CN102254303B - 遥感图像分割方法及遥感图像检索方法 - Google Patents

遥感图像分割方法及遥感图像检索方法 Download PDF

Info

Publication number
CN102254303B
CN102254303B CN 201110157076 CN201110157076A CN102254303B CN 102254303 B CN102254303 B CN 102254303B CN 201110157076 CN201110157076 CN 201110157076 CN 201110157076 A CN201110157076 A CN 201110157076A CN 102254303 B CN102254303 B CN 102254303B
Authority
CN
China
Prior art keywords
color characteristic
textural characteristics
dbi
remote sensing
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110157076
Other languages
English (en)
Other versions
CN102254303A (zh
Inventor
李士进
朱佳丽
朱跃龙
冯钧
万定生
王继民
余宇峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN 201110157076 priority Critical patent/CN102254303B/zh
Publication of CN102254303A publication Critical patent/CN102254303A/zh
Application granted granted Critical
Publication of CN102254303B publication Critical patent/CN102254303B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明涉及一种遥感图像分割方法,属于遥感图像处理技术领域。本发明根据颜色特征、纹理特征及像素点的位置信息生成的特征向量,作为初始输入向量,利用均值漂移滤波进行遥感图像的分割,并进一步利用构造的聚类有效性指数自适应地确定颜色特征和纹理特征的权重,有效提高了遥感图像分割的精度。本发明还公开了一种采用本发明的遥感图像分割方法的遥感图像检索方法,并进一步采用了一种新的区域表示与匹配方法来完成遥感图像的检索。相比现有技术,本发明具有更好的检索精度,尤其对于小目标区域的检索具有更好的效果。

Description

遥感图像分割方法及遥感图像检索方法
技术领域
本发明涉及遥感图像检索方法,尤其涉及一种基于图像语义区域精确分割的遥感图像检索方法,属于遥感图像处理技术领域。
背景技术
随着卫星遥感技术的发展,海量遥感图像的快速查询成为急需解决的课题。基于内容的遥感图像检索方法使遥感图像的快速、准确查询成为可能。基于内容的遥感图像检索系统按照一定的分块策略将图像分成一系列子块,并根据子块的视觉特征之间的匹配来完成图像的检索。但是,在基于内容的遥感图像检索中,常用的分块策略将遥感图像分成一系列固定大小的子块,破坏了图像中隐含目标的语义完整性。由于受分块策略及遥感图像自身特点的影响,基于内容的检索技术对遥感图像中的小目标区域还不能有效地进行检索。而基于区域的检索技术试图从语义层次上理解和检索图像,可以有效解决基于内容的检索方法中存在的问题。基于区域的图像检索方法借助特定的分割技术把图像分成一系列的子区域,每个区域对应着特定的语义内容,通过提取颜色、纹理、形状等特征进行区域表示,并利用图像的区域匹配来完成图像的检索。近年来,已有研究者采用基于区域的方法对遥感图像进行分析,如Gi gandet等人[X.Gigandet,M.Bach Cuadra,A.Pointet.Region-based satellite image classification:methodand validation[C].Proceedings of International Conference on Image Processing,v 3,p:832-835,2005.]提出的一种结合无监督分割和有监督分类方法的高分辨率遥感图像分类法。该方法先借助多光谱数据、局部空间信息及高斯隐马尔科夫模型完成图像的分割,然后分别利用已分割区域的亮度、纹理及形状特征对Mahalanobis距离分类器和SVM进行训练,并利用训练好的分类器实现遥感图像的分类。Parulekar等人[Ashish Parulekar,Ritendra Datta,Jia Li,James Z.Wang.Large-scalesatellite image browsing using automatic semantic categorization and content-based retrieval[C].Proceedings ofthe tenth International Conference on Computer Vision Workshops,p:1873-1880,2005.]通过在遥感图像检索先对图像区域进行语义分类处理,再根据区域的语义分类结果,采用综合区域匹配法来进行像检索,有效提高了检索性能。在基于区域的图像检索中,图像分割和区域匹配是关键步骤,也是难点问题。
图像语义区域的精确分割至今仍是计算机视觉领域一个公开的难题。国内外学者提出了很多图像分割方法用于RBIR系统,如基于统计分析的分割方法,基于聚类的方法,JSEG等。Ko等人[ByoungChul Ko,Hyeran Byun.FRIP:a region-based image retrieval tool using automatic imagesegmentation and stepwise Boolean and matching[J].IEEE transactions on multimedia,Vol.7,No.1,p:105-113,Feb 2005.]提出了一种基于自适应循环滤波和贝叶斯理论的两级分割方法,该方法根据纹理信息的数量选择合适的滤波器进行自适应循环滤波,然后通过区域标记和区域合并来防止语义不同的区域之间的合并,从而完成图像分割。Chen等人[Yixin Chen,James Z.Wang.Aregion-based fuzzy feature matching approach to content-based image retrieval[J].IEEE transactions on patternanalysis and machine intelligence,Vol.24,No.9,p:1252-1267,Sep 2002.]利用K-均值算法对特征向量集进行聚类,使每一类分别对应着分割图像中的一个区域,从而完成图像的分割。JSEG也是RBIR中常用的分割算法[Deng Y.,Manjunath,B.,Shin,H.Color image segmentation[C].Proceedings ofInternational conference on computer vision and pattern recognition,Vol.2,p:446-451,1999.],该方法首先将图像中的颜色进行量化用于区分不同的区域,并将图像中像素的颜色用对应的颜色类别标签来替代,从而生成图像的类别映射(class-map),然后根据J准则和类别映射生成所谓的J-图像,该图像中取值较大和较小的数值分别对应着图像中可能的边界和中心,最后利用区域生长的方法来完成图像的分割。上述方法对于图像分割的研究主要侧重于分割算法本身,却忽略了分割过程中所用特征的重要性。
图像分割是基于区域的图像检索中的关键部分。遥感图像的分割方法主要有基于分水岭的分割、基于数学形态学的分割、基于边缘的分割、基于统计学的分割等,其中使用较多的是基于统计学的分割方法。基于统计学的分割可以分为有监督分割和无监督分割两大类,有监督方法有支持向量机、水平集等,无监督方法有均值漂移方法、模糊C均值聚类等。由于遥感图像存在“小样本”问题,即只有很少的示例样本,因此遥感图像中使用较多的是无监督方法。聚类算法中常用的是模糊C均值聚类法,该方法具有良好的分割效果,但是对于大数据量的遥感图像分割问题,由于该算法最终归结为求解非凸优化问题的迭代算法,时间复杂度较高,且易受初始聚类中心的影响。因此,基于均值漂移(Mean Shift)的分割方法用于遥感图像分割是一个较好的选择,该方法不受数据分布模型及初始聚类数目的影响,具有较好的收敛性及鲁棒性。
均值漂移算法是一种基于核密度估计的无参快速模式匹配算法。1975年Fukunaga和Hostetler在研究核函数的密度梯度估计时提出了均值移动算法的原型,但并未得到学术界的注意。直到1995年Y.cheng成功将此算法扩展至计算机视觉领域才引起了广泛的关注。均值漂移算法是一个迭代过程,先对当前点算出偏移均值,根据偏移均值将其移动到新的位置,然后以此为新的起始点继续移动,直到满足一定的终止条件。计算偏移均值时,可以通过定义一族核函数,使得随着样本与被偏移点距离的不同,其偏移量对均值偏移向量的贡献也不同。
假设X是d维欧氏空间中的总体,{xi,1≤i≤n}是来自总体X的独立同分布样本集,K(x)为核函数,h为核半径带宽,则概率密度函数f(x)的核函数估计为:
f ( x ) ^ = Σ i = 1 n K ( x i - x h ) w ( x i ) h d Σ i = 1 n w ( x i )
其中,w(xi)≥0表示采样点xi的权重。经常使用的核函数有Epanechnikov核函数、高斯核函数等。核函数K(x)的剖面函数为k(x),令K(x)=k(||x||2),k(x)的负导数为g(x),即g(x)=-k′(x),其对应的核函数为G(x)=g(||x||2)。
概率密度函数f(x)的核密度估计梯度为:
▿ ^ f h , k = 2 c k , d n h d + 2 [ Σ i = 1 n g ( | | x - x i h | | 2 ) ] · [ Σ i = 1 n x i g ( | | x - x i h | | 2 ) Σ i = 1 n g ( | | x - x i h | | 2 ) - x ]
其中,ck,d是对应的归一化常数,h为核半径带宽,xi表示第i个采样点,
Figure BDA00000677505700033
表示xi的权重。
模式点位于核密度函数的极值点处,搜索特征空间的模式点就是寻找满足函数密度梯度为0的极值点的过程。从而得到Mean Shift矢量为:
M h ( x ) = Σ i = 1 n x i g ( | | x - x i h | | 2 ) Σ i = 1 n g ( | | x - x i h | | 2 ) - x
进一步得到Mean Shift的迭代公式为:
m h ( x ) = Σ i = 1 n x i g ( | | x - x i h | | 2 ) Σ i = 1 n g ( | | x - x i h | | 2 )
给定一个初始点x,核函数K(x),在容许误差为ε时,均值漂移过程可以分为以下步骤:(1)设定合适的搜索窗直径;(2)计算向量mh(x);(2)把mh(x)赋值给x;(3)判断|mh(x)-x|<ε是否成立,若成立则循环结束,否则转到步骤(1)。上述步骤是不断沿着最大概率密度的方向移动。在执行均值漂移滤波的过程中,核函数K(x)决定了采样点xi与核中心点之间的相似性度量,带宽矩阵决定了核函数的影响范围。
基于均值漂移的图像分割是在滤波的基础上,通过对图像的模式点进行合并来实现的。具体步骤如下:
1、设xi,i=1,2,...,n为图像中的像素点,对每一个xi执行上述均值漂移滤波过程,直至找到xi的收敛点zi
2、根据收敛点zi的信息进行聚类;
3、根据聚类之后zi的类信息对所有xi进行类别标记,如Li={p|zi∈Cp};其中Li表示xi的类别标记,上述等式说明当zi属于类别Cp时,xi属于P类别。
4、对图像的模式点进行区域合并,去除包含像素点太少的类别,从而得到分割后的图像。
近年来,均值漂移方法在图像分割中取得了较好的应用效果,李华等[李华,张明新,郑金龙.融合多特征的均值漂移彩色图像分割方法[J].计算机应用,Vol.29,No.8,p:2074-2076,2009年.]针对均值漂移图像分割方法中只考虑颜色和空间信息,对纹理丰富的图像不能进行有效分割的情况,提出融合图像颜色、纹理和空间等低层特征信息的图像分割方法。用每个像素点的极性、各向异性和对比度来表示图像的纹理信息,结合颜色和空间信息形成图像分割特征,然后用均值漂移进行图像滤波,并根据区域的颜色信息进行区域合并来完成图像的分割。王爽等[王爽,夏玉,焦李成.基于均值漂移的自适应纹理图像分割方法[J].软件学报,Vol.21,No.6,p:1451-1461,2010年6月.]提出了一种基于小波多尺度分析和均值漂移的无监督纹理图像分割方法,利用均值移动聚类实现基于小波特征的完全无监督自适应多尺度分割,在纹理内部使用粗尺度特征,而在不同纹理交界处使用较细尺度特征,这样保证了分割过程中的区域一致性,同时更准确地定位了图像边缘。该方法在合成纹理和真实纹理图像的分割中都有较好的效果。Hong等[Yiping Hong,Jianqiang Yi,Dongbin Zhao.Improved mean shift segmentation approach for nature images[J].Applied Mathematics andComputation,Vol.185,p:940-952,Feb 2007.]提出一种改进的均值漂移分割方法用于自然图像的分割。该方法利用可变颜色带宽来进行分割,从而有利于控制分割结果,并通过一种最优化模式合并准则来保证不同图像分割结果的稳定性,实验结果表明该方法较改进之前有更好的分割效果。
研究者们提出了很多方法,如多特征融合、Gabor特征的多尺度变换、可变颜色带宽等来提高均值漂移图像分割的精度,但并未考虑在均值漂移分割方法中引入特征选择。其实,遥感图像具有丰富的颜色和纹理信息,如果将图像分割看作模式分类,则遥感图像特征的提取对图像分割亦有着重大的影响。虽然通过多特征融合可以在一定程度上克服单一特征的局限性,但是对于特定的遥感图像,不同的特征对其内容进行描述时其有效性是不同的。若通过为图像找出最具表现力的特征,并利用此特征进行均值漂移滤波,应该能有效提高图像的分割精度。
发明内容
本发明所要解决的技术问题在于克服现有基于均值漂移的图像分割方法未考虑特征选择所导致的分割精度有限的缺陷,提出一种遥感图像分割方法及遥感图像检索方法,通过在均值漂移图像分割中使用最能体现图像内容的特征,来提高遥感图像分割的精度,并进而提高遥感图像检索的效果。
本发明的遥感图像分割方法,首先对图像中每一个像素点进行均值漂移滤波处理,直至找到其收敛点,并根据收敛点的类别信息对像素点进行标识;然后利用图像的模式点进行区域合并,去除包含像素点少于一预先设定的阈值Nmin的类别,从而得到分割后的图像,在进行均值漂移滤波时,所需的初始特征向量是根据颜色特征、纹理特征及像素点的位置信息生成,具体按照以下公式:
f=[hsx,hsy,wchrfc1,wchrfc2,wchrfc3,wthrft1,wthrft2,...,wthrft8]T
式中,f为初始特征向量;wc和wt分别为像素点的颜色特征、纹理特征权重系数;hs表示空间域的窗直径;hr表示值域的窗直径;x和y表示像素点的位置坐标;fci,i=1,2,3表示像素点的颜色特征数据;ftj,j=1,2,……,8表示像素点的纹理特征数据。
进一步地,所述颜色特征、纹理特征的权重系数按照以下方法确定:
A1、根据用户提供的示例样本对图像进行分块,并分别提取出各子块的颜色特征和纹理特征;
A2、根据最小描述长度准则确定颜色特征和纹理特征的聚类数目;
A3、分别利用颜色特征和纹理特征对子块进行聚类分析,并根据下式获得各特征所对应的聚类有效性指数,
S t = 1 | C t | Σ x ∈ C t D ( x , p t )
DBI c = k - 1 Σ i = 1 i ≠ t k D ( p i , p t ) S t
DBI t = k - 1 Σ i = 1 i ≠ t k S t D ( p i , p t )
其中,D(·)是一个距离算子,对于颜色特征,D(·)表示直方图交距离;而对于纹理特征,D(·)表示欧式距离;t是目标子类的簇编号;St是目标子类t中所有样本到聚类中心的平均距离;|Ct|是目标子类t中的样本数目;pt是目标子类t的聚类中心;k表示聚类数目;pi表示非目标子类的聚类中心;DBIc表示颜色特征的聚类有效性指数;DBIt表示纹理特征的聚类有效性指数;
A4、根据聚类有效性指数分别确定颜色特征和纹理特征的权重系数wc和wt:若DBIt≥Tht且DBIc≥Thc,则wc=1,wt=1;若DBIt≥Tht且DBIc<Thc,则wc=0,wt=1;若DBIt<Tht且DBIc≥Thc,则wc=1,wt=0;Tht和Thc为预先设定的分别对应于纹理特征和颜色特征的阈值。
优选地,所述颜色特征为Lab颜色特征,纹理特征为Gabor纹理特征。
本发明的遥感图像检索方法,首先对待检索遥感图像进行图像分割,然后将图像分割后的同质区域与给定的示例区域进行区域匹配,所述对待检索遥感图像进行图像分割使用如上任一项遥感图像分割方法。
进一步地,所述将图像分割后的同质区域与给定的示例区域进行区域匹配,具体按照以下步骤:
C1、根据用户提供的示例样本对图像进行分块,并分别提取出各子块的颜色特征和纹理特征;
C2、根据最小描述长度准则确定颜色特征和纹理特征的聚类数目;
C3、分别利用颜色特征和纹理特征对子块进行聚类分析,并根据下式获得各特征所对应的聚类有效性指数,
S t = 1 | C t | Σ x ∈ C t D ( x , p t )
DBI c = k - 1 Σ i = 1 i ≠ t k D ( p i , p t ) S t
DBI t = k - 1 Σ i = 1 i ≠ t k S t D ( p i , p t )
其中,D(·)是一个距离算子,对于颜色特征,D(·)表示直方图交距离;而对于纹理特征,D(·)表示欧式距离;t是目标子类的簇编号;St是目标子类t中所有样本到聚类中心的平均距离;|Ct|是目标子类t中的样本数目;pt是目标子类t的聚类中心;k表示聚类数目;pi表示非目标子类的聚类中心;DBIc表示颜色特征的聚类有效性指数;DBIt表示纹理特征的聚类有效性指数;
C4、根据聚类有效性指数分别确定颜色特征和纹理特征的距离权重Wc、Wt:若DBIt≥Tht且DBIc≥Thc,则Wc=0.5,Wt=0.5;若DBIt≥Tht且DBIc<Thc,则Wc=0,Wt=1;若DBIt<Tht且DBIc≥Thc,则Wc=1,Wt=0;Tht和Thc为预先设定的分别对应于纹理特征和颜色特征的阈值。
本发明根据颜色特征、纹理特征及像素点的位置信息生成的特征向量,作为初始输入向量,利用均值漂移滤波进行遥感图像的分割,并进一步利用构造的聚类有效性指数自适应地确定颜色特征和纹理特征的权重,有效提高了遥感图像分割的精度。在此基础之上,本发明采用了一种新的区域表示与匹配方法来完成遥感图像的检索。相比现有技术,本发明具有更好的检索精度,尤其对于小目标区域的检索具有更好的效果。
附图说明
图1为本发明的遥感图像检索方法的流程示意图;
图2为采用不同方法进行遥感图像检索的对比试验结果,其中(a)是相关反馈方法所得的检索结果,(b)是本发明方法所得的结果,(c)是专家人工给出的真正应该检索出的相似区域。
具体实施方式
下面结合附图对本发明的技术方案进行详细说明:
本发明的遥感图像检索方法,首先按照以下步骤对待检索遥感图像进行分割:
步骤1、根据用户提供的示例样本对图像进行分块,并分别提取出各子块的Lab颜色特征和Gabor纹理特征;
由于Lab颜色空间中的欧氏距离比起其它空间的色彩距离能更客观地反映人对真实世界各维色彩变化的感知,而Gabor滤波器有着优良的滤波器性能,并有着与生物视觉系统相近的特点,因此本发明优选Lab颜色特征(具体计算方法可参见文献[Gonzalez R C and Woods RE.2007.Digital Image Processing(2nd edition).Beijing:Publishing House of Electronics Industry])和Gabor纹理特征(具体计算方法可参见文献[Manjunath B.S.and Ma W.Y.:Texture features for browsing and retrievalof image data,IEEE Trans.Pattern Anal.Machine Intell.,1996,18(8):837-842.])。为了避免将同一目标分入不同的小块之中,本具体实施方式中采取了重叠分块策略,具体为:每块大小为,width=min(128,样本图像width),height=min(128,样本图像height),块与块之间重叠width/2*height/2像素。由于用户在勾选查询示例图像块时,该图像块的大小代表了一定的模式基元,而将子图像的长和宽限制在128像素内是为了避免子图像过大而影响特征选择的结果。块与块之间的重叠大小设置为width/2*height/2像素,这样做是减少特征选择中的时间复杂度,同时尽量不对特征选择的效果产生影响。
步骤2、根据最小描述长度准则确定颜色特征和纹理特征的聚类数目,从而减少人为因素对聚类结果的干扰;
最小描述长度(MDL)准则为现有技术,具体内容可参考文献[Horst B,Ales L,AlexanderS.MDL principle for robust vector quantisation.Pattern Analysis&Applications,1999,2:59-72,Springer-Verlag London Limited.]。具体为:先根据最远距离准则初始化m个聚类中心,假设移除某个聚类中心Cj,根据下式计算移除前后编码长度的总变化量,如果该变化量小于零,那么就移除这个聚类中心,否则就保留下来;依次迭代,直到没有冗余的聚类中心。最后保留下来的聚类中心数目就是自动聚类所得到的目标数目,
Δ l C j = - K - n j log 2 p j + Σ k = 1 , k ≠ j m n jk log 2 ( n k + n jk | I | ) + Σ x ∈ c j Σ i = 1 d ( x i - c ik ) 2 - ( x i - c ij ) 2 2 ( ln 2 ) σ 2
式中,K表示聚类簇中心的编码长度,nk表示第k类样本的数目,njk表示满足最近邻参考点为第j个聚类中心而第二近邻参考点为第k个聚类中心的样本数目,|I|表示总的样本数目,pj表示第j类样本在总样本中所占的比重,σ是样本数据的方差。
步骤3、分别利用颜色特征和纹理特征对子块进行聚类分析,并计算各特征所对应的聚类有效性指数;
本具体实施方式中,采用最常用的K-means方法进行聚类分析并采用聚类有效性指数对聚类的效果进行评价。本发明的聚类有效性指数通过对现有的Davies-Bouldin指数进行改进得到的。Davies-Bouldin指数由类内散布和类间散布的比值表示,比值越小表示聚类效果越好,由于用户最初给定的示例可以当作弱启发信息,图像特征应该有利于该图像子块和其他图像块的区别,因此本发明对其进行改进:只计算用户示例图像子块所在的目标子类的类内散布值,而不包括非目标子类的类内散布值,类间散布值也只包括非目标子类与该目标子类之间的类间散布值,而不包括非目标子类之间的类间散布值,这样不仅可以突出目标子类的重要性以及目标子类与非目标子类之间的区别,而且还可以减少计算量。本发明的聚类有效性指数按照下式计算:
S t = 1 | C t | Σ x ∈ C t D ( x , p t )
DBI c = k - 1 Σ i = 1 i ≠ t k D ( p i , p t ) S t
DBI t = k - 1 Σ i = 1 i ≠ t k S t D ( p i , p t )
其中,D(·)是一个距离算子,对于颜色特征,D(·)表示直方图交距离;而对于纹理特征,D(·)表示欧式距离;t是目标子类的簇编号;St是目标子类t中所有样本到聚类中心的平均距离;|Ct|是目标子类t中的样本数目;pt是目标子类t的聚类中心;k表示聚类数目;pi表示非目标子类的聚类中心;DBIc表示颜色特征的聚类有效性指数;DBIt表示纹理特征的聚类有效性指数。
步骤4、根据聚类有效性指数分别确定Lab颜色特征和Gabor纹理特征的权重系数wc和wt:若DBIt≥Tht且DBIc≥Thc,则wc=1,wt=1;若DBIt≥Tht且DBIc<Thc,则wc=0,wt=1;若DBIt<Tht且DBIc≥Thc,则wc=1,wt=0;Tht和Thc为预先设定的分别对应于纹理特征和颜色特征的阈值,这两个阈值可根据经验确定,也可通过实验选取,本发明通过实验确定其较优取值为Tht=3.0和Thc=2.0。
步骤5、根据步骤4得到的权重wc和wt,结合Lab颜色特征、Gabor纹理特征及像素点的位置信息按照下式生成初始特征向量:
f=[hsx,hsy,wchrfc1,wchrfc2,wchrfc3,wthrft1,wthrft2,...,wthrft8]T
式中,f为初始特征向量;wc和wt分别为像素点Lab颜色特征、Gabor纹理特征的权重系数;hs表示空间域的窗直径;hr表示值域的窗直径;x和y表示像素点的位置坐标;fci,i=1,2,3表示像素点在Lab颜色空间的特征数据;ftj,j=1,2,……,8表示像素点在Gabor纹理空间的特征数据。
步骤6、以得到的初始特征向量作为输入,利用均值漂移算法对图像中每一个像素点进行均值漂移滤波处理,直至找到其收敛点,并根据收敛点的类别信息对像素点进行标识,然后利用图像的模式点进行区域合并,去除包含像素点少于一预先设定的阈值Nmin的类别,从而得到分割后的图像。
基于均值漂移的图像分割过程中涉及到的参数包括:搜索窗的直径hr以及参数hs,有意义的图像颜色包含的最少像素点数Nmin,有意义的图像区域包含的最少像素点数Ncon。其中,搜索窗的直径hr及参数hs决定了分割的效果,hr取值越小分割得越细,当图像中包含的同质区域面积较大时,应选用取值较大的窗直径,hs决定了均值漂移过程中的初始输入数据,对于取值范围较小的初始数据应选择较小的hs。参数hr和hs、Nmin、Ncon的取值直接影响到分割结果,若取值不合理可能会产生过分割或欠分割现象,导致图像的分割不是太粗糙就是太细碎。另外,Gabor特征中所用窗大小会影响到Gabor特征的区分力度,从而影响分割的效果,因此需要根据特定的图像来进行Gabor窗大小的调整。本发明在分割过程中,设定区域合并时所用参数Nmin=50,在具体图像的分割过程中,也可以对参数Nmin进行微调。而参数hr、hs是经验参数,初始值为hs=15,hr=45。
经过上述过程,得到了准确分割的待检索遥感图像,接着需要通过区域特征的匹配来实现最终的图像检索。考虑到在均值漂移分割后,图像被分割成一系列同质区域,每一块区域中的像素点所对应的特征向量都有相同的收敛值,因此可以采用像素点所对应的特征向量的收敛值来进行区域表示,并通过区域特征向量之间的距离度量来实现区域的匹配。在对特征向量的收敛值进行距离度量时,采用的是Lab颜色空间和Gabor纹理空间的距离的加权和,并根据图像分割过程中的聚类有效性指数来自适应地确定各自的权重系数。相似区域对应的特征向量应该有相近的收敛值,若两个区域所对应的特征向量的收敛值之间的差异超过给定的阈值,则说明这两个区域不具有相似性。由于欧氏距离描述的是m维特征空间中两个点之间的真实距离,因此采用欧氏距离来计算特征向量所对应的收敛值之间的距离。
具体的区域匹配过程如下:
步骤7、根据分割后同质区域中像素点的特征向量的收敛值来进行区域表示,具体为:如某一同质区域中的像素点的特征向量均收敛于向量[w1fc1,w1fc2,w1fc3,w2ft1,w2ft2,...,w2ft8]T,则该区域用该向量表示;其中fci,i=1,2,3表示像素点的颜色特征数据;ftj,j=1,2,……,8表示像素点的纹理特征数据;w1和w2分别为图像分割过程中颜色特征和纹理特征的权重;
步骤8、根据示例样本中最频繁出现的模式所对应的特征向量的收敛值来对示例样本进行区域表示,具体为:若示例区域所包含的模式集合为{m1,m2,...,mn},则通过统计示例样本中各种模式的出现频率,找出最频繁出现的模式,利用该模式所对应的特征向量的收敛值来对示例样本进行区域表示,此时示例样本可以表示为[w1f′c1,w1f′c2,w1f′c3,w2f′t1,w2f′t2,...,w2f′t8]T;其中f′ci,i=1,2,3表示像素点的颜色特征数据;f′tj,j=1,2,……,8表示像素点的纹理特征数据;w1和w2分别为图像分割过程中颜色特征和纹理特征的权重系数;
步骤9、按照下式分别计算各分割区域的特征向量的收敛值与示例样本的特征向量的收敛值之间的加权距离d:
d = W c ( Σ i = 1 3 ( w 1 f ci - w 1 f ci ′ ) 2 ) 1 / 2 + W t ( Σ j = 1 8 ( w 2 f cj - w 2 f cj ′ ) 2 ) 1 / 2 ,
式中,Wc、Wt分别为颜色特征和纹理特征的距离权重;w1和w2分别为图像分割过程中颜色特征和纹理特征的权重;fci、f′ci分别为示例样本的颜色特征,i=1,2,3;ftj、f′tj分别为示例样本的纹理特征,j=1,2,……,8;
上述颜色特征和纹理特征的距离权重可根据经验设定,本发明根据图像分割过程中的聚类有效性指数自适应地确定,具体聚类有效性指数的计算过程可参见上述步骤1-步骤3,得到聚类有效性指数后,按照如下方法分别确定颜色特征和纹理特征的距离权重Wc、Wt:若DBIt≥Tht且DBIc≥Thc,则Wc=0.5,Wt=0.5;若DBIt≥Tht且DBIc<Thc,则Wc=0,Wt=1;若DBIt<Tht且DBIc≥Thc,则Wc=1,Wt=0;Tht和Thc为预先设定的分别对应于纹理特征和颜色特征的阈值。
步骤10、判断各分割区域的特征向量的收敛值与示例样本的特征向量的收敛值之间的加权距离是否小于预先设定的阈值Th,如是,则匹配成功;如否,则该区域为非目标区域。
为验证本发明方法的有效性,对不同的地表覆盖遥感图像分别使用本发明方法和现有相关反馈法进行了检索对比实验。实验数据包含了居民点、林地、湖泊、山脉等一般目标的检索,实验数据共包含了七幅图像。具体的检索过程如上所述,此处不再赘述。其中,阈值Th、Tht和Thc都是经验参数,本实验中对所有不同图像均采用Tht=3.0、Thc=2.0、Th=0.5。
图2给出了对居民点检索的实验结果。其中(a)是采用相关反馈方法分别反馈16次所得的检索结果;(b)是本发明方法所得的结果,其中Gabor特征采用的均是11*11大小的窗,参数hs=15,hr=45;(c)是由专家人工给出的真正应该检索出的相似区域,其中白色细线标出的是初始检索目标示例样本。由图可以看出通过相关反馈方法获得的检索结果几乎包含了所有的目标区域,但同时也包含了一些非目标区域;而采用本发明的检索方法几乎检索出了所有的目标区域,且非目标区域所占的比例非常小,即本发明方法能获得与相关反馈类似的查全率以及更高的查准率,有效避免了分块策略的影响,所得的检索结果更接近专家给出的标注结果。
为了准确、客观地表示出检索性能,采用基于面积的查准率和查全率来进行检索性能的定量评价。设Area(s)为查询中检索到的所有与示例样本相似的区域面积,Area(v)为图像中和示例样本相关但未被检索到的区域面积,Area(u)为检索到的和示例样本不相关的区域面积,则检索的查全率和查准率可以表示为:
查准率: precision = Area ( s ) Area ( s ) + Area ( u )
查全率: recall = Area ( s ) Area ( s ) + Area ( v )
表1
Figure BDA00000677505700133
表2
Figure BDA00000677505700134
表1是分别采用基于相关反馈(用“RF”表示)和本发明的检索方法(用“Our Method”表示)时,求得的不同图像所对应的查准率及平均查准率;表2是分别采用基于相关反馈和本发明的检索方法时,求得的不同图像所对应的查全率及平均查全率。由表1和表2可以看出,采用本发明的检索方法可以获得很好的查全率和查准率,且对于小目标区域的检索可以获得比相关反馈更好的检索效果。

Claims (7)

1.一种遥感图像分割方法,该方法首先对图像中每一个像素点进行均值漂移滤波处理,直至找到其收敛点,并根据收敛点的类别信息对像素点进行标识;然后利用图像的模式点进行区域合并,去除包含像素点少于一预先设定的阈值Nmin的类别,从而得到分割后的图像,其特征在于,在进行均值漂移滤波时,所需的初始特征向量是根据颜色特征、纹理特征及像素点的位置信息生成,具体按照以下公式:
f=[hsx,hsy,wchrfc1,wchrfc2,wchrfc3,wthrft1,wthrft2,...,wthrft8]T
式中,f为初始特征向量;wc和wt分别为像素点的颜色特征、纹理特征权重系数;hs表示空间域的窗直径;hr表示值域的窗直径;x和y表示像素点的位置坐标;fci,i=1,2,3表示像素点的颜色特征数据;ftj,j=1,2,……,8表示像素点的纹理特征数据。
2.如权利要求1所述遥感图像分割方法,其特征在于,所述颜色特征、纹理特征的权重按照以下方法确定:
A1、根据用户提供的示例样本对图像进行分块,并分别提取出各子块的颜色特征和纹理特征;
A2、根据最小描述长度准则确定颜色特征和纹理特征的聚类数目;
A3、分别利用颜色特征和纹理特征对子块进行聚类分析,并根据下式获得各特征所对应的聚类有效性指数,
S t = 1 | C t | Σ x ∈ C t D ( x , p t )
DBI c = k - 1 Σ i = 1 i ≠ t k D ( p i , p t ) S t
DBI t = k - 1 Σ i = 1 i ≠ t k S t D ( p i , p t )
其中,D(·)是一个距离算子,对于颜色特征,D(·)表示直方图交距离;而对于纹理特征,D(·)表示欧式距离;t是目标子类的簇编号;St是目标子类t中所有样本到聚类中心的平均距离;|Ct|是目标子类t中的样本数目;pt是目标子类t的聚类中心;k表示聚类数目;pi表示非目标子类的聚类中心;DBIc表示颜色特征的聚类有效性指数;DBIt表示纹理特征的聚类有效性指数;
A4、根据聚类有效性指数分别确定颜色特征和纹理特征的权重系数wc和wt:若DBIt≥Tht且DBIc≥Thc,则wc=1,wt=1;若DBIt≥Tht且DBIc<Thc,则wc=0,wt=1;若DBIt<Tht且DBIc≥Thc,则wc=1,wt=0;Tht和Thc为预先设定的分别对应于纹理特征和颜色特征的阈值,所述阈值Tht和Thc的取值分别为3.0和2.0。
3.如权利要求2所述遥感图像分割方法,其特征在于,所述颜色特征为Lab颜色特征,纹理特征为Gabor纹理特征。
4.如权利要求2所述遥感图像分割方法,其特征在于,所述对图像进行分块采取重叠分块策略,具体为:每块大小为,width=min(128,样本图像width),height=min(128,样本图像height),块与块之间重叠width/2*height/2像素。
5.一种遥感图像检索方法,首先对待检索遥感图像进行图像分割,然后将图像分割后的同质区域与给定的示例区域进行区域匹配,其特征在于,所述对待检索遥感图像进行图像分割使用如权利要求1-4任一项所述遥感图像分割方法。
6.如权利要求5所述遥感图像检索方法,其特征在于,所述将图像分割后的同质区域与给定的示例区域进行区域匹配,具体按照以下步骤:
B1、根据分割后同质区域中像素点的特征向量的收敛值来进行区域表示,具体为:如某一同质区域中的像素点的特征向量均收敛于向量[w1fc1,w1fc2,w1fc3,w2ft1,w2ft2,..,w2ft8]T,则该区域用该向量表示;其中fci,i=1,2,3表示像素点的颜色特征数据;ftj,j=1,2,……,8表示像素点的纹理特征数据;w1和w2分别为图像分割过程中颜色特征和纹理特征的权重系数;
B2、根据示例样本中最频繁出现的模式所对应的特征向量的收敛值来对示例样本进行区域表示,具体为:若示例区域所包含的模式集合为{m1,m2,...,mn},则通过统计示例样本中各种模式的出现频率,找出最频繁出现的模式,利用该模式所对应的特征向量的收敛值来对示例样本进行区域表示,此时示例样本可以表示为[w1f′c1,w1f′c2,w1f′c3,w2f′t1,w2f′t2,...,w2f′t8]T;其中f′ci,i=1,2,3表示像素点的颜色特征数据;f′tj,j=1,2,……,8表示像素点的纹理特征数据;w1和w2分别为图像分割过程中颜色特征和纹理特征的权重系数;
B3、按照下式分别计算各分割区域的特征向量的收敛值与示例样本的特征向量的收敛值之间的加权距离d:
d = W c ( &Sigma; i = 1 3 ( w 1 f ci - w 1 f ci &prime; ) 2 ) 1 / 2 + W t ( &Sigma; j = 1 8 ( w 2 f ci - w 2 f cj &prime; ) 2 ) 1 / 2 ,
式中,Wc、Wt分别为颜色特征和纹理特征的距离权重;w1和w2分别为图像分割过程中像素点颜色特征和纹理特征的权重系数;fci、f′ci分别为示例样本的颜色特征,i=1,2,3;ftj、f′tj分别为示例样本的纹理特征,j=1,2,……,8;
B4、判断各分割区域的特征向量的收敛值与示例样本的特征向量的收敛值之间的加权距离是否小于预先设定的阈值Th,如是,则匹配成功;如否,则该区域为非目标区域。
7.如权利要求6所述遥感图像检索方法,其特征在于,所述颜色特征和纹理特征的距离权重按照以下方法确定:
C1、根据用户提供的示例样本对图像进行分块,并分别提取出各子块的颜色特征和纹理特征;
C2、根据最小描述长度准则确定颜色特征和纹理特征的聚类数目;
C3、分别利用颜色特征和纹理特征对子块进行聚类分析,并根据下式获得各特征所对应的聚类有效性指数,
S t = 1 | C t | &Sigma; x &Element; C t D ( x , p t )
DBI c = k - 1 &Sigma; i = 1 i &NotEqual; t k D ( p i , p t ) S t
DBI t = k - 1 &Sigma; i = 1 i &NotEqual; t k S t D ( p i , p t )
其中,D(·)是一个距离算子,对于颜色特征,D(·)表示直方图交距离;而对于纹理特征,D(·)表示欧式距离;t是目标子类的簇编号;St是目标子类t中所有样本到聚类中心的平均距离;|Ct|是目标子类t中的样本数目;pt是目标子类t的聚类中心;k表示聚类数目;pi表示非目标子类的聚类中心;DBIc表示颜色特征的聚类有效性指数;DBIt表示纹理特征的聚类有效性指数;
C4、根据聚类有效性指数分别确定颜色特征和纹理特征的距离权重Wc、Wt:若DBIt≥Tht且DBIc≥Thc,则Wc=0.5,Wt=0.5;若DBIt≥Tht且DBIc<Thc,则Wc=0,Wt=1;若DBIt<Tht且DBIc≥Thc,则Wc=1,Wt=0;Tht和Thc为预先设定的分别对应于纹理特征和颜色特征的阈值。
CN 201110157076 2011-06-13 2011-06-13 遥感图像分割方法及遥感图像检索方法 Expired - Fee Related CN102254303B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110157076 CN102254303B (zh) 2011-06-13 2011-06-13 遥感图像分割方法及遥感图像检索方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110157076 CN102254303B (zh) 2011-06-13 2011-06-13 遥感图像分割方法及遥感图像检索方法

Publications (2)

Publication Number Publication Date
CN102254303A CN102254303A (zh) 2011-11-23
CN102254303B true CN102254303B (zh) 2013-01-02

Family

ID=44981546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110157076 Expired - Fee Related CN102254303B (zh) 2011-06-13 2011-06-13 遥感图像分割方法及遥感图像检索方法

Country Status (1)

Country Link
CN (1) CN102254303B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521605A (zh) * 2011-11-25 2012-06-27 河海大学 一种高光谱遥感图像波段选择方法
CN102663431B (zh) * 2012-04-17 2013-12-25 北京博研新创数码科技有限公司 一种基于区域加权的图像匹配计算方法
CN102663754B (zh) * 2012-04-17 2014-12-10 北京博研新创数码科技有限公司 一种基于区域高斯加权的图像匹配计算方法
CN103152574B (zh) * 2013-03-15 2016-01-20 清华大学 基于特征配准的速率受限的遥感图像传输系统
CN104111947B (zh) * 2013-04-19 2017-10-27 昆山鸿鹄信息技术服务有限公司 一种遥感图像的检索方法
CN104517113B (zh) * 2013-09-29 2017-12-19 浙江大华技术股份有限公司 一种图像的特征提取方法、图像的分类方法及相关装置
CN104750697B (zh) * 2013-12-27 2019-01-25 同方威视技术股份有限公司 基于透视图像内容的检索系统、检索方法以及安全检查设备
CN103793913A (zh) * 2014-02-18 2014-05-14 哈尔滨工程大学 一种结合均值漂移的谱聚类图像分割方法
CN104008127A (zh) * 2014-04-21 2014-08-27 中国电子科技集团公司第二十八研究所 一种基于聚类算法的群组识别方法
CN105303546B (zh) * 2014-06-20 2018-08-17 江南大学 基于模糊连接度的近邻传播聚类图像分割方法
CN106295478A (zh) * 2015-06-04 2017-01-04 深圳市中兴微电子技术有限公司 一种图像特征提取方法和装置
CN105488458B (zh) * 2015-11-20 2018-11-02 中国船舶重工集团公司第七0九研究所 一种基于图像空间结构分布的舰船目标特征表示方法
CN107038445B (zh) * 2017-02-13 2021-01-12 上海大学 一种针对中文字符验证码的二值化和分割方法
CN107192642B (zh) * 2017-05-25 2019-11-08 中国科学院遥感与数字地球研究所 一种大气气溶胶颗粒的微物理模型构建方法
CN107133360B (zh) * 2017-05-31 2021-02-02 东南大学 一种大尺度遥感影像特征点库的构建方法
CN107452001A (zh) * 2017-06-14 2017-12-08 许昌学院 一种基于改进fcm算法的遥感图像序列分割方法
CN109191435A (zh) * 2018-08-13 2019-01-11 湖南志东科技有限公司 一种扫描光谱智能选择方法及图像分析方法
CN109409388B (zh) * 2018-11-07 2021-08-27 安徽师范大学 一种基于图形基元的双模深度学习描述子构造方法
CN110188230A (zh) * 2019-05-30 2019-08-30 中煤航测遥感集团有限公司 基于语义的图像检索方法及装置
CN110490904B (zh) * 2019-08-12 2022-11-11 中国科学院光电技术研究所 一种弱小目标检测与跟踪方法
CN111178175A (zh) * 2019-12-12 2020-05-19 中国资源卫星应用中心 基于高景卫星影像的自动化建筑物信息提取方法及系统
CN111598027B (zh) * 2020-05-21 2021-07-06 黄风华 一种基于遥感大数据的区域性浅水种植区分布系统及方法
CN112949634B (zh) * 2021-03-08 2024-04-26 北京交通大学 一种铁路接触网鸟窝检测方法
CN114663405B (zh) * 2022-03-27 2022-12-06 扬州市苏灵农药化工有限公司 用于农药生产企业的废水处理控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990379B2 (en) * 2006-10-25 2011-08-02 Siemens Aktiengesellschaft System and method for coronary segmentation and visualization
CN101661497B (zh) * 2009-09-10 2011-05-11 北京农业信息技术研究中心 遥感土地利用变化检测方法及系统
CN101853304B (zh) * 2010-06-08 2011-10-05 河海大学 基于特征选择和半监督学习的遥感图像检索方法
CN102063707B (zh) * 2011-01-05 2013-06-12 西安电子科技大学 基于均值漂移的灰关联红外成像目标分割方法

Also Published As

Publication number Publication date
CN102254303A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
CN102254303B (zh) 遥感图像分割方法及遥感图像检索方法
CN104091321B (zh) 适用于地面激光雷达点云分类的多层次点集特征的提取方法
CN107657226B (zh) 一种基于深度学习的人数估计方法
CN103049763B (zh) 一种基于上下文约束的目标识别方法
CN102663382B (zh) 基于子网格特征自适应加权的视频图像文字识别方法
Zhao et al. Automatic recognition of loess landforms using Random Forest method
CN105825502B (zh) 一种基于显著性指导的词典学习的弱监督图像解析方法
CN105574534A (zh) 基于稀疏子空间聚类和低秩表示的显著性目标检测方法
CN106651865B (zh) 一种新的高分辨率遥感影像的最优分割尺度自动选择方法
CN105574063A (zh) 基于视觉显著性的图像检索方法
CN106408030A (zh) 基于中层语义属性和卷积神经网络的sar图像分类方法
CN106156374A (zh) 一种基于视觉词典优化和查询扩展的图像检索方法
CN105718552A (zh) 基于服装手绘草图的服装图像检索方法
CN102930294A (zh) 基于混沌特征量视频运动模态分割和交通状况识别的方法
CN106157330A (zh) 一种基于目标联合外观模型的视觉跟踪方法
CN106844785A (zh) 一种基于显著性分割的基于内容的图像检索方法
Chen et al. A local tangent plane distance-based approach to 3D point cloud segmentation via clustering
CN101216886B (zh) 一种基于谱分割理论的镜头聚类方法
Wang et al. A novel sparse boosting method for crater detection in the high resolution planetary image
Alnihoud Content-based image retrieval system based on self organizing map, fuzzy color histogram and subtractive fuzzy clustering.
CN107357834A (zh) 一种基于视觉显著性融合的图像检索方法
CN104299237A (zh) 将非监督聚类转化为自监督分类的图像分割方法
CN109829511B (zh) 基于纹理分类的下视红外图像中云层区域检测方法
CN110426745B (zh) 基于块混合高斯低秩矩阵分解的毫米波图像异物检测方法
CN105844299A (zh) 一种基于词袋模型的图像分类方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102