CN106651865B - 一种新的高分辨率遥感影像的最优分割尺度自动选择方法 - Google Patents

一种新的高分辨率遥感影像的最优分割尺度自动选择方法 Download PDF

Info

Publication number
CN106651865B
CN106651865B CN201611202286.7A CN201611202286A CN106651865B CN 106651865 B CN106651865 B CN 106651865B CN 201611202286 A CN201611202286 A CN 201611202286A CN 106651865 B CN106651865 B CN 106651865B
Authority
CN
China
Prior art keywords
image
node
segmentation
scale
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611202286.7A
Other languages
English (en)
Other versions
CN106651865A (zh
Inventor
靳华中
万方
雷光波
关峰
刘潇龙
黄磊
李清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201611202286.7A priority Critical patent/CN106651865B/zh
Publication of CN106651865A publication Critical patent/CN106651865A/zh
Application granted granted Critical
Publication of CN106651865B publication Critical patent/CN106651865B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种新的高分辨率遥感影像的最优分割尺度自动选择方法,利用多尺度MRF模型,建立高分辨率影像的多尺度分割模型,同时对影像层次分割和影像平面分别建模,描述层与层对象之间的上下文信息以及同一层中对象之间的空间依赖关系。将对象的光谱、颜色、纹理及拓扑关系等基本特征,归一化到马尔可夫随机场中,通过概率信息收敛计算,实现了一种计算机可自动进行全局最有分割尺度选择方法,参数选择计算和推断工程实现了计算机自动进行,获得理论上的最优分割尺度参数。该技术具有分割质量精度高、自适应性强和计算效率高的优点。

Description

一种新的高分辨率遥感影像的最优分割尺度自动选择方法
技术领域
本发明涉及影像处理技术领域,具体地说,涉及一种新的高分辨率遥感影像的最优分割尺度自动选择方法。
背景技术
面向对象的地物信息提取是高分辨率遥感影像分析的基础和前提。由于高分辨率遥感影像包含的信息丰富,地物类别复杂,且不同类型的地物对应不同的分割尺度,单一的分割尺度无法满足应用需求。在面向对象的高分辨率遥感影像分析中,常常利用影像多尺度分割方法,为不同类别特征的地物提供相应的尺度。为保证影像信息提取的精度、必须了解影像信息随着分割尺度变化的效应,因此影像信息尺度转换与最优尺度选择成为面向对象影像分析中要解决的基本问题。
传统的分割带有较强的主观性,通过目测判断和反复试错,选择一个合适的分割结果,因而很难建立一个最优尺度分割模型。从保证影像对象的同质性和影像对象的可分性的角度,黄慧萍、孙波中等提出图像最优分割的评价准则:影像对象内部异质性尽可能小,同时,不同类型对象之间的异质性尽可能的大,并且对象能够表达某种地物的基本特征。根据上述分割评价准则,目前国内外还没有一个客观的、定量的和普适的影像多尺度模型来确定最优分割尺度参数。
马尔可夫随机场是图象分割中一个有效且常用的工具。它有效地刻画出图像空间依赖关系,通过信息的局部交互,将上下文信息传递到整个图像,最终能够构建不同尺度的影像对象网络层次结构。但是,现有影像MRF模型往往采用自顶向下的方式构建影像的层次结构,由于最细粒度尺度的建立依赖于影像所有像素的标识计算,带来运算时间较长的问题,且由于像素信息较为单一,容易造成像元的误分类。
发明内容
本发明的目的在于克服上述技术存在的缺陷,提供一种新的高分辨率遥感影像的最优分割尺度自动选择方法。该方法利用多尺度MRF模型,建立高分辨率影像的多尺度分割模型,同时对影像层次分割和影像平面分别建模,描述层与层对象之间的上下文信息以及同一层中对象之间的空间依赖关系。将对象的光谱、颜色、纹理及拓扑关系等基本特征,归一化到马尔可夫随机场中,通过概率信息收敛计算,实现了一种计算机可自动进行全局最有分割尺度选择方法,参数选择计算和推断工程实现了计算机自动进行,获得理论上的最优分割尺度参数。该技术具有分割质量精度高、自适应性强和计算效率高的优点。
其具体技术方案为:
一种新的高分辨率遥感影像的最优分割尺度自动选择方法,包括以下步骤:
输入:影像下的图D=(V,E,W),其中V、E和W分别代表了图D的顶点集、边集和相似度矩阵;
输出:最优尺度分割的影像、全部尺度分割参数;
步骤1、利用分水岭方法得到过分割的影像,作为最细粒度的分割影像D0;
步骤2、提取上述影像中对象的光谱、颜色、纹理等特征值;
步骤3、使用期望最大化EM算法估计GMM参数
步骤4、For 1=L to 0,执行步骤3-4:
1)在第l层MRF模型中,计算对象消息在MRF节点之间进行迭代传递,直至全局概率收敛,即
2)利用MAP准则,得到聚类对象标号的估计值:
步骤5、在MRF模型的最精细层,运行标准置信传播BP算法,利用BP算法更新公式和置信度计算公式bi(yi)=kφi(yi)∏j∈N(i)mji(yi)进行迭代,直到收敛,然后根据MAP准则,逐像素估计标号值:
步骤6、计算层次间的节点对象的后验边缘概率,取其中的最大值,确定最优分割尺度。
进一步,步骤1中离散域分水岭变换用如下迭代方式进行定义:
分水线可以记作为:
影像模拟为一个地表结构,通过分水岭方法来给影像进行标注,使相同的聚水区对应的像素有一致的标识,从而达到影像初始分割的目的。最后,像素聚集的区域(对象)是同质和均一的,得到影像是最细粒度的影像D0。
进一步,步骤2中计算影像D0中各个对象的亮度均值均方差;
计算影像D0中各个对象的颜色特征值;
使用二维高斯核函数,计算不同方向的对象能量,通过高斯差分滤波器
计算对象的纹理特征值。
进一步,步骤3中使用期望最大化EM算法估计GMM参数EM算法分为两步:
i)计算联合似然概率的期望
E[logP(x,y|θ)|y,θl]=∑P(x|y,θl)·logP(x,y|θ)
ii)迭代计算新的参数值θ=arg maxθE[logP(x,y|θ)|y,θl],执行只止收敛。
进一步,步骤4中第l层,多尺度BP算法消息迭代公式为
相应的置信度更新公式:
进一步,步骤5中,构建多尺度MRF模型
φi(xi,yi)表示观察节点i取标号yi的条件概率,采用高斯混合模型进行建模,即
式中其中μl分别为GMM的第l类均值和方差。
ψij(yi,yj)为成对对象(ij)之间的状态转移矩阵,本文定义ψij(yi,yj)为一个Potts模型,即
为大于0的参数。
与现有技术相比,本发明的有益效果为:
本发明利用多尺度MRF模型,建立高分辨率影像的多尺度分割模型,同时对影像层次分割和影像平面分别建模,描述层与层对象之间的上下文信息以及同一层中对象之间的空间依赖关系。将对象的光谱、颜色、纹理及拓扑关系等基本特征,归一化到马尔可夫随机场中,通过概率信息收敛计算,实现了一种计算机可自动进行全局最有分割尺度选择方法,参数选择计算和推断工程实现了计算机自动进行,获得理论上的最优分割尺度参数。该技术具有分割质量精度高、自适应性强和计算效率高的优点。
附图说明
图1是原始航空影像;
图2是过分割影像(尺度因子c=0.065);
图3是欠分割影像(尺度因子c=0.085);
图4是最优尺度分割影像(尺度因子c=0.075)。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合附图和具体实例进一步阐述本发明。
1、技术实现方案
输入:影像下的图D=(V,E,W),其中V、E和W分别代表了图D的顶点集、边集和相似度矩阵;
输出:最优尺度分割的影像、全部尺度分割参数;
1)利用分水岭方法得到过分割的影像,作为最细粒度的分割影像D0;
2)提取上述影像中对象的光谱、颜色、纹理等特征值;
3)使用期望最大化EM算法估计GMM参数
4)For 1=L to 0,执行步骤3)-4):
(1)在第l层MRF模型中,计算对象消息在MRF节点之间进行迭代传递,直至全局概率收敛,即
(2)利用MAP准则,得到聚类对象标号的估计值:
5)在MRF模型的最精细层,运行标准置信传播BP算法,利用BP算法更新公式和置信度计算公式bi(yi)=kφi(yi)∏j∈N(i)mji(yi)进行迭代,直到收敛,然后根据MAP准则,逐像素估计标号值:
6)计算层次间的节点对象的后验边缘概率,取其中的最大值,确定最优分割尺度。
2、上述算法的详细说明
步骤1中离散域分水岭变换用如下迭代方式进行定义:
分水线可以记作为:
影像模拟为一个地表结构,通过分水岭方法来给影像进行标注,使相同的聚水区对应的像素有一致的标识,从而达到影像初始分割的目的。最后,像素聚集的区域(对象)是同质和均一的,得到影像是最细粒度的影像D0。
进一步,步骤2中计算影像D0中各个对象的亮度均值均方差;
计算影像D0中各个对象的颜色特征值;
使用二维高斯核函数,计算不同方向的对象能量,通过高斯差分滤波器
计算对象的纹理特征值。
进一步,步骤3中使用期望最大化EM算法估计GMM参数EM算法分为两步:
i)计算联合似然概率的期望
E[logP(x,y|θ)|y,θl]=∑P(x|y,θl)·logP(x,y|θ)
ii)迭代计算新的参数值θ=arg maxθE[logP(x,y|θ)|y,θl],执行只止收敛。
进一步,步骤4中第l层,多尺度BP算法消息迭代公式为
相应的置信度更新公式:
进一步,步骤5中,构建多尺度MRF模型
φi(xi,yi)表示观察节点i取标号yi的条件概率,采用高斯混合模型进行建模,即
式中其中μl分别为GMM的第l类均值和方差。
ψij(yi,yj)为成对对象(ij)之间的状态转移矩阵,本文定义ψij(yi,yj)为一个Potts模型,即
β为大于0的参数。
离散域分水岭变换用如下迭代方式进行定义:
分水线可以记作为:
影像模拟为一个地表结构,通过分水岭方法来给影像进行标注,使相同的聚水区对应的像素有一致的标识,从而达到影像初始分割的目的。最后,像素聚集的区域(对象)是同质和均一的,得到影像是最细粒度的影像D0。
进一步,步骤2中计算影像D0中各个对象的亮度均值均方差;
计算影像D0中各个对象的颜色特征值;
使用二维高斯核函数,计算不同方向的对象能量,通过高斯差分滤波器
计算对象的纹理特征值。
进一步,步骤3中使用期望最大化EM算法估计GMM参数EM算法分为两步:
i)计算联合似然概率的期望
E[logP(x,y|θ)|y,θl]=∑P(x|y,θl)·logP(x,y|θ)
ii)迭代计算新的参数值θ=arg maxθE[logP(x,y|θ)|y,θl],执行只止收敛。
进一步,步骤4中第l层,多尺度BP算法消息迭代公式为
相应的置信度更新公式:
进一步,步骤5中,构建多尺度MRF模型
φi(xi,yi)表示观察节点i取标号yi的条件概率,采用高斯混合模型进行建模,即
式中其中μl分别为GMM的第l类均值和方差。
ψij(yi,yj)为成对对象(ij)之间的状态转移矩阵,本文定义ψij(yi,yj)为一个Potts模型,即
β为大于0的参数。
3、实验结果与分析
实验过程:
1)原始影像
实验用到的高分辨率遥感数据是航空影像(图1),航空影像的大小为300×500,影像上主要包含居民地、道路、树木、水体、耕地以及裸地等。
2)多尺度分割下的影像
由图2可以看到,图2中的居民地对象被划分成多个不同区域,造成区域(对象)的破碎;
图3中的居民地和房屋周围的裸地被分割成了同一块区域,将不同地物类型划分成同类对象。上述两种情形,都造成对象的错误分割。
3)最优尺度分割影像
从图4可以看出,在分割尺度因子c=0.075情形中,分割的效果较好。不同地物以封闭边界围成的区域显示出来,相同地物内部具有较好的相似性,同时,不同地物之间具有较强的互异性。
4)结果分析
影像结果的分割评价,本发明基于PETS的度量方法,通过比较真实样本分割(人工分割)与检测样本(本算法分割),度量相应对象之间不匹配程度,称为负率度量(NR)。
其中,表示错认率,表示漏报率。
实验数据分为航空影像和IKONOS影像两类,其数量分别为30幅和50幅,利用分水岭算法和时空MRF网进行多尺度分割;最优分割尺度因子由时空MRF网推断计算得到。最优分割尺度下的分割结果与人工分割结果的比较,如表1所示。
表1 最优分割尺度下的分割结果与人工分割结果的比较
从算法的分割时间上来看,将本文算法与标准BP算法的处理时间进行比较。实验数据同为一幅大小300×500的航空影像和IKONOS影像,本文提出的算法有更快的收敛速度,如表2所示。
表2
综上所述,该技术具有分割质量精度高、自适应性强和计算效率高的优点。
以上所述,仅为本发明最佳实施方式,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (6)

1.一种新的高分辨率遥感影像的最优分割尺度自动选择方法,其特征在于,包括以下步骤:
输入:影像下的图D=(V,E,W),其中V、E和W分别代表了图D的顶点集、边集和相似度矩阵;
输出:最优尺度分割的影像、全部尺度分割参数;
步骤1、利用分水岭方法得到过分割的影像,作为最细粒度的分割影像D0;
步骤2、提取上述影像中对象的光谱、颜色、纹理的特征值;
步骤3、使用期望最大化EM算法估计GMM参数αk表示第k类高斯模型的权重;μk分别是GMM第k类均值和方差;
步骤4、执行步骤3-4:
1)在第l层MRF模型中,计算对象消息在MRF节点之间进行迭代传递,直至全局概率收敛,即
式中,表示在第t步中影像D节点(X,Y)的转移概率;上式表明,当相邻两步的转移概率小于特定ε时,迭代计算结束;
2)利用MAP准则,得到聚类对象标号的估计值:
上式中,对象节点yω的标号根据对象置信度按照MAP准则估计;
步骤5、在MRF模型的最精细层,运行标准置信传播BP算法,利用BP算法更新公式和置信度计算公式bi(yi)=kφi(yi)∏j∈N(i)mji(yi)进行迭代,直到收敛,然后根据MAP准则,逐像素估计标号值:
其中,mij表示从标号节点i传递到标号节点j的消息,表明标号节点j对标号节点i当前状态的影响;k是一个归一化常量;N(i)\j表示节点i的所有邻域节点,但不包括节点j;bi(yi)表示节点i的近似边缘后验概率;似然函数φi(xi,yi)为节点i的局部证据,表示观察节点i取标号yi的条件概率,反映了i处的xi和yi统计依赖性,这里采用高斯混合模型建模;ψij(yi,yj)是对象节点(yi,yj)的势能量函数;对象节点yi的标号根据对象置信度按照MAP准则估计。
2.根据权利要求1所述的新的高分辨率遥感影像的最优分割尺度自动选择方法,其特征在于,步骤1中离散域分水岭变换用如下迭代方式进行定义:
分水线记作为:
对于上述公式,数字影像f是定义在D上的灰度影像,影像的最小值为hmin且最大值为hmax;Xh指积水盆地CB扩张时,灰度级h下所有积水盆地的集合,其中灰度值小于h的像素集合写作Th={p∈D|f(p)≤h};表示影像的最小值为hmin对应的像素集合,Wshed(f)表示图像f的分水岭为不属于任何积水盆地点的集合;影像模拟为一个地表结构,通过分水岭方法来给影像进行标注,使相同的聚水区对应的像素有一致的标识,从而达到影像初始分割的目的;最后,像素聚集的区域是同质和均一的,得到影像是最细粒度的影像D0。
3.根据权利要求1所述的新的高分辨率遥感影像的最优分割尺度自动选择方法,其特征在于,步骤2中计算影像D0中各个对象的亮度均值均方差;
计算影像D0中各个对象的颜色特征值;
使用二维高斯核函数,计算不同方向的对象能量,通过高斯差分滤波器
计算对象的纹理特征值;
其中,从图像行列方向,随机变量t服从正态分布;σ1和σ2为高斯的标准方差;A和B为增益系数;g(t)为两个高斯函数的差分值。
4.根据权利要求1所述的新的高分辨率遥感影像的最优分割尺度自动选择方法,其特征在于,步骤3中使用期望最大化EM算法估计GMM参数EM算法分为两步:
i)计算联合似然概率的期望
E[log(P(x,y|θ)|y,θl)]=∑P(x|y,θl)·logP(x,y|θ)
其中,log(P(x,y|θ)|y,θl)表示对数似然函数,P(x|y,θl)表示先验概率密度函数,P(x|y,θl)表示条件概率;
ii)迭代计算新的参数值θ=arg maxθE[logP(x,y|θ)|y,θl],执行直至收敛;θ是log(P(x,y|θ)|y,θl)期望的极大值。
5.根据权利要求1所述的新的高分辨率遥感影像的最优分割尺度自动选择方法,其特征在于,步骤4中第l层,多尺度BP算法消息迭代公式为:
相应的置信度更新公式:上式中,为第l层(尺度)对象节点yω传递到其邻域对象节点yω′的消息;为对象节点yk在第(l-1)层(尺度)中收集到的局部对象消息;k∈N(ω)\ω′为对象节点k属于对象节点ω的邻域区域,但不包括对象节点ω′;κ是归一化常数;是第l层(尺度)对象节点(yi,yj)的势能量函数,是第l层(尺度)节点yi似然函数;在置信度更新公式中,为第l层对象节点yω的对象置信度。
6.根据权利要求1所述的新的高分辨率遥感影像的最优分割尺度自动选择方法,其特征在于,步骤5中,构建多尺度MRF模型:
上式中,Z为归一化常量;φi(xi,yi)表示观察节点i取标号yi的条件概率,采用高斯混合模型进行建模,即
式中其中μl分别为GMM的第l类均值和方差;
ψij(yi,yj)为成对对象(ij)之间的状态转移矩阵,定义ψij(yi,yj)为一个Potts模型,即
β为大于0的参数。
CN201611202286.7A 2016-12-23 2016-12-23 一种新的高分辨率遥感影像的最优分割尺度自动选择方法 Expired - Fee Related CN106651865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611202286.7A CN106651865B (zh) 2016-12-23 2016-12-23 一种新的高分辨率遥感影像的最优分割尺度自动选择方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611202286.7A CN106651865B (zh) 2016-12-23 2016-12-23 一种新的高分辨率遥感影像的最优分割尺度自动选择方法

Publications (2)

Publication Number Publication Date
CN106651865A CN106651865A (zh) 2017-05-10
CN106651865B true CN106651865B (zh) 2019-10-08

Family

ID=58828190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611202286.7A Expired - Fee Related CN106651865B (zh) 2016-12-23 2016-12-23 一种新的高分辨率遥感影像的最优分割尺度自动选择方法

Country Status (1)

Country Link
CN (1) CN106651865B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657616B (zh) * 2017-08-28 2019-10-01 南京信息工程大学 一种面向地理对象的高分遥感影像分割方法
CN107610137A (zh) * 2017-09-27 2018-01-19 武汉大学 一种高分辨率遥感影像最优分割方法
CN107909597B (zh) * 2017-11-14 2021-05-14 西安建筑科技大学 一种具有边缘保持的多尺度mrf模型图像分割方法
CN108039980B (zh) * 2018-02-07 2019-10-25 电子科技大学 Geo星-机多基sar拓扑结构设计方法
CN108615240B (zh) * 2018-05-08 2020-07-21 北京师范大学 一种结合邻域信息与距离权重的非参贝叶斯过分割方法
CN109934825B (zh) * 2019-03-01 2023-02-28 辽宁工程技术大学 一种结合层次化高斯混合模型和m-h的遥感影像分割方法
CN111369569A (zh) * 2020-02-24 2020-07-03 中国科学院地理科学与资源研究所 一种多尺度分割的最优尺度参数计算方法
CN116738551B (zh) * 2023-08-09 2023-10-17 陕西通信规划设计研究院有限公司 用于bim模型的采集数据智能处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665449B1 (en) * 1999-09-03 2003-12-16 Battelle Memorial Institute Method and algorithm for image processing
CN103646400A (zh) * 2013-12-17 2014-03-19 中国地质大学(北京) 面向对象遥感影像分析中的尺度分割参数自动选择方法
CN104156964A (zh) * 2014-08-14 2014-11-19 陈荣元 一种综合mrf和贝叶斯网络的遥感影像区域分割方法
CN104881677A (zh) * 2015-05-08 2015-09-02 北京师范大学 针对遥感影像地表覆盖分类的最优分割尺度确定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665449B1 (en) * 1999-09-03 2003-12-16 Battelle Memorial Institute Method and algorithm for image processing
CN103646400A (zh) * 2013-12-17 2014-03-19 中国地质大学(北京) 面向对象遥感影像分析中的尺度分割参数自动选择方法
CN104156964A (zh) * 2014-08-14 2014-11-19 陈荣元 一种综合mrf和贝叶斯网络的遥感影像区域分割方法
CN104881677A (zh) * 2015-05-08 2015-09-02 北京师范大学 针对遥感影像地表覆盖分类的最优分割尺度确定方法

Also Published As

Publication number Publication date
CN106651865A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106651865B (zh) 一种新的高分辨率遥感影像的最优分割尺度自动选择方法
Xia et al. Geometric primitives in LiDAR point clouds: A review
CN102254303B (zh) 遥感图像分割方法及遥感图像检索方法
CN106909902B (zh) 一种基于改进的层次化显著模型的遥感目标检测方法
Ochmann et al. Automatic generation of structural building descriptions from 3D point cloud scans
Li et al. Classification of urban point clouds: A robust supervised approach with automatically generating training data
CN106408581B (zh) 一种快速的三维点云直线提取方法
CN106611422B (zh) 基于素描结构的随机梯度贝叶斯sar图像分割方法
CN102903102A (zh) 基于非局部的三马尔可夫随机场sar图像分割方法
Xiao et al. Building segmentation and modeling from airborne LiDAR data
CN112767413B (zh) 综合区域连通和共生知识约束的遥感影像深度语义分割方法
CN102314610B (zh) 一种基于概率潜语义分析模型的面向对象影像聚类方法
CN105931241A (zh) 一种自然场景图像的自动标注方法
CN109242968A (zh) 一种基于多属性超体素图割的河道三维建模方法
Li et al. An aerial image segmentation approach based on enhanced multi-scale convolutional neural network
CN104732552A (zh) 基于非平稳条件场的sar图像分割方法
CN110136143A (zh) 基于admm算法的马氏场下多分辨率遥感图像分割方法
Wang et al. Roof plane segmentation from lidar point cloud data using region expansion based l 0 gradient minimization and graph cut
CN102609721B (zh) 遥感影像的聚类方法
Wang et al. A robust three-stage approach to large-scale urban scene recognition
Chen et al. Heterogeneous images change detection based on iterative joint global–local translation
CN103310452A (zh) 一种权重自动选择的图像分割方法
CN106250828A (zh) 一种基于改进的lbp算子的人群计数方法
CN107169533B (zh) 一种超像素的概率因子tmf的sar图像海岸线检测算法
CN111210433A (zh) 一种基于各向异性势函数的马氏场遥感图像分割方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191008

Termination date: 20201223

CF01 Termination of patent right due to non-payment of annual fee