S.Aromatase Inhibitors in the Treatment of Breast Cancer.Endocrine Reviews 26,331-345(2005).
[6]Coates,A.S.,Keshaviah,A.,Thürlimann,B.,et al.Five years of来曲唑compared with tamoxifen as initialadjuvant therapy for postmenopausal women withendocrine-responsive early breast cancer:update of study BIG1-98.J.Clin.Oncol.25,486 492(2007).
[7]Goss,P.E.,Ingle,J.N.,Martino,S.,et al.A randomizedtrial of来曲唑in postmenopausal women after five years oftamoxifen therapy for early-stage breast cancer.N.Engl.J.Med.349,1793 1802(2003).
[8]Garreau,J.R.,Delamelena,T.,Walts,D.,Karamlou,K.,Johnson,N.Side effects of aromatase inhibitors versustamoxifen:the patients′perspective.Am.J.Surg.192,496-8(2006).
[9]Luthra,R.,Kirma,N.,Jones,J.,Tekmal,R.R.Use of来曲唑as a chemopreventive agent in aromatase overexpressingtransgenic mice.The Journal of Steroid Biochemistry和Molecular Biology.86,461-467(2003).
[10]Harper-Wynne,C.,Ross,G.,Sacks,N.,Salter,J.,Nasiri,N.,Iqbal,J.,A′Hern,R.,Dowsett,M.Effects of thearomatase inhibitor来曲唑on normal breast epithelial cellproliferation和metabolic in切割物s in postmenopausal women:a pilot study for breast cancer prevention.Cancer Epidemiol.Biomarkers Prev.11,614-21(2002).
Claims (126)
1.一种纳米通道递送装置,包含
入口微通道;
纳米通道;和
出口微通道,其中入口微通道和出口微通道与纳米通道直接流体相通。
2.权利要求1的纳米通道递送装置,其中所述纳米通道定向为平行于所述纳米通道递送装置的主平面.
3.权利要求1的纳米通道递送装置,其中由入口微通道向纳米通道和向出口微通道的流动途径需要在方向上有最多两个变化。
4.权利要求1的纳米通道递送装置,其中所述入口微通道具有长度、宽度和深度;
其中所述出口微通道具有长度、宽度和深度;
其中所述纳米通道具有长度、宽度和深度;
其中纳米通道长度与入口微通道长度的比为0.01-10.0;和
其中纳米通道长度与出口微通道长度的比为0.01-10.0。
5.权利要求1的纳米通道递送装置,其中所述纳米通道长度大于入口微通道长度且其中所述纳米通道长度大于出口微通道长度。
6.权利要求4的纳米通道递送装置,其中所述纳米通道长度与入口微通道长度或出口微通道长度的比为0.2-5.0。
7.权利要求4的纳米通道递送装置,其中所述纳米通道长度与入口微通道长度或出口微通道长度的比为0.3-3.0。
8.权利要求4的纳米通道递送装置,其中所述纳米通道长度与入口微通道长度或出口微通道长度的比为0.4-2.0。
9.权利要求4的纳米通道递送装置,其中所述纳米通道长度与入口微通道长度或出口微通道长度的比为0.5-1.0。
10.权利要求4的纳米通道递送装置,其中所述纳米通道长度大于所述出口微通道的长度、宽度和深度。
11.权利要求4的纳米通道递送装置,其中入口微通道通过单个纳米通道与所述出口微通道直接流体相通。
12.一种纳米通道递送装置,包含
入口微通道;
纳米通道;
出口微通道;和
从入口微通道至出口微通道的流体流动路径,其中所述流体流动路径需要在方向上有最多两个变化。
13.权利要求12的纳米通道递送装置,其中所述纳米通道定向为平行于所述纳米通道递送装置的主平面。
14.权利要求12的纳米通道递送装置,其中入口微通道和出口微通道与纳米通道直接流体相通。
15.一种纳米通道递送装置,包含:
基本上为平面的主体,包含第一表面和与所述第一表面相对的第二表面;
放置于所述基本上为平面的主体内的纳米通道;
与所述纳米通道流体相通的入口微通道;和
与所述纳米通道流体相通的出口微通道,其中入口微通道从所述纳米通道延伸到所述第一表面,其中所述出口微通道从所述纳米通道延伸到第二表面。
16.一种纳米通道递送装置,包含
多个入口微通道;
多个纳米通道;和
多个出口微通道,其中各入口微通道通过单个纳米通道与出口微通道直接流体相通。
17.权利要求16的纳米通道递送装置,其中所述纳米通道定向为平行于所述纳米通道递送装置的主平面。
18.权利要求16的纳米通道递送装置,其中入口微通道和出口微通道与共用的纳米通道直接流体相通。
19.权利要求16的纳米通道递送装置,其中:
各个入口和出口微通道垂直于所述纳米通道递送装置的主平面排列;
所述多个入口微通道形成第一阵列;
所述多个出口微通道形成第二阵列;和
所述第一阵列和所述第二阵列互相重叠,以使在沿垂直于所述主平面所取的截面观察时各个入口微通道分布于各个出口微通道之间。
20.一种纳米通道递送装置,包括:
基本上为平面的主体,包括:
长度、宽度和厚度,其中长度和宽度都大于厚度;
在所述基本上为平面的主体的第一侧上的入口表面,其中所述入口表面受到所述基本上为平面的主体的长度和宽度的限制;
和在所述基本上为平面的主体的第二侧上的出口表面,其中所述出口表面受到所述基本上为平面的主体的长度和宽度的限制,并且其中所述入口表面基本上平行于所述出口表面;
位于所述基本上为平面的主体内的纳米通道,其中所述纳米通道包括入口端和出口端;
与所述纳米通道流体相通的入口微通道;和
与所述纳米通道流体相通的出口微通道,其中配置入口微通道和纳米通道,以使第一线性轴可以在所述纳米通道的入口表面和入口端之间延伸。
21.权利要求20的纳米通道递送装置,其中配置所述出口微通道和纳米通道,以使第二线性轴可以在所述纳米通道的出口表面和出口端之间延伸。
22.权利要求20的纳米通道递送装置,其中入口微通道的主轴垂直于与所述基本上为平面的主体平行的平面。
23.权利要求20的纳米通道递送装置,还包括处在入口表面和入口微通道之间的入口大通道,其中所述入口大通道包含一般垂直于入口表面的界壁。
24.权利要求23的纳米通道递送装置,其中入口大通道是由深度反应性离子蚀刻形成的。
25.权利要求20的纳米通道递送装置,其中所述出口微通道的主轴垂直于与所述基本上为平面的主体平行的平面。
26.一种设备,包含插入到封壳中的上述任意权利要求的第一纳米通道递送装置。
27.权利要求26的设备,其中所述第一纳米通道递送装置垂直于所述封壳的主轴安装。
28.权利要求27的设备,其中所述封壳包含隔件。
29.权利要求28的设备,其中所述隔件包含自封闭物质。
30.权利要求28的设备,其中所述隔件包含有机硅橡胶。
31.权利要求28的设备,其中配置所述隔件以接受治疗剂的注射。
32.权利要求28的设备,还包含覆盖所述隔件的帽。
33.权利要求32的设备,其中所述帽包含装配用于引导注射针头朝向于隔件的孔口。
34.权利要求26的设备,其中所述封壳包含于第一纳米通道装置上延伸的盖子。
35.权利要求34的设备,其中所述盖子包含一个或多个孔口。
36.权利要求35的设备,其中所述一个或多个孔口的尺寸使得在使用期间它们不限制治疗剂从所述封壳中扩散。
37.权利要求34的设备,其中配置所述盖子以保护所述第一纳米通道递送装置免受机械损害。
38.权利要求34的设备,其中配置所述盖子以保护所述第一纳米通道递送装置免于在所述封壳植入到生物体内后生物组织结构的侵入。
39.权利要求26的设备,其中所述封壳包含第一内贮器。
40.权利要求39的设备,其中所述第一纳米通道递送装置与所述第一内贮器流体相通。
41.权利要求40的设备,其中所述封壳包含与第二纳米通道递送装置流体相通的第二内贮器。
42.权利要求41的设备,其中所述第一和第二内贮器互相不流体相通。
43.权利要求41的设备,其中所述第一和第二内贮器通过壁隔离。
44.权利要求41的设备,其中所述第一内贮器包含第一治疗剂,所述第二内贮器包含第二治疗剂。
45.权利要求41的设备,其中配置所述第一纳米通道递送,以便以第一扩散速率扩散第一治疗剂,其中配置所述第二纳米通道递送装置以便以第二扩散速率扩散第二治疗剂。
46.权利要求39的设备,其中可以通过用较大的可移去组件代替封壳的第一可移去组件来改变第一内贮器的体积。
47.权利要求39的设备,其中所述第一内贮器包含与治疗物质相容的涂层。
48.权利要求26的设备,其中所述封壳包含外涂层,其经配置用于预防有害的组织包裹。
49.权利要求26的设备,其中所述封壳包含圆柱形状。
50.权利要求26的设备,其中所述封壳包含圆盘形状。
51.权利要求26的设备,其中所述封壳包含矩形表面和弓形表面。
52.权利要求26的设备,其中所述封壳包均匀的横截面。
53.权利要求26的设备,其中所述封壳包含一种或多种下列材料:不锈钢、钛、聚醚醚酮、聚砜、环氧化物、有机硅橡胶、聚醚酮酮和热塑性聚氨基甲酸酯。
54.权利要求26的设备,其中所述封壳包含锚定部件。
55.权利要求54的设备,其中配置所述锚定部件以接受缝合。
56.权利要求26的设备,其中所述封壳包含色码,以指示封壳或纳米通道递送装置的性质。
57.权利要求56的设备,其中所述色码指示包含在封壳内的治疗剂的性质。
58.权利要求26的设备,其中所述封壳包含于第一纳米通道递送装置上延伸的半透明或透明的盖子。
59.一种制造纳米通道递送装置的方法,所述方法包括:
提供第一基底;
在所述第一基底中形成多个纳米通道;
在所述第一基底的纳米通道中形成多个入口微通道;
提供第二基底;
在所述第二基底中形成多个出口微通道;和
将所述第二基底结合到所述第一基底上,其中各入口微通道与纳米通道直接流体相通。
60.权利要求59的方法,其中所述第一基底包含绝缘体上硅型晶圆。
61.权利要求59的方法,其中各纳米通道的高度是约1-10纳米。
62.权利要求59的方法,其中各纳米通道的高度是约10-20纳米。
63.权利要求59的方法,其中各纳米通道的高度是约20-30纳米。
64.权利要求59的方法,其中各纳米通道的高度是约30-50纳米。
65.权利要求59的方法,其中各纳米通道的高度是约50-100纳米。
66.权利要求59的方法,其中各纳米通道的高度是约100-200纳米。
67.权利要求59的方法,其中所述第二基底包含在硅上的氧化铟锡膜的牺牲释放层。
68.权利要求67的方法,还包括在所述第二基底中形成多个入口微通道前,在所述第二基底上沉积玻璃膜。
69.权利要求59的方法,其中
所述第二基底包含玻璃晶圆;和
所述玻璃晶圆与第一基底结合,且在形成所述多个出口微通道前将所述玻璃晶圆研磨以减小厚度。
70.一种制造纳米通道递送装置的方法,所述方法包括:
提供第一基底;
在所述第一基底上形成所述多个纳米通道;
将第一牺牲材料填充到所述多个纳米通道中;
在所述第一基底中形成所述多个入口微通道;
将第二牺牲材料填充到所述多个入口微通道中;
形成覆盖所述多个纳米通道的帽层;
在所述帽层中形成多个出口微通道;
从所述多个纳米通道中去除第一牺牲材料;和
从所述多个入口微通道中去除第二牺牲材料。
71.权利要求70的方法,其中入口微通道被布置成垂直于所述第一基底的主平面。
72.权利要求70的方法,其中出口微通道被布置成垂直于所述第一基底的主平面。
73.权利要求70的方法,其中入口微通道与纳米通道直接流体相通。
74.权利要求70的方法,其中出口微通道与纳米通道直接流体相通。
75.权利要求70的方法,其中所述第一基底包含绝缘体上硅型晶圆,所述晶圆包含内氧化物层。
76.权利要求70的方法,其中用光刻工艺来构建入口和出口微通道。
77.权利要求75的方法,其中形成多个入口微通道包括从所述第一基底蚀刻材料,其中所述蚀刻结束于内氧化物层。
78.权利要求77的方法,其中形成多个入口大通道包括从所述第一基底背侧蚀刻材料,其中所述蚀刻结束于内氧化物层。
79.权利要求78的方法,其中在蚀刻材料从而形成入口微通道和入口大通道后去除所述内氧化物层打开了入口微通道和入口大通道之间的路径。
80.权利要求70的方法,其中各纳米通道为约1-10纳米深。
81.权利要求70的方法,其中各纳米通道为约10-20纳米深。
82.权利要求70的方法,其中各纳米通道为约20-30纳米深。
83.权利要求70的方法,其中各纳米通道为约30-40纳米深。
84.权利要求70的方法,其中各纳米通道为约40-200纳米深。
85.权利要求70的方法,其中可以随后通过选择性蚀刻来去除第一牺牲材料。
86.权利要求70的方法,其中所述第一牺牲材料是钨。
87.权利要求70的方法,其中可以随后通过选择性蚀刻来去除第二牺牲材料。
88.权利要求87的方法,其中所述第二牺牲材料选自:钨、铜、掺杂的玻璃和无掺杂的玻璃。
89.权利要求70的方法,其中所述第二牺牲材料填充到所述多个入口微通道中,以使所述第二牺牲材料于入口微通道的顶部之上延伸,并通过化学-机械平坦化技术(CMP)使其变平坦。
90.权利要求70的方法,其中所述帽层选自氮化硅、氧化硅、碳氮化硅、碳化硅和硅。
91.权利要求70的方法,其中所述帽层包含材料的多重沉积物,其包含拉伸应力和压缩性应力,以使所述帽层的净应力为拉伸性的。
92.权利要求70的方法,其中所述帽层为约0.5-1.0微米厚。
93.权利要求70的方法,其中所述帽层为约1.0-2.0微米厚。
94.权利要求70的方法,其中所述帽层为约2.0-4.0微米厚。
95.权利要求70的方法,其中所述帽层为约4.0-10.0微米厚。
96.权利要求70的方法,其中所述帽层大于10.0微米厚。
97.一种制造纳米通道递送装置的方法,所述方法包括:
提供第一基底;
在所述第一基底的第一侧上形成多个纳米通道;
将牺牲材料填充到多个纳米通道中;
将初始帽层结合到所述第一基底的第一侧;
在所述帽层中形成多个入口微通道;
制备具有粘合层的第二基底;
将所述第二基底结合到所述第一基底的第二侧;
去除所述第二基底的第一部分;
给所述第二基底提供附加的帽层;
在所述第二基底中形成多个出口微通道;和
去除所述牺牲材料以打开所述多个纳米通道。
98.权利要求97的方法,其中所述第二基底包含释放层,其中可以选择性地去除所述释放层以使第二基底从第一基底分离。
99.权利要求97的方法,其中出口微通道与所述纳米通道直接流体相通。
100.权利要求97的方法,其中所述第一基底包含绝缘体上硅型晶圆,所述晶圆包含内氧化物层。
101.权利要求100的方法,其中形成多个入口微通道包括从所述帽层蚀刻材料,其中所述蚀刻结束于内氧化物层。
102.权利要求101的方法,其中形成多个入口大通道包括葱所述第一基底背侧蚀刻材料,其中所述蚀刻结束于内氧化物层。
103.权利要求102的方法,其中在蚀刻材料从而形成入口微通道和入口大通道后去除所述内氧化物层打开了入口微通道和入口大通道之间的路径。
104.权利要求97的方法,其中各纳米通道为约1-10纳米深。
105.权利要求97的方法,其中各纳米通道为约10-20纳米深。
106.权利要求97的方法,其中各纳米通道为约20-30纳米深。
107.权利要求97的方法,其中各纳米通道为约30-40纳米深。
108.权利要求97的方法,其中各纳米通道为约40-200纳米深。
109.权利要求97的方法,其中可以随后通过选择性蚀刻来去除所述牺牲材料。
110.权利要求97的方法,其中所述牺牲材料是钨。
111.权利要求97的方法,其中所述初始帽层是通过等离子增强的化学气相淀积法沉积的氮化硅。
112.权利要求97的方法,其中所述初始帽层为约0.01-0.5微米厚。
113.权利要求97的方法,其中所述初始帽层为约0.5-1.0微米厚。
114.权利要求97的方法,其中所述初始帽层为约1.0-2.0微米厚。
115.权利要求97的方法,其中所述初始帽层为约2.0-4.0微米厚。
116.权利要求97的方法,其中所述初始帽层为约4.0-10.0微米厚。
117.权利要求97的方法,其中所述初始帽层大于10.0微米厚。
118.权利要求97的方法,其中所述初始帽层选自氮化硅、氧化硅、碳氮化硅、碳化硅和硅。
119.权利要求97的方法,其中所述初始帽层包含材料的多重沉积物,所述材料包含拉伸应力和压缩性应力,以使所述帽层的净应力为拉伸性的。
120.权利要求118的方法,其中所述粘合层选自:苯并环丁烯、氧化硅、铜、掺杂的玻璃、金及金的合金。
121.权利要求97的方法,其中将所述第二基底结合到所述第一基底上的方法选自:阳极结合、熔融结合和热压结合。
122.一种纳米通道递送装置,包含
多个入口微通道,其中各入口微通道具有长度、宽度和深度,且其中入口微通道的长度大于入口微通道的宽度和深度;
多个出口微通道,其中各出口微通道具有长度、宽度和深度;
多个纳米通道与多个入口微通道和出口微通道流体相通,其中:
排列所述多个入口微通道,以使入口微通道的宽度和深度限定出平行于所述纳米通道递送装置的主平面的第一表面;和
排列所述多个出口微通道,以使所述出口微通道的宽度和深度限定出平行于所述纳米通道递送装置的主平面的第二表面。
123.一种治疗人疾病的方法,所述方法包括:
提供本文所述的纳米通道递送装置;
提供与所述纳米通道递送装置流体相通的贮器;
在所述贮器中提供物质,其中配置所述物质以治疗所述疾病;和
通过所述纳米通道递送装置将所述物质施用于人。
124.权利要求123的方法,其中所述物质选自:亮丙瑞林、来曲唑、拉帕替尼、丁丙诺啡、干扰素和齐多夫定。
125.权利要求123的方法,其中所述疾病选自:前列腺癌、乳腺癌、阿片类物质依赖、巨大细胞性成血管细胞瘤和HIV。
126.权利要求123的方法,其中通过所述纳米通道递送装置将所述物质施用于人包括将所述纳米通道递送装置皮下插入于人体中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410773994.0A CN104546669B (zh) | 2008-11-14 | 2009-11-13 | 纳米通道装置和相关方法 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11468708P | 2008-11-14 | 2008-11-14 | |
US61/114,687 | 2008-11-14 | ||
US16884409P | 2009-04-13 | 2009-04-13 | |
US61/168,844 | 2009-04-13 | ||
PCT/US2009/064376 WO2010056986A2 (en) | 2008-11-14 | 2009-11-13 | Nanochanneled device and related methods |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410773994.0A Division CN104546669B (zh) | 2008-11-14 | 2009-11-13 | 纳米通道装置和相关方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102271732A true CN102271732A (zh) | 2011-12-07 |
CN102271732B CN102271732B (zh) | 2014-12-31 |
Family
ID=42170731
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410773994.0A Active CN104546669B (zh) | 2008-11-14 | 2009-11-13 | 纳米通道装置和相关方法 |
CN200980154070.XA Active CN102271732B (zh) | 2008-11-14 | 2009-11-13 | 纳米通道装置和相关方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410773994.0A Active CN104546669B (zh) | 2008-11-14 | 2009-11-13 | 纳米通道装置和相关方法 |
Country Status (6)
Country | Link |
---|---|
US (5) | US8480637B2 (zh) |
EP (1) | EP2355864B1 (zh) |
CN (2) | CN104546669B (zh) |
CA (1) | CA2743772C (zh) |
HK (2) | HK1164179A1 (zh) |
WO (1) | WO2010056986A2 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105413024A (zh) * | 2016-01-07 | 2016-03-23 | 深圳市赫拉铂氢时代科技有限公司 | 纳米/微米氢水无针注射仪及其注射方法 |
CN105744983A (zh) * | 2013-08-12 | 2016-07-06 | 纳米医学系统公司 | 用于缓释在增溶剂中的低水溶性治疗剂的装置和方法 |
CN110102778A (zh) * | 2019-06-14 | 2019-08-09 | 上海镭立激光科技有限公司 | 一种低温烧结高结晶度银粉的制备方法 |
CN112169851A (zh) * | 2020-10-13 | 2021-01-05 | 中国科学院微电子研究所 | 一种微流道入口盖板及其制备和使用方法 |
CN112858687A (zh) * | 2020-12-30 | 2021-05-28 | 宁波职业技术学院 | 一种血清淀粉样蛋白a检测试剂及其制备方法 |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7431710B2 (en) | 2002-04-08 | 2008-10-07 | Glaukos Corporation | Ocular implants with anchors and methods thereof |
WO2003068290A2 (en) | 2002-02-11 | 2003-08-21 | Antares Pharma, Inc. | Intradermal injector |
WO2006079064A1 (en) | 2005-01-24 | 2006-07-27 | Antares Pharma, Inc. | Prefilled needle assisted jet injector |
WO2007131013A1 (en) | 2006-05-03 | 2007-11-15 | Antares Pharma, Inc. | Two-stage reconstituting injector |
US9144648B2 (en) | 2006-05-03 | 2015-09-29 | Antares Pharma, Inc. | Injector with adjustable dosing |
EP2268342B1 (en) | 2008-03-10 | 2015-09-16 | Antares Pharma, Inc. | Injector safety device |
WO2010017285A2 (en) | 2008-08-05 | 2010-02-11 | Antares Pharma, Inc. | Multiple dosage injector |
EP2355864B1 (en) | 2008-11-14 | 2016-11-09 | The Board of Regents of The University of Texas System | Nanochanneled device and related methods |
KR101597672B1 (ko) | 2009-03-20 | 2016-02-25 | 앤태어스 파머, 인코퍼레이티드 | 위험 약제 주사 장치 |
US10206813B2 (en) | 2009-05-18 | 2019-02-19 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
WO2011045836A1 (ja) * | 2009-10-14 | 2011-04-21 | 国立大学法人東北大学 | センサ装置およびセンサ装置の製造方法 |
US20130131629A1 (en) * | 2010-05-19 | 2013-05-23 | The Board of Regents of the Unversity of Texas System | Nanochanneled device and related methods |
US20110288497A1 (en) * | 2010-05-19 | 2011-11-24 | Nanomedical Systems, Inc. | Nano-Scale Coatings and Related Methods Suitable for In-Vivo Use |
US9048327B2 (en) * | 2011-01-25 | 2015-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device |
US10245178B1 (en) | 2011-06-07 | 2019-04-02 | Glaukos Corporation | Anterior chamber drug-eluting ocular implant |
US8496619B2 (en) | 2011-07-15 | 2013-07-30 | Antares Pharma, Inc. | Injection device with cammed ram assembly |
US9220660B2 (en) | 2011-07-15 | 2015-12-29 | Antares Pharma, Inc. | Liquid-transfer adapter beveled spike |
US20130131628A1 (en) * | 2011-10-24 | 2013-05-23 | The Board Of Regents Of The University Of Texas System | Device and method for sustained release of therapeutic agent |
US20150032088A1 (en) * | 2012-01-24 | 2015-01-29 | The Methodist Hospital Research Institute | Sustained drug delivery from solid state compositions with nanochannel membranes |
EP4327849A3 (en) | 2012-03-06 | 2024-04-24 | Antares Pharma, Inc. | Prefilled syringe with breakaway force feature |
US9950125B2 (en) | 2012-04-06 | 2018-04-24 | Antares Pharma, Inc. | Needle assisted jet injection administration of testosterone compositions |
WO2013169800A1 (en) | 2012-05-07 | 2013-11-14 | Antares Pharma, Inc. | Injection device with cammed ram assembly |
US11059040B2 (en) | 2012-08-30 | 2021-07-13 | Applied Thin Films, Inc. | Transport of liquids and solute materials in nanochannels |
PT2953667T (pt) | 2013-02-11 | 2020-01-28 | Antares Pharma Inc | Dispositivo de injeção a jato auxiliado por agulha tendo força de gatilho reduzida |
JP6030803B2 (ja) | 2013-03-11 | 2016-11-24 | アンタレス・ファーマ・インコーポレーテッド | ピニオンシステムを有する用量注射器 |
WO2014165136A1 (en) | 2013-03-12 | 2014-10-09 | Antares Pharma, Inc. | Constant volume prefilled syringes and kits thereof |
EP2981249A4 (en) * | 2013-04-02 | 2016-11-23 | Stc Unm | MESOPOROUS ALAN NANOPARTICLES AS A UNIVERSAL PLATFORM FOR ADSORPTION, PRESENTATION, AND ADMINISTRATION OF ANTIGENS |
EP3027264B1 (en) * | 2013-08-01 | 2020-05-13 | The Board of Regents of The University of Texas System | Nanochanneled device with electrodes |
WO2015116523A1 (en) | 2014-01-31 | 2015-08-06 | The Charles Stark Draper Laboratory, Inc. | Multi-layered micro-channel electrode array with regenerative selectivity |
WO2015120222A1 (en) | 2014-02-06 | 2015-08-13 | The Charles Stark Draper Laboratory, Inc. | Array of microelectrodes for interfacing to neurons within fascicles |
US9079002B1 (en) * | 2014-02-07 | 2015-07-14 | Texas Instruments Incorporated | Ceramic nanochannel drug delivery device and method of formation |
US9305794B2 (en) * | 2014-04-07 | 2016-04-05 | Macronix International Co., Ltd. | Etching method and etching composition |
WO2015184173A1 (en) | 2014-05-29 | 2015-12-03 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
US20180125780A1 (en) * | 2015-05-15 | 2018-05-10 | The Methodist Hospital System | Implantable nanochannel delivery devices |
US9691729B2 (en) | 2015-07-08 | 2017-06-27 | Tpyota Motor Engineering & Manufacturing North America, Inc. | Systems of bonded substrates and methods for bonding substrates with bonding layers |
US11925578B2 (en) | 2015-09-02 | 2024-03-12 | Glaukos Corporation | Drug delivery implants with bi-directional delivery capacity |
US11564833B2 (en) | 2015-09-25 | 2023-01-31 | Glaukos Corporation | Punctal implants with controlled drug delivery features and methods of using same |
US10953154B2 (en) * | 2015-10-19 | 2021-03-23 | The Methodist Hospital | Method and apparatus for the fail-safe termination of in vivo drug delivery from an implantable drug delivery system |
WO2017120504A1 (en) | 2016-01-08 | 2017-07-13 | Durfee Paul N | Osteotropic nanoparticles for prevention or treatment of bone metastases |
CN109937025B (zh) | 2016-04-20 | 2022-07-29 | 多斯医学公司 | 生物可吸收眼部药物的递送装置 |
WO2017218354A1 (en) | 2016-06-13 | 2017-12-21 | Nano Precision Medical, Inc. | Drug delivery device |
WO2018067535A1 (en) | 2016-10-04 | 2018-04-12 | Nano Precision Medical, Inc. | Implant delivery system with hydration promotor capability |
US11344629B2 (en) | 2017-03-01 | 2022-05-31 | Charles Jeffrey Brinker | Active targeting of cells by monosized protocells |
US20200306516A1 (en) * | 2017-08-14 | 2020-10-01 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with glatiramer or a pharmaceutically acceptable salt thereof |
WO2019079384A1 (en) | 2017-10-17 | 2019-04-25 | The Methodist Hospital System | ADMINISTRATION DEVICES |
WO2019126739A1 (en) | 2017-12-21 | 2019-06-27 | Shepherd Therapeutics, Inc. | Pyrvinium pamoate anti-cancer therapies |
US20230023802A1 (en) * | 2019-12-05 | 2023-01-26 | The Methodist Hospital System | Stabilized drug formulations and methods of loading drug delivery implants |
CN113145183B (zh) * | 2020-01-22 | 2022-12-06 | 京东方科技集团股份有限公司 | 一种生物芯片及其制作方法 |
EP3885042A1 (en) * | 2020-03-24 | 2021-09-29 | Imec VZW | Method for fabricating a microfluidic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004036623A2 (en) * | 2002-10-17 | 2004-04-29 | Nantero, Inc. | Nanoscopic tunnel and method of making same |
CN1585627A (zh) * | 2001-09-14 | 2005-02-23 | 弗朗西斯J·马丁 | 用于持续释放治疗剂的显微制作的纳米微孔装置 |
US20060180469A1 (en) * | 2005-01-25 | 2006-08-17 | Jongyoon Han | Electrokinetic concentration device and methods of use thereof |
US20070066138A1 (en) * | 2005-04-05 | 2007-03-22 | The Ohio State University Research Foundation | Diffusion Delivery Systems and Methods of Fabrication |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3731681A (en) | 1970-05-18 | 1973-05-08 | Univ Minnesota | Implantable indusion pump |
US3921636A (en) | 1973-01-15 | 1975-11-25 | Alza Corp | Novel drug delivery device |
DE3714015A1 (de) | 1987-04-27 | 1988-11-17 | Ulrich M Landwehr | Vorrichtung zur erzielung einer reproduzierbaren koerperhaltung |
US4834704A (en) | 1988-04-13 | 1989-05-30 | Eaton Corporation | Injectable infusion pump apparatus for implanting long-term dispensing module and medication in an animal and method therefor |
US4955861A (en) * | 1988-04-21 | 1990-09-11 | Therex Corp. | Dual access infusion and monitoring system |
DE3915251A1 (de) * | 1989-05-10 | 1990-11-22 | Annemarie Schloegl Ges M B H | Implantierbare vorrichtung zur dosierten abgabe von medikamenten in den menschlichen koerper |
DE9107030U1 (de) * | 1991-06-07 | 1991-08-14 | Anschütz & Co GmbH, 2300 Kiel | Vorrichtung zum sicheren Befüllen der Behälter einer Infusionspumpe |
US5985164A (en) | 1994-03-07 | 1999-11-16 | Regents Of The University Of California | Method for forming a filter |
US5985328A (en) | 1994-03-07 | 1999-11-16 | Regents Of The University Of California | Micromachined porous membranes with bulk support |
US5770076A (en) | 1994-03-07 | 1998-06-23 | The Regents Of The University Of California | Micromachined capsules having porous membranes and bulk supports |
US5893974A (en) | 1994-03-07 | 1999-04-13 | Regents Of University Of California | Microfabricated capsules for immunological isolation of cell transplants |
US5651900A (en) | 1994-03-07 | 1997-07-29 | The Regents Of The University Of California | Microfabricated particle filter |
US5798042A (en) * | 1994-03-07 | 1998-08-25 | Regents Of The University Of California | Microfabricated filter with specially constructed channel walls, and containment well and capsule constructed with such filters |
US5769823A (en) | 1995-03-23 | 1998-06-23 | Tricumed Gmbh | Implantable infusion pump |
NZ331186A (en) | 1996-02-02 | 2000-04-28 | Alza Corp | Osmotically driven sustained delivery drug delivery capsule |
US5938923A (en) | 1997-04-15 | 1999-08-17 | The Regents Of The University Of California | Microfabricated filter and capsule using a substrate sandwich |
US6368871B1 (en) * | 1997-08-13 | 2002-04-09 | Cepheid | Non-planar microstructures for manipulation of fluid samples |
JP3376877B2 (ja) | 1997-09-02 | 2003-02-10 | 信越半導体株式会社 | 種結晶保持具 |
US6471675B1 (en) | 1999-04-30 | 2002-10-29 | Medtronic, Inc. | Passive flow control devices for implantable pumps |
EP1183059A1 (en) | 1999-06-08 | 2002-03-06 | Medical Research Group, Inc. | Method and apparatus for infusing liquids using a chemical reaction in an implanted infusion device |
EP1192455B1 (en) * | 1999-06-08 | 2014-07-02 | Broadley Technologies Corporation | Reference electrode having a microfluidic flowing liquid junction |
EP1202803A2 (en) * | 1999-12-22 | 2002-05-08 | Gene Logic, Inc. | Flow-through chip cartridge, chip holder, system & method thereof |
US6592519B1 (en) | 2000-04-28 | 2003-07-15 | Medtronic, Inc. | Smart microfluidic device with universal coating |
US6925390B2 (en) * | 2001-01-15 | 2005-08-02 | Sau Lan Tang Staats | Customized microfluidic device design, ordering, and manufacturing |
US7776029B2 (en) | 2001-01-30 | 2010-08-17 | The Alfred E. Mann Foundation For Scientific Research | Microminiature infusion pump |
US7083593B2 (en) | 2001-04-18 | 2006-08-01 | Advanced Bionics Corporation | Programmable implantable pump with accessory reservoirs and multiple independent lumen catheter |
WO2002103210A1 (en) | 2001-06-15 | 2002-12-27 | Hansford Derek J | Nanopump devices and methods |
US6955670B2 (en) | 2001-06-15 | 2005-10-18 | Martin Francis J | Nanopump system |
US20040038260A1 (en) | 2002-04-18 | 2004-02-26 | Imedd, Inc. | Nanopump device for analyzing DNA sequences |
US20070286773A1 (en) | 2002-05-16 | 2007-12-13 | Micronit Microfluidics B.V. | Microfluidic Device |
US20040116905A1 (en) | 2002-09-09 | 2004-06-17 | Pedersen Per Elgard | Flow restrictor with safety feature |
US20050118229A1 (en) | 2003-10-21 | 2005-06-02 | Imedd, Inc. | Implantable drug delivery device for sustained release of therapeutic agent |
EP1997456B1 (en) | 2004-02-13 | 2011-12-07 | Innovational Holdings, LLC | Drug coating device and method for wire filaments |
US7775087B2 (en) * | 2004-03-16 | 2010-08-17 | Northwestern University | Microchannel forming method and nanotipped dispensing device having a microchannel |
US7413846B2 (en) | 2004-11-15 | 2008-08-19 | Microchips, Inc. | Fabrication methods and structures for micro-reservoir devices |
US7618391B2 (en) * | 2005-04-20 | 2009-11-17 | Children's Medical Center Corporation | Waveform sensing and regulating fluid flow valve |
US8114055B2 (en) * | 2005-05-10 | 2012-02-14 | Palyon Medical (Bvi) Limited | Implantable pump with infinitely variable resistor |
US8002747B2 (en) * | 2005-05-26 | 2011-08-23 | The Alfred E. Mann Foundation For Scientific Research | Implantable infusion device with multiple controllable fluid outlets |
US20070087029A1 (en) | 2005-10-14 | 2007-04-19 | Pakala Syamasundar V | Localized delivery to the lymphatic system |
US7708730B2 (en) | 2006-01-30 | 2010-05-04 | Palyon Medical (Bvi) Limited | Template system for multi-reservoir implantable pump |
DE102006014476B3 (de) | 2006-03-29 | 2007-07-19 | Tönnies, Jan | Implantierbare Infusionspumpe mit einer Drossel |
CN101490414A (zh) * | 2006-07-17 | 2009-07-22 | 皇家飞利浦电子股份有限公司 | 微流体系统 |
JP2010500884A (ja) | 2006-08-18 | 2010-01-14 | ネステク ソシエテ アノニム | ビフィドバクテリウム属菌における遺伝子再構築(GeneticRemodeling) |
US7744762B2 (en) * | 2006-08-24 | 2010-06-29 | Virginia Tech Intellectual Properties, Inc. | Microfluidic devices and methods facilitating high-throughput, on-chip detection and separation techniques |
WO2008098179A1 (en) * | 2007-02-08 | 2008-08-14 | Massachusetts Institute Of Technology | In vitro microfluidic model of microcirculatory diseases, and methods of use thereof |
EP1992410A1 (en) * | 2007-03-12 | 2008-11-19 | Stichting Dutch Polymer Institute | Microfluidic system based on actuator elements |
DE102007016659B8 (de) | 2007-04-04 | 2015-12-03 | Tricumed Medizintechnik Gmbh | Infusionspumpe, Kanalplatte für eine Infusionspumpe und Verfahren zu ihrer Herstellung |
US8266791B2 (en) * | 2007-09-19 | 2012-09-18 | The Charles Stark Draper Laboratory, Inc. | Method of fabricating microfluidic structures for biomedical applications |
US20090214392A1 (en) * | 2008-02-27 | 2009-08-27 | The Texas A&M University System | Nano-fluidic Trapping Device for Surface-Enhanced Raman Spectroscopy |
WO2009134786A2 (en) | 2008-04-30 | 2009-11-05 | The Board Of Regents Of The University Of Texas System | Quality control method and micro/nano-channeled devices |
KR20110016479A (ko) | 2008-06-06 | 2011-02-17 | 바이오나노매트릭스, 인크. | 통합 나노유체 분석 장치, 제작 방법 및 분석 기술 |
EP2355864B1 (en) | 2008-11-14 | 2016-11-09 | The Board of Regents of The University of Texas System | Nanochanneled device and related methods |
EP2419091B1 (en) | 2009-04-13 | 2019-06-26 | The Board of Regents of The University of Texas System | Nanochanneled device and related methods |
WO2011051718A2 (en) * | 2009-11-02 | 2011-05-05 | Ffei Limited | Micro-channel structure method and apparatus |
-
2009
- 2009-11-13 EP EP09826831.1A patent/EP2355864B1/en active Active
- 2009-11-13 US US12/618,233 patent/US8480637B2/en active Active
- 2009-11-13 WO PCT/US2009/064376 patent/WO2010056986A2/en active Application Filing
- 2009-11-13 CA CA2743772A patent/CA2743772C/en active Active
- 2009-11-13 CN CN201410773994.0A patent/CN104546669B/zh active Active
- 2009-11-13 CN CN200980154070.XA patent/CN102271732B/zh active Active
-
2010
- 2010-04-13 US US13/264,069 patent/US8632510B2/en active Active
-
2012
- 2012-05-16 HK HK12104835.7A patent/HK1164179A1/zh not_active IP Right Cessation
-
2013
- 2013-05-02 US US13/875,871 patent/US9526824B2/en active Active
- 2013-12-06 US US14/099,429 patent/US9005185B2/en active Active
-
2015
- 2015-03-16 US US14/658,561 patent/US20150246174A1/en not_active Abandoned
- 2015-10-22 HK HK15110391.7A patent/HK1209626A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1585627A (zh) * | 2001-09-14 | 2005-02-23 | 弗朗西斯J·马丁 | 用于持续释放治疗剂的显微制作的纳米微孔装置 |
WO2004036623A2 (en) * | 2002-10-17 | 2004-04-29 | Nantero, Inc. | Nanoscopic tunnel and method of making same |
US20060180469A1 (en) * | 2005-01-25 | 2006-08-17 | Jongyoon Han | Electrokinetic concentration device and methods of use thereof |
US20070066138A1 (en) * | 2005-04-05 | 2007-03-22 | The Ohio State University Research Foundation | Diffusion Delivery Systems and Methods of Fabrication |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105744983A (zh) * | 2013-08-12 | 2016-07-06 | 纳米医学系统公司 | 用于缓释在增溶剂中的低水溶性治疗剂的装置和方法 |
CN105744983B (zh) * | 2013-08-12 | 2019-12-27 | 纳米医学系统公司 | 用于缓释在增溶剂中的低水溶性治疗剂的装置和方法 |
CN105413024A (zh) * | 2016-01-07 | 2016-03-23 | 深圳市赫拉铂氢时代科技有限公司 | 纳米/微米氢水无针注射仪及其注射方法 |
CN110102778A (zh) * | 2019-06-14 | 2019-08-09 | 上海镭立激光科技有限公司 | 一种低温烧结高结晶度银粉的制备方法 |
CN110102778B (zh) * | 2019-06-14 | 2021-11-02 | 珠海银波科技发展有限公司 | 一种低温烧结高结晶度银粉的制备方法 |
CN112169851A (zh) * | 2020-10-13 | 2021-01-05 | 中国科学院微电子研究所 | 一种微流道入口盖板及其制备和使用方法 |
CN112169851B (zh) * | 2020-10-13 | 2022-03-29 | 中国科学院微电子研究所 | 一种微流道入口盖板及其制备和使用方法 |
CN112858687A (zh) * | 2020-12-30 | 2021-05-28 | 宁波职业技术学院 | 一种血清淀粉样蛋白a检测试剂及其制备方法 |
CN112858687B (zh) * | 2020-12-30 | 2023-09-15 | 宁波职业技术学院 | 一种血清淀粉样蛋白a检测试剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130240483A1 (en) | 2013-09-19 |
HK1164179A1 (zh) | 2012-09-21 |
US20100152699A1 (en) | 2010-06-17 |
CN102271732B (zh) | 2014-12-31 |
CN104546669B (zh) | 2018-01-05 |
US8480637B2 (en) | 2013-07-09 |
EP2355864B1 (en) | 2016-11-09 |
US8632510B2 (en) | 2014-01-21 |
EP2355864A4 (en) | 2012-08-15 |
EP2355864A2 (en) | 2011-08-17 |
CA2743772C (en) | 2015-06-30 |
US20120095443A1 (en) | 2012-04-19 |
US20150246174A1 (en) | 2015-09-03 |
US20140180251A1 (en) | 2014-06-26 |
HK1209626A1 (zh) | 2016-04-08 |
CN104546669A (zh) | 2015-04-29 |
CA2743772A1 (en) | 2010-05-20 |
US9005185B2 (en) | 2015-04-14 |
WO2010056986A8 (en) | 2010-08-05 |
WO2010056986A3 (en) | 2010-10-21 |
US9526824B2 (en) | 2016-12-27 |
WO2010056986A2 (en) | 2010-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102271732A (zh) | 纳米通道装置和相关方法 | |
JP6085634B2 (ja) | 多孔質シリコン薬物溶出粒子 | |
CN105147517B (zh) | 微器件的制备方法 | |
Mokry | Craniopharyngiomas: a six year experience with Gamma Knife radiosurgery | |
ITMI931714A1 (it) | Uso del taxol per la produzione di un medicamento per il trattamento delle forme cancerose | |
JP2007106768A (ja) | ヒトの疾患を治療するためのケモカイン類縁体の設計 | |
Jenkins et al. | Experimental intracerebral haematoma: the role of blood constituents in early ischaemia | |
Volberding et al. | Chemotherapy in advanced Kaposi's sarcoma: Implications for current cases in homosexual men | |
Ren et al. | Variations of dose and electrode spacing for rat breast cancer electrochemical treatment | |
US10722696B2 (en) | Nano-scale coatings and related methods suitable for in-vivo use | |
Roberts et al. | Spontaneous ovarian hyperstimulation caused by a follicle-stimulating hormone–secreting pituitary adenoma | |
Voelklein et al. | Primary Langerhans cell histiocytosis of the vulva | |
Chong et al. | Primary hemangiopericytoma presenting as a Pancoast tumor | |
Dayan et al. | Biochemical cure of recurrent acromegaly by resection of cervical spinal canal metastases | |
JP2003532638A5 (zh) | ||
Ueda et al. | A rare malignant ovarian mixed germ cell tumor containing pancreatic tissue with islet cells | |
US20080050610A1 (en) | Method for manufacturing an at least partially porous, hollow silicon body, hollow silicon bodies manufacturable by this method, and uses of these hollow silicon bodies | |
US11103460B2 (en) | Fabrication methods for nanodelivery systems for long term controlled delivery of active pharmaceutical ingredients | |
鄭漢春 et al. | Orbital Lymphoblastoma-A Case Report | |
Schulman et al. | Neoadjuvant hormonal treatment of locally advanced prostate cancer: does it make sense? | |
Stewart et al. | Cyclophosphamide, Adriamycin, vincristine, and dexamethasone in the treatment of bulky central nervous system lymphoma | |
Wang | First-principles pseudopotential study of structures of iron on copper (001) surface | |
An et al. | A Case of High Dose Cytosine Arabinoside Induced Stevens-Johnson Syndrome in a Patient with Malignant Lymphoma | |
KUROKAWA et al. | Relation between tumor depth and cervical lymph node metastasis in squamous cell carcinoma of the tongue | |
Parma et al. | Priapismo: Terapia Chirurgica Attuale |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1164179 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1164179 Country of ref document: HK |