CN102250226B - 一种与水稻产量相关蛋白及其编码基因与应用 - Google Patents

一种与水稻产量相关蛋白及其编码基因与应用 Download PDF

Info

Publication number
CN102250226B
CN102250226B CN2010101784056A CN201010178405A CN102250226B CN 102250226 B CN102250226 B CN 102250226B CN 2010101784056 A CN2010101784056 A CN 2010101784056A CN 201010178405 A CN201010178405 A CN 201010178405A CN 102250226 B CN102250226 B CN 102250226B
Authority
CN
China
Prior art keywords
plant
sequence
std1
protein
paddy rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101784056A
Other languages
English (en)
Other versions
CN102250226A (zh
Inventor
储成才
李春来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN2010101784056A priority Critical patent/CN102250226B/zh
Priority to CN2011800336515A priority patent/CN103080315A/zh
Priority to BR112012029289A priority patent/BR112012029289A2/pt
Priority to US13/698,370 priority patent/US9441217B2/en
Priority to PCT/CN2011/000852 priority patent/WO2011143933A1/en
Priority to CA2799050A priority patent/CA2799050A1/en
Publication of CN102250226A publication Critical patent/CN102250226A/zh
Application granted granted Critical
Publication of CN102250226B publication Critical patent/CN102250226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Nutrition Science (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种与水稻产量相关蛋白及其编码基因与应用。该蛋白质是如下a)或b)的蛋白质:a)由序列表中序列1中第63-340位氨基酸序列组成的蛋白质;b)由序列表中序列1所示氨基酸序列组成的蛋白质;c)将a)或b)限定的蛋白质经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具与水稻产量相关的由a)或b)衍生的蛋白质。过表达实验证明,转基因株系单穗粒数略有下降,变化不显著,千粒重有所上升,而单株穗数和单株粒重有显著的增加,从而使得单株产量提高15%。因此,本发明蛋白及其编码基因在水稻的遗传育种中具有广阔的应用前景。

Description

一种与水稻产量相关蛋白及其编码基因与应用
技术领域
本发明涉及一种与水稻产量相关蛋白及其编码基因与应用。
背景技术
水稻是我国最主要的粮食作物,也是单子叶植物研究的模式生物,水稻产量相关基因的研究一直是水稻育种和水稻遗传学的重点研究内容。遗传改良或者基因工程是提高作物产量的有效手段。遗传改良或者基因工程的前提是克隆鉴定与高产优质相关的功能基因。目前,与水稻产量相关的控制株高、分蘖、抽穗期、每穗粒数和粒重的诸多基因被相继克隆,对水稻育种具有重要的理论意义和应用价值。
发明内容
本发明的一个目的是提供一种与水稻产量相关的蛋白质及其编码基因。
本发明所提供的蛋白质,是如下a)或b)的蛋白质:
a)由序列表中序列1中第63-340位氨基酸序列组成的蛋白质;
b)由序列表中序列1所示氨基酸序列组成的蛋白质;
c)将a)或b)限定的蛋白质经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具与产量相关的由a)或b)衍生的蛋白质。
所述蛋白质的编码基因为如下1)、2)、3)或4)的基因:
1)序列表中序列2自5′末端起第187-1020位核苷酸所示的DNA分子;
2)其核苷酸序列是序列表中序列2所示DNA分子;
3)在严格条件下与1)或2)限定的DNA序列杂交且编码所述蛋白的DNA分子;
4)与1)或2)限定的DNA序列具有90%以上的同源性且编码所述蛋白的DNA分子。
为了使上述(a)或(b)中的蛋白便于纯化,可在由序列表中序列1所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如表1所示的标签。
表1标签的序列
  标签   残基   序列
  Poly-Arg   5-6(通常为5个)   RRRRR
  Poly-His   2-10(通常为6个)   HHHHHH
  FLAG   8   DYKDDDDK
  Strep-tag II   8   WSHPQFEK
  c-myc   10   EQKLISEEDL
上述(a)或(b)中的蛋白可人工合成,也可先合成其编码基因,再进行生物表达得到。上述(b)中的蛋白的编码基因可通过将序列表中序列2所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上表1所示的标签的编码序列得到。
扩增上述任一所述基因全长或其任意片段的引物对也属于本发明的保护范围。
所述引物对为如下1)或2)或3)所示:
1)一条引物序列如序列表中序列3所示,另一条引物序列如序列表中序列4所示;
2)一条引物序列如序列表中序列5所示,另一条引物序列如序列表中序列6所示;
3)一条引物序列如序列表中序列9所示,另一条引物序列如序列表中序列10所示。
含有上述任一所述编码基因的重组载体、重组菌、转基因细胞系或表达盒也属于本发明的保护范围。
上述任一所述编码基因在培育高产植物中的应用也属于本发明的保护范围。
上述任一所述蛋白在培育高产植物中的应用也属于本发明的保护范围。
本发明的另一个目的是提供一种培育高产植物的方法。
本发明所提供的培育高产植物的方法,是将上述任一所述编码基因导入出发植物中,得到产量高于所述出发植物的目的转基因植物。
上述方法中,所述导入是通过上述任一所述重组载体实现的。
上述方法中,所述产量高于所述出发植物为如下中的至少一种:有效穗数高于所述出发植物、单株粒重高于所述出发植物、千粒重高于所述出发植物和分蘖数目多于所述出发植物。
上述方法中,所述植物为单子叶植物,所述单子叶植物为水稻。
本实验构建了带有不同启动子(CaMV35S和Actin1)的过表达株系,经多代繁殖得到了转基因纯系。对其产量性状分析表明,这些转基因株系单穗粒数略有下降,变化不显著,千粒重有所上升,而单株穗数和单株粒重有显著的增加,从而使得单株产量提高了15%以上。因此,本发明蛋白及其编码基因在水稻的遗传育种中具有广阔的应用前景。
附图说明
图1为重组过表达STD1载体的分子鉴定。
图2为过表达STD1水稻植株的分子鉴定。
图3为过表达STD1增加了水稻有效穗数和单株产量。
图4为过表达STD1增加了水稻的千粒重和分蘖数目。
图5为突变体表型分析。
图6为功能互补实验表型分析。
图7为STD1重组蛋白的异源表达和体外酶活分析。
图8为STD1在不同组织中的RNA blot分析。
图9为STD1的表达模式。(A)-(C)STD1启动子-GUS报告基因表达模式;(D)-(G)STD1mRNA的原位杂交分析。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中涉及的水稻品种为日本晴。
实施例1、基因的制备及功能
一、基因的制备及确认
pMD18-T购自TaKaRa。
将日本晴种子培育成幼苗;提取野生型水稻(日本晴)幼苗总RNA并反转录成cDNA后,使用引物5’-ATGGGCGGCGCCGCCG-3’(SEQ ID NO:3)和5’-TCAACTGTCAAGACCAAGGAATTCTGTGAA-3’(SEQ ID NO:4)进行PCR扩增,得到基因的cDNA片段;将上述基因的cDNA片段与载体pMD18-T连接,连接产物转化大肠杆菌,抗性筛选,挑取单克隆,将单克隆进行液体培养,提取质粒,进行测序,测序结果表明,得到的基因的序列如SEQID NO:2所示,将该基因记作STD1;该基因编码的蛋白的氨基酸序列如SEQ ID NO:1所示,将该蛋白记作STD1。将该阳性质粒记作pMD18-T/STD1。
二、基因及蛋白的功能
(一)过表达
农杆菌菌株AGL1ATCC No.BAA-101购自ATCC;
双元载体pCAMBIA2300购自Cambia(http://www.cambia.org/daisy/cambia/585.html);
改造后的双元载体pCAMBIA2300-Actin和pCAMBIA2300-35S在文献(Liu,B.,Li,P.,Li,X.,Liu,C.,Cao,S.,Chu,C.,and Cao,X.(2005).Loss of Functionof OsDCL1 Affects MicroRNA Accumulation and Causes Developmental Defects inRice.Plant Physiol.139,296-305.)中公开过,由中国科学院遗传与发育生物学研究所提供。
1、按照实验一中所述方法制备得到重组载体pMD18-T/STD1。
2、重组表达载体pCAMBIA2300-Actin/STD1:用限制性内切酶Xba I和Pst I酶切上述pMD18-T/STD1,回收目的基因片段;用限制性内切酶Xba I和Pst I酶切双元载体pCAMBIA2300-Actin,回收载体大片段;将所述目的片段和所述载体大片段连接,得到重组载体。对重组载体进行PCR扩增,所用引物为(SEQ ID NO:3)和(SEQ ID NO:4)鉴定阳性克隆。PCR扩增结果如图1B所示。其中,M为分子量标准,1和2为阳性重组载体的PCR扩增结果,3为空载体pCAMBIA2300-Actin的PCR扩增结果。同时对重组载体进行了酶切鉴定,所用限制性内切酶为Xba I和Pst I,酶切结果如图1A所示。阳性重组载体1和2能够切出1.2kb的STD1的cDNA片段,而3泳道空载体pCAMBIA2300-Actin不能切出相应大小的片段。将阳性重组载体记作pCAMBIA2300-Actin/STD1。
重组表达载体pCAMBIA2300-35S/STD1:以pCAMBIA2300-35S为出发载体,用相同的方法构建得到重组表达载体pCAMBIA2300-35S/STD1。
3、转化农杆菌
取100μl农杆菌菌株AGL1ATCC No.BAA-101的感受态细胞于eppendorf管中,加入1μg质粒pCAMBIA2300-Actin/STD1,混匀。冰浴30min后立即放入液氮中冰冻5min。取出eppendorf管,置于37℃水浴5min。加入YEB培养基1ml,28℃,150rpm培养2-3h。涂于YEB平板(Kan 50mg/L,Rif 50mg/L)上,28℃暗培养2-3天。挑单菌落做PCR鉴定,所用引物为(SEQ ID NO:3)和(SEQID NO:4)。鉴定结果表明,得到的重组菌正确,将该重组菌记作AGL1/pCAMBIA2300-Actin/STD1。
用相同的方法将重组表达载体pCAMBIA2300-35S/STD1转化农杆菌菌株AGL1ATCCNo.BAA-101,得到的重组菌记作AGL1-pCAMBIA2300-35S/STD1。
YEB培养基组成:Beef extract(牛肉浸膏)5g/L,Yeast extract(酵母膏)1g/L,Peptone(蛋白胨)5g/L,Sucrose(蔗糖)5g/L,MgSO4·7H2O 0.4g/100ml,Agar(琼脂)1.5g/100ml,pH7.4。
4、转化水稻
具体的转化筛选方法参见如下文献:易自力,曹守云,王力,何锶洁,储成才,唐祚舜,周朴华,田文忠.提高农杆菌转化水稻频率的研究,遗传学报,2001,28(4):352-358。
去壳的野生型日本晴水稻种子先用70%酒精(加一到两滴Tween 100)进行表面处理3min后,用5%的次氯酸钠振荡消毒30min,然后经无菌水漂洗4-5次后点播于NB培养基(购自PhytoTechnology Laboratories,产品目录号为N492)上诱导愈伤组织。20天左右从成熟胚盾片处挑选色泽淡黄且致密的愈伤组织继代,以后每两周继代一次。
培养重组农杆菌AGL1/pCAMBIA2300-Act in/STD1,至菌液的OD600=0.4左右;
选择生长状态良好的的颗粒状的愈伤组织浸入重组农杆菌AGL1/pCAMBIA2300-Actin/STD1的菌液中,150rpm,震荡培养20min后,取出并用无菌滤纸吸干多余菌液,将愈伤组织依次进行共培养、抗性筛选培养、生根培养,炼苗后移至试验田,得到转入pCAMBIA2300-Actin/STD1的转基因水稻植株(T0代)。取T0代转基因水稻植株的叶片,提取DNA,用引物(SEQ ID NO:3)和(SEQ ID NO:4)进行转基因验证。PCR扩增结果如图2所示。其中,M为分子量标准,1至24为转基因水稻的PCR扩增结果,其中扩增出1.2kb条带的表示转入了STD1基因的阳性植株。
用相同的方法,得到转入pCAMBIA2300-35S/STD1的转基因水稻植株(T0代)。
5、转基因植株的表型分析:
将上述转入pCAMBIA2300-Actin/STD1的转基因水稻植株(T0代)和转入pCAMBIA2300-35S/STD1的转基因水稻植株(T0代)分别于2008年种植于北京和于2009年春季种植于海南,继代繁殖,并得到转基因纯株系。
种植方法如下:夏季4月底播种于北京北郊实验农场,10月中旬收获;11月冬繁于海南陵水,于次年4月初收获。播种前先于37℃浸种2天至种子露白,然后撒播于保温苗床,至1个月后分蘖初期移栽到大田中,常规管理。
对各转基因纯株系分别进行产量性状分析。产量性状为单穗粒数、有效穗数、结实率、单株粒重、千粒重和分蘖数目。
上述各性状的统计方法为:
单穗粒数:每个成熟稻穗生产的种子数;
有效穗数:每个成熟植株生产的结实的稻穗数目;
结实率:每穗的实粒数占总粒数的百分比;
单株粒重:每个植株生产的成熟干燥种子的重量;
千粒重:每1000粒成熟干燥种子的重量;
分蘖数目:每个植株形成的分蘖的个数。
同时以未转任何基因的水稻日本晴为野生型对照(记作WT),以std1为突变体对照,以转入空载体pCAMBIA2300-Actin的水稻为空载体对照(记作转入空载体pCAMBIA2300-Actin的水稻),以转入空载体pCAMBIA2300-35S的水稻为空载体对照(记作转入空载体pCAMBIA2300-35S的水稻),将转入基因STD1的纯株系记作转基因纯株系。
转入pCAMBIA2300-35S/STD1及其对照在北京种植获得的纯株系的结果如图3所示。其中,A表示单穗粒数,B表示有效穗数,C表示单株粒重,D表示各植株表型;WT为野生型,OES126、OES210、OES352为用pCAMBIA2300-35S转基因获得的转基因纯株系,std1为突变体对照。
结果如下:
单穗粒数:WT为110.32±6.93,std1为86.45±9.34;转基因纯株系OES126、OES210、OES352分别为90.73±7.51、102.19±8.12、104.23±8.25;
有效穗数:WT为13.18±0.75,std1为6.72±0.67;转基因纯株系OES126、OES210、OES352分别为18.91±1.62、17.02±1.21、17.84±0.98;
单株粒重(即单株产量):WT为33.33±1.85,std1为11.82±2.36;转基因纯株系OES126、OES210、OES352分别为38.62±2.74、41.46±2.12、41.07±1.89;
转入空载体pCAMBIA2300-Actin的水稻与野生型的结果一致,转入空载体pCAMBIA2300-35S的水稻与野生型的结果一致。
北京和海南种植得到的纯转基因株系的千粒重及分蘖数目的结果如图4所示。图4A为2008年北京种植水稻的千粒重统计结果,图4B为2009年春季在海南收获的水稻的分蘖数目统计结果。WT为野生型,S系列为用pCAMBIA2300-35S转基因获得的转基因纯株系,A系列为用pCAMBIA2300-Actin转基因获得的转基因纯株系。std1为突变体。
千粒重:WT为22.35±0.32g,std1为20.64±0.24g;用pCAMBIA2300-35S转基因获得的转基因纯株系平均为25.72±0.57g;用pCAMBIA2300-Actin转基因获得的转基因纯株系平均为25.18±0.46g。
分蘖数目:WT为10.24±0.50,std1为2.87±0.49;用pCAMBIA2300-35S转基因获得的转基因纯株系平均为14.73±1.25;用pCAMBIA2300-Actin转基因获得的转基因纯株系平均为14,35±0.86。
转入空载体pCAMBIA2300-Actin的水稻与野生型的结果一致,转入空载体pCAMBIA2300-35S的水稻与野生型的结果一致。
本实验构建了带有不同启动子(CaMV35S和Actin1)的过表达株系,经多代繁殖得到了转基因纯系。对其产量性状分析表明,与野生型植株及转入空载体植株相比,这些转基因株系单穗粒数略有下降,变化不显著,千粒重有所上升,而有效穗数和单株粒重有显著的增加,从而使得单株产量提高了15%。过表达植株在北京种植统计结果表明,这些过表达株系提高了有效穗数,增加了单株产量,在海南种植的结果也表明分蘖数目有明显增多。以上数据表明,STD1在体内过表达,可以达到增产增效的目的。
(二)功能互补实验
1、RNAi干扰获得突变体
干扰载体的构建:以pMD18-T/STD1为模板,用引物对5′-ACTGGTGAAGGCTCTTTCGT-3′(SEQ ID NO:5)和5′-GCTTATTGTCACAGCCCAAA-3′(SEQ ID NO:6)进行PCR扩增。将PCR产物连入载体pMD18-T,并进行测序验证,结果在载体pMD18-T中插入的基因序列如SEQ ID NO:2中5′末端起第487-838位核苷酸所示,将阳性克隆记作pMD18-T/STD1-RNAi。然后将pMD18-T/STD1-RNAi和pUCC-RNAi载体(Chen,S.,Hofius,D.,Sonnewald,U.,andF.(2003).Temporal and spatial control of gene silencing in transgenic plants byinducible expression of double-stranded RNA.Plant J.36,731-740.)(由中国科学院遗传与发育生物学研究所提供)同时用Bam HI/Sal I双酶切,并把pMD18-T/STD1-RNAi切出的352bp片段(SEQID NO:2中5′末端起第487-838位核苷酸所示)连入切开的pUCC-RNAi载体中,构建成中间载体pSTD1-RNAi-1。然后用XhoI/Bgl II双酶切pSTD1-RNAi-1,因为Sal I和Xho I以及BamHI和Bgl II是同尾酶,所以酶切pMD18-T/STD1-RNAi产物可以再一次反向插入pSTD1-RNAi-1中,构建成中间载体pSTD1-RNAi-2。最后用Pst I将pSTD1-RNAi-2中的反向重复序列切下,连入双元载体pCAMBIA2300-35S中,构建成用于RNA干涉的载体pSTD1-RNAi;将载体pSTD1-RNAi进行测序及酶切验证,结果在pCAMBIA2300-35S的Pst I酶切位点切出约0.9kb的片段(两端为SEQ ID NO:2中5′末端起第487-838位核苷酸片段的反向重复,中间为pUCC-RNAi载体中的200bp内含子)。
农杆菌介导的转化方法与实验(一)中所述一致。
干扰植株的鉴定:利用载体携带抗性基因引物:正向引物5’-ACAAGATGGATTGCACGCAGG-3’(SEQID NO:7)和反向引物5’-AACTCGTCAAGAAGGCGATAG-3’(SEQ ID NO:8)对进行PCR鉴定。结果获得正确的干扰植株。
干扰植株的表型分析:
干扰植株(命名为std1)的表型为:生长发育迟缓、株高稍矮、分蘖数目明显减少,花期延迟,结实率下降,生物量和产量显著减少(图5和表1)。图5为突变体表型分析。分别为苗期(A)、分蘖期(B)、开花期(C)和成熟的穗(D)的表型,成熟期株高(E)和分蘖数(F)比较。WT表示野生型水稻日本晴,std1表示干扰植株(突变体)。
在北京种植的野生型水稻日本晴一般是播种后117天开始抽穗,而干扰植株的抽穗时间要延迟一周左右,并且抽穗很不整齐(表1-1)。田间种植实验表明,相对于野生型种子75%饱满灌浆、17%不充分灌浆和8%完全空瘪的结实情况,干扰植株则分别为57%、23%和20%。尽管干扰植株的每穗谷粒数和千粒重基本没受影响,分别为野生型的95%和98%,但灌浆不充分种子数及完全空秕种子数的增加使得std1单穗产量严重减少,干扰植株的单株产量只有野生型的36%(表1-2)。
表1-1、干扰植株与野生型开花时间和生物量(苗期)的比较。
基因型 叶片数   开花时间(d) 苗高(cm) 苗重(mg) 根长(cm) 根重(mg)
  WT   73.2±2.38   117.2±2.25   18.64±0.18   63.45±1.13   10.32±0.21   9.55±0.17
  干扰植株   37.1±1.33*   123.5±2.58   15.32±0.15   54.73±1.02*   9.00±0.23   4.91±0.10*
*星号代表有显著性差异(P<0.01)
表1-2、干扰植株与野生型产量性状相关因素的比较
  产量因子   WT   std1   std1/WT   P-Value
  有效穗数   13.17±1.60   6.36±1.63   0.48   P<0.01
  每穗粒数   121.09±3.35   115.37±11.50   0.95   P>0.1
  每株粒数   1594.76±34.7   733.75±23.5   0.46   P<0.01
  每穗空秕粒数   10.43±2.99   23.07±5.64   2.21   P<0.01
  每穗粒重(g)   2.35±0.37   1.74±0.24   0.74   P<0.01
 每株粒重(g)   31.00±3.42   11.04±2.36   0.36   P<0.01
 千粒重(g)   23.31±0.21   22.90±0.15   0.98   P>0.1
表中数值表示平均值±标准差(SE)
2、互补实验
空载体pCAMBIA2300购自(Cambia,澳大利亚,http://www.cambia.org/daisy/cambia/home.html)。
为了进一步验证STD1基因的功能,对干扰植株进行了遗传互补实验。通过农杆菌介导的转化方法将互补表达载体pSCL和空载体pCAMBIA2300(作为阴性对照)分别转入干扰植株中,并对转基因植株进行了分子鉴定。
互补表达载体pSCL的构建方法:从一个BAC克隆B1329D01(购自ArizonaGenomics Institute)上,利用限制性酶Sac I和Pst I(购自Promega)双酶切,切下来一个7.96kb的片段,此片段含有上述STD1基因的全序列。回收此片段,连接到双元载体pCAMBIA2300上,并转化导入农杆菌AGL1中,利用其侵染上述步骤1中的干扰植株的愈伤组织。
农杆菌介导的转化方法与实验(一)中所述一致。
分子鉴定:利用载体携带抗性基因引物:正向引物5’-ACAAGATGGATTGCACGCAGG-3’(SEQ ID NO:7)和反向引物5’-AACTCGTCAAGAAGGCGATAG-3’(SEQ ID NO:8)对再生植株的基因组DNA进行PCR扩增,筛选阳性株系(图6C)。图中M为分子量标准,1至8为转基因植株,9为野生型日本晴,10为干扰植株。
然后将转基因植株及野生型植株分别进行表型分析。
结果表明转化质粒pSCL得到的转基因植株能恢复到野生型的正常表型(图6,转基因株系的表型(A)、分蘖数目(B)),但转入空载体的转基因植株仍然保持突变体的表型。WT表示野生型,std1表示干扰植株,SCL表示恢复植株。
实施例2、蛋白的功能
一、蛋白的制备
原核表达载体pGEX-4T-1购自(Amersham),产品目录号为(27-4580-01)。
以实施例1中的重组载体pMD18-T/STD1为模板,用引物5’-cccggg(XmaI)TGATGATACAGGG GTCAAGATG-3’(SEQ ID NO:9)和5’-gcggccgc(NotI)ACTGTCAAGACCAAGGAATTCT-3’(SEQ ID NO:10)扩增,得到无导肽序列片段;用限制性内切酶Xma I和Not I酶切,回收目的基因片段;用限制性内切酶Xma I和Not I酶切原核表达载体pGEX-4T-1,回收载体大片段;连接,将连接产物转化大肠杆菌BL21(DE3),抗性筛选,挑取单克隆,液体培养,提取质粒,进行测序验证,结果在载体pGEX-4T-1的Xma I和Not I间插入的基因序列如序列表中SEQ ID NO:2中第187-1020位核苷酸所示,表明构建的重组载体正确,命名为pGEX-4T-1/STD1,将含有该重组载体的重组大肠杆菌命名为BL21/pGEX-4T-1/STD1。SEQ ID NO:2中第187-1020位核苷酸所示基因编码的蛋白的氨基酸序列如SEQ ID NO:1中N末端起第63位-340位氨基酸所示。
分别挑取上述重组大肠杆菌的单菌落接种于含有50μg/ml氨苄霉素的LB液体培养基中,37℃培养过夜。把培养物按1∶100的比例接种至100ml LB中,37℃培养至OD6000.5,加入0.8mM IPTG于20℃诱导表达10h后,离心收集菌体。经过超声裂解,过GST亲和层析柱(Amersham Pharmacia Biotech),纯化带有GST标签的蛋白。纯化的蛋白经过浓缩后进行SDS-PAGE电泳,检测融合蛋白的表达情况。
同时,以转入空载体pGEX-4T-1的重组菌作为对照,记作BL21/pGEX-4T-1。
结果如图7A所示。其中泳道1.分子量标准,2.转入空载体菌(BL21/pGEX-4T-1)诱导前表达,3.转入融合STD1载体菌(BL21/pGEX-4T-1/STD1)诱导前表达,4.转入空载体菌(BL21/pGEX-4T-1)诱导后表达,5.转入融合STD1载体菌(BL21/pGEX-4T-1/STD1)诱导后表达,6.转入融合STD1载体菌(BL21/pGEX-4T-1/STD1)诱导后表达纯化。显示得到了分子量56kDa的预期融合蛋白,用Glutathione Sepharose树脂纯化,产率是每升细菌培养物产10mg融合蛋白(目的蛋白与GST标签形成了融合蛋白)。而对照组均未产生目的蛋白。
二、功能验证
UDP-Glc 4’-差向异构酶(UGE)活性测定参照文献Moyrand,F.,Lafontaine,I.,Fontaine,T.,and Janbon,G.(2008).UGE1 and UGE2 regulate theUDP-Glucose/UDP-Galactose equilibrium in Cryptococcus neoformans.Eukaryot.Cell 7,2069-2077.中所述,具体如下:酶活性测定在标准反应条件下进行,200μl反应体系(100mM Tris/HCl,pH8.7,1mM EDTA,2mM NAD+,2mM DTT,0.8mMUDP-galactose(U4500,Sigma),纯化蛋白),于30℃温育,检测反应产物UDP-glucose的生成量。UDP-glucose的生成量检测是通过加入0.04U UDP-葡萄糖脱氢酶(670121,Calbiochem),再检测NADH在340nm的吸光度值的提高而实现的。
结果表明,重组蛋白能够催化UDP-Glc与UDP-Gal之间的相互转化(图7B,STD1表示转基因大肠杆菌的表达产物检测结果,No UG表示不加底物的检测结果,GST表示转入空载体大肠杆菌的表达产物检测结果),并且对不同底物浓度下的催化速率的数值执行曲线拟合(curve fitting)表明,UDP-Gal对酶的结合行为符合简单的米氏动力学(Michaelis-Menten kinetics)(1/□=4.42561/[S]+4.61)。本发明蛋白具有UDP-葡萄糖4-差向异构酶活性。
实施例3、基因的表达模式
为了得到STD1基因在不同组织器官的表达模式,对水稻成熟植株的根、茎杆、剑叶、叶鞘和花序等部位取样进行Northern Blot分析,结果表明,STD1主要在水稻绿色组织中表达,其中在叶片、叶鞘和花序中的表达水平最高,根组织中表达水平较低(图8)。
分离了STD1基因的启动子序列,将其与GUS报告基因融合后构建GUS:STD1-Promoter报告基因表达载体,获得转基因植株。选取不同发育时期的转基因植株的叶片、幼根、茎、茎节以及花器官等进行GUS染色。将其中叶片、幼茎和腋芽制成徒手切片再行染色。结果表明STD1在腋芽、根尖、颖花和花药等部位有表达,而且在腋芽和花器官中表达水平较高(图9)。
为了进一步研究STD1基因的表达模式,进行了mRNA原位杂交分析。如图9所示,STD1主要在茎端分生组织和叶原基(图9D)、腋芽原基(图9G)、花序原基(图9F)和幼叶(图9E)中表达。
序列表
<110>中国科学院遗传与发育生物学研究所
<120>一种与水稻产量相关蛋白及其编码基因与应用
<160>10
<210>1
<211>340
<212>PRT
<213>水稻(Oryza sativa L.)
<400>1
Met Gly Gly Ala Ala Val Ser Ser Leu Leu Ala Thr Pro Thr Pro Thr
1               5                   10                  15
Ser Arg Pro Arg Pro Val Ser Thr Thr Thr Ala Pro Phe Ser Val Asn
            20                  25                  30
Leu Ser Thr Ala Ala Ala Arg Ala Pro Arg Leu Leu Leu Leu Ser Arg
        35                  40                  45
Arg Pro Arg Pro Arg Pro Ala Ala Ala Val Leu Gly Val Ser Asp Asp
    50                  55                  60
Thr Gly Val Lys Met Ala Gly Ser Asp Ile Val Gly Lys Asn Asp Leu
65                  70                  75                  80
Leu Ile Val Gly Pro Gly Val Leu Gly Arg Leu Val Ala Glu Lys Trp
                85                  90                  95
Gln Glu Glu His Pro Gly Cys Lys Val Phe Gly Gln Thr Ala Ser Thr
            100                 105                 110
Asp His His Asn Glu Leu Ser Asn Ile Gly Ile Ile Pro Ser Leu Lys
        115                 120                 125
Gly Ser Thr Phe Pro Gln Lys Val Pro Tyr Val Ile Phe Cys Ala Pro
    130                 135                 140
Pro Ser Arg Ser Asp Asp Tyr Pro Gly Asp Val Arg Val Ala Ala Ser
145                 150                 155                 160
Asn Trp Thr Gly Glu Gly Ser Phe Val Phe Thr Ser Ser Thr Ala Leu
                165                 170                 175
Tyr Asp Cys Ser Asp Asn Glu Leu Cys Asn Glu Asp Cys Pro Ser Val
            180                 185                 190
Pro Ile Gly Arg Ser Pro Arg Thr Asp Val Leu Leu Lys Ala Glu Asn
        195                 200                 205
Val Val Leu Glu Ala Gly Gly Cys Val Leu Arg Leu Ala Gly Leu Tyr
    210                 215                 220
Lys Ile Asp Arg Gly Ala His Phe Phe Trp Leu Arg Lys Gly Thr Leu
225                 230                 235                 240
Asp Thr Arg Pro Asp His Ile Ile Asn Gln Ile His Tyr Glu Asp Ala
                245                 250                 255
Ala Ser Leu Ala Ile Ala Ile Met Lys Lys Gly His Arg Gly Arg Ile
            260                 265                 270
Phe Leu Gly Cys Asp Asn Lys Pro Leu Ser Arg Gln Glu Ile Met Asp
        275                 280                 285
Ser Val Asn Arg Ser Gly Lys Phe Asp Thr Lys Phe Gln Gly Phe Thr
    290                 295                 300
Gly Thr Asp Gly Pro Leu Gly Lys Lys Met Glu Asn Ser Arg Thr Arg
305                 310                 315                 320
Ser Glu Ile Gly Trp Glu Pro Lys Tyr Pro Ser Phe Thr Glu Phe Leu
                325                 330                 335
Gly Leu Asp Ser
            340
<210>2
<211>1023
<212>DNA
<213>水稻(Oryza sativa L.)
<400>2
atgggcggcg ccgccgtctc cagcctgctt gccaccccaa caccgacctc tcgacctcga     60
cccgtctcca ccaccaccgc ccccttctcc gtcaacctct ccaccgcagc tgcccgcgca    120
cctcgcctcc tcctcctctc gcgccgccct cgccctcgcc ccgccgccgc ggttctcggg    180
gtgtctgatg atacaggggt caagatggct ggctccgaca ttgttggcaa gaacgatttg    240
ctgattgttg gccctggagt gcttggtcga ctggtagctg agaaatggca ggaggaacat    300
ccaggatgca aagtttttgg ccagaccgca agcacagatc accacaacga attgtcgaat    360
attggcatca ttccctcctt gaagggatcc acttttcctc agaaggttcc atatgttatt    420
ttctgtgctc ccccatctcg ttcggatgat taccctgggg atgtgagagt agctgcctca    480
aattggactg gtgaaggctc tttcgttttt acatcaagta ctgctctgta cgattgtagt    540
gacaacgaat tgtgcaatga ggattgccca tctgtgccaa ttggcagaag ccctcgtact    600
gacgtccttc taaaagcaga gaatgttgtt cttgaggcag gaggctgtgt cctcaggcta    660
gcaggactct ataaaataga tagaggtgct catttttttt ggttgaggaa aggaactttg    720
gacacacgac cggatcatat tatcaatcaa attcattatg aggatgctgc ttcccttgca    780
attgccataa tgaaaaaggg acacaggggt cgaatctttt tgggctgtga caataagcct    840
ctttccaggc aagaaataat ggactctgtt aacagaagtg gaaaatttga cacgaagttc    900
caaggtttta ctggtacaga tggtccactg ggtaagaaga tggagaattc gagaactcgt    960
tctgagattg gttgggagcc caagtatcca agcttcacag aattccttgg tcttgacagt   1020
tga                                                                 1023
<210>3
<211>16
<212>DNA
<213>人工序列
<220>
<223>
<400>3
atgggcggcg ccgccg                                                       16
<210>4
<211>30
<212>DNA
<213>人工序列
<220>
<223>
<400>4
tcaactgtca agaccaagga attctgtgaa                                        30
<210>5
<211>20
<212>DNA
<213>人工序列
<220>
<223>
<400>5
actggtgaag gctctttcgt                                                   20
<210>6
<211>20
<212>DNA
<213>人工序列
<220>
<223>
<400>6
gcttattgtc acagcccaaa                                        20
<210>7
<211>21
<212>DNA
<213>人工序列
<220>
<223>
<400>7
acaagatgga ttgcacgcag g                                      21
<210>8
<211>21
<212>DNA
<213>人工序列
<220>
<223>
<400>8
aactcgtcaa gaaggcgata  g                            21
<210>9
<211>28
<212>DNA
<213>人工序列
<220>
<223>
<400>9
cccgggtgat gatacagggg tcaagatg                      28
<210>10
<211>30
<212>DNA
<213>人工序列
<220>
<223>
<400>10
gcggccgcac tgtcaagacc aaggaattct                    30

Claims (6)

1.a)或b)所述蛋白在培育高产植物中的应用:
a)由序列表中序列1中第63-340位氨基酸序列组成的蛋白质;
b)由序列表中序列1所示氨基酸序列组成的蛋白质;
所述植物为水稻。
2.权利要求1中a)或b)所述蛋白的编码基因在培育高产植物中的应用;所述植物为水稻。
3.如下1)或2)所示的基因在培育高产植物中的应用;
1)其核苷酸序列是序列表中序列2所示DNA分子;
2)序列表中序列2自5′末端起第187-1020位核苷酸所示的DNA分子;
所述植物为水稻。
4.一种培育高产植物的方法,是将权利要求1中a)或b)所述蛋白的编码基因导入出发植物中,得到产量高于所述出发植物的目的转基因植物;所述出发植物为水稻。
5.根据权利要求4所述的方法,其特征在于:所述编码基因为如下1)或2)所示的基因:1)其核苷酸序列是序列表中序列2所示DNA分子;
2)序列表中序列2自5′末端起第187-1020位核苷酸所示的DNA分子。
6.根据权利要求5所述的方法,其特征在于:所述产量高于所述出发植物为如下中的至少一种:有效穗数高于所述出发植物、单株粒重高于所述出发植物、千粒重高于所述出发植物和分蘖数目多于所述出发植物。
CN2010101784056A 2010-05-17 2010-05-17 一种与水稻产量相关蛋白及其编码基因与应用 Active CN102250226B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2010101784056A CN102250226B (zh) 2010-05-17 2010-05-17 一种与水稻产量相关蛋白及其编码基因与应用
CN2011800336515A CN103080315A (zh) 2010-05-17 2011-05-16 用于改进植物的农艺学性状的udp-葡萄糖-4-差向异构酶
BR112012029289A BR112012029289A2 (pt) 2010-05-17 2011-05-16 polinucleotídeo isolado, construto de dna recombinante, método para aumentar a produtividade de uma planta, método para aumentar a produção de udp-galactose, método para aumentar uma característica agronômica de uma planta, método para alterar divisão de carbono para aumentar produtividade, planta, semente, célula de planta, vetor, método para produzir uma planta transgênica, método para aumentar a eficiência fotossintética de uma planta, sonda de oligonucleotídeo ou iniciador derivado da seq id nº: 18.
US13/698,370 US9441217B2 (en) 2010-05-17 2011-05-16 Plastidial nucleotide sugar epimerases
PCT/CN2011/000852 WO2011143933A1 (en) 2010-05-17 2011-05-16 Udp-glucose-4-epimerase useful for improving agronomic performance of plants
CA2799050A CA2799050A1 (en) 2010-05-17 2011-05-16 Udp-glucose-4-epimerase useful for improving agronomic performance of plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101784056A CN102250226B (zh) 2010-05-17 2010-05-17 一种与水稻产量相关蛋白及其编码基因与应用

Publications (2)

Publication Number Publication Date
CN102250226A CN102250226A (zh) 2011-11-23
CN102250226B true CN102250226B (zh) 2013-06-12

Family

ID=44977825

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010101784056A Active CN102250226B (zh) 2010-05-17 2010-05-17 一种与水稻产量相关蛋白及其编码基因与应用
CN2011800336515A Pending CN103080315A (zh) 2010-05-17 2011-05-16 用于改进植物的农艺学性状的udp-葡萄糖-4-差向异构酶

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011800336515A Pending CN103080315A (zh) 2010-05-17 2011-05-16 用于改进植物的农艺学性状的udp-葡萄糖-4-差向异构酶

Country Status (5)

Country Link
US (1) US9441217B2 (zh)
CN (2) CN102250226B (zh)
BR (1) BR112012029289A2 (zh)
CA (1) CA2799050A1 (zh)
WO (1) WO2011143933A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172179A (zh) * 2020-01-19 2020-05-19 武汉艾迪晶生物科技有限公司 泛素连接酶基因OsNLA2、蛋白及其在水稻选育中的应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636191A (zh) * 2017-01-13 2017-05-10 中国科学院昆明植物研究所 拟南芥At‐UGE2基因及其过表达突变株和缺失突变株在调节植物性状中的应用
CN109956996B (zh) * 2017-12-14 2021-04-06 中国农业科学院作物科学研究所 一种谷子产量相关蛋白SiAMP1及其编码基因与应用
CN111172174B (zh) * 2020-03-06 2022-02-15 沈阳农业大学 OsUGE3基因在改善水稻性状中的应用
CN112322616B (zh) * 2020-11-25 2022-04-05 上海市农业科学院 一种猴头菌来源的udp-葡萄糖-4-差向异构酶的表达和纯化方法
CN113755511B (zh) * 2021-10-12 2023-03-24 河南大学三亚研究院 玉米Zm00001d029151基因在调控保卫细胞形态建成方面的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992236B1 (en) * 1999-02-10 2006-01-31 E. I. Du Pont De Nemours And Company Plant UDP-glucose epimerases
JP2005185101A (ja) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences 植物の全長cDNAおよびその利用
CN101117638B (zh) * 2007-04-05 2010-09-01 中国科学院植物研究所 一种提高植物抗逆性的方法
CN102027120A (zh) * 2007-06-29 2011-04-20 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于制备该植物的方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Cloning,characterization,and transformation of the phosphoethanolamine N-methyltransferase gene(ZmPEAMT1) in maize(Zea mays L.);Suowei Wu et al;《Mol Biotechnol》;20070419;全文 *
Genbank:NP_001043040;Ohyanagi H et al;《Genbank》;20061002;全文 *
Ohyanagi H et al.Genbank:NP_001043040.《Genbank》.2006,
Suowei Wu et al.Cloning,characterization,and transformation of the phosphoethanolamine N-methyltransferase gene(ZmPEAMT1) in maize(Zea mays L.).《Mol Biotechnol》.2007,全文.
新一代转基因植物研究进展;黎昊雁等;《中国生物工程杂志》;20030630;全文 *
水稻优良性状控制基因的定位进展及其在染色体上的分布;陈瑞等;《遗传》;20070430;全文 *
陈瑞等.水稻优良性状控制基因的定位进展及其在染色体上的分布.《遗传》.2007,全文.
黎昊雁等.新一代转基因植物研究进展.《中国生物工程杂志》.2003,全文.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172179A (zh) * 2020-01-19 2020-05-19 武汉艾迪晶生物科技有限公司 泛素连接酶基因OsNLA2、蛋白及其在水稻选育中的应用
CN111172179B (zh) * 2020-01-19 2020-09-08 武汉艾迪晶生物科技有限公司 泛素连接酶基因OsNLA2、蛋白及其在水稻选育中的应用

Also Published As

Publication number Publication date
US9441217B2 (en) 2016-09-13
CN103080315A (zh) 2013-05-01
CN102250226A (zh) 2011-11-23
BR112012029289A2 (pt) 2017-05-02
CA2799050A1 (en) 2011-11-24
WO2011143933A1 (en) 2011-11-24
US20140059715A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
CN102250226B (zh) 一种与水稻产量相关蛋白及其编码基因与应用
CN108004224A (zh) 使植物具有除草剂抗性的水稻als突变型蛋白及其应用
US20240263188A1 (en) Application of bfne gene in tomato plant architecture improvement and biological yield increase
CN114480431A (zh) 玉米ZmBES1/BZR1-10基因在提高植物耐旱性和产量中的应用
CN102154337B (zh) 一种棉花促丝裂原活化蛋白激酶基因GhMAPK6及其应用
CN103183731B (zh) 石斛DnMYB类转录因子、编码基因、载体、工程菌及应用
CN117551689A (zh) 与大豆株高、单株荚数和单株粒数相关蛋白及其生物材料和应用
CN110684088B (zh) 蛋白ZmbZIPa3及其编码基因在调控植物生长发育与耐逆性中的应用
JP2012507263A (ja) 変化した植物構造を示すグルタミン酸デカルボキシラーゼ(gad)トランスジェニック植物
CN108034662B (zh) 小麦条锈菌pstg_06025基因在条锈病防治中的应用和抗条锈菌小麦的培育方法
CN107987139B (zh) 一种Dof转录因子及其在提高植物耐盐方面的应用
US20230123814A1 (en) Use of alr1 gene or alr1 protein of aluminum ion receptor in regulating plant aluminum resistance
AU2020100459A4 (en) THE IAA-LEUCINE RESISTANT1-LIKE HYDROLASE GENE PpIAAH1 IN PEACH AND APPLICATIONS THEREOF
CN108559753A (zh) 小麦条锈菌pstg_17694基因在条锈病防治中的应用和抗条锈菌小麦的培育方法
CN116622666A (zh) 调控植物抗旱性的方法及TaMPK3在调控植物抗旱性中的应用
CN112553224A (zh) 组蛋白去乙酰化酶基因OsHDT701在延长植物种子寿命中的应用
CN101906426B (zh) 采用大豆赤霉素结合蛋白基因调节植物光周期的方法
CN112430590B (zh) 磷酸烯醇式丙酮酸羧化酶在提高再生稻再生率和再生季产量中的应用
CN112592392B (zh) 多效性基因SbSnf4在提高甘蔗糖产量、株高、茎杆鲜重和/或汁液量中的应用
CN116789785B (zh) 长雄蕊野生稻高产、高光效基因FarL1及其应用
CN112608371B (zh) 多效性基因SbSnf4及其在提高高粱茎杆含糖量和生物产量中的应用
CN114891773B (zh) 一种提高大白菜叶绿素含量的蛋白dBrFC2与编码基因及其应用
CN117821499B (zh) 调控TaWRKY24蛋白编码基因表达的生物材料及其应用
CN106544347B (zh) 一种调控植物种子休眠时间的方法
CN118812681A (zh) 调控大豆株型和提高产量的蛋白GmLTPP及其编码基因与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant