CN102246435A - 用于波长交换光学网络中的损伤感知路由和波长分配的系统和方法 - Google Patents

用于波长交换光学网络中的损伤感知路由和波长分配的系统和方法 Download PDF

Info

Publication number
CN102246435A
CN102246435A CN2010800031601A CN201080003160A CN102246435A CN 102246435 A CN102246435 A CN 102246435A CN 2010800031601 A CN2010800031601 A CN 2010800031601A CN 201080003160 A CN201080003160 A CN 201080003160A CN 102246435 A CN102246435 A CN 102246435A
Authority
CN
China
Prior art keywords
path
pce
rwa
wavelength
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800031601A
Other languages
English (en)
Inventor
李勇
伯恩斯坦·格雷格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN102246435A publication Critical patent/CN102246435A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供一种设备,其包括路径计算元件(PCE),其用于至少局部损伤感知路由和波长分配(RWA),且基于支持路径路由、波长分配(WA)和损伤确认(IV)的PCE协议(PCEP)与路径计算客户端(PCC)通信。本发明还揭示一种网络组件,所述网络组件包括至少一个处理器,其经配置以实施一种方法,所述方法包括:建立与PCC的PCEP会话;从PCC接收包括RWA信息和约束的路径计算信息;基于路径计算信息和供应商设备的私有损伤信息来建立损伤感知RWA(IA-RWA);以及基于IA-RWA将路径和所分配的波长发送到PCC。本发明揭示一种方法,其包括使用路由和组合式WA与IV为光学网络中的多个网络元件(NE)建立损伤感知路由和波长分配。

Description

用于波长交换光学网络中的损伤感知路由和波长分配的系统和方法
相关申请案的交叉参考
本申请案要求李勇等人在2010年1月28日递交的申请号为“US 12/695634”,且标题为“Architecture Framework for the Control Plane and Measurement of Impairment-Aware Routingand Wavelength Assignment in Wavelength Switched Optical Networks”的美国正式申请的优先权,该正式申请要求李勇等在2009年2月6日递交的,申请号为”US 61/150,679”,且标题为“Architecture Framework for the Control Plane and Measurement of Impairment-Aware Routingand Wavelength Assignment in Wavelength Switched Optical Networks”的美国临时专利申请案的优先权,以上两案如同全文再现般引用的方式并入本文中。
背景技术
波分复用(WDM)是一种预想用以增加光学网络中的带宽容量且实现光网络中的双向通信的技术。在WDM网络中,可使用单根光纤在网络元件(NE)之间同时传送多个数据信号。具体地说,可为各个信号分配不同的传送波长,使得其不会彼此干扰或冲突。信号通过网络所采取的路径称为光路。波长交换光学网络(WSON)是一种类型的WDM网络,其寻求以与现有光网络相比更少的光-电-光(OEO)转换方式沿光路(例如在各个NE处)交换光信号。
实施WDM网络的挑战之一是在任一给定时间内传输为通过网络传输的各种信号的进行路径计算过程中确定路由和波长分配(RWA)。不同于传统电路交换和以面向连接的包交换网络,其仅须为穿过网络的数据流确定路径,WDM网络具有额外的约束条件,即其必须确保单根光纤上的两个信号不会同时使用同一波长。此约束因以下事实而更加复杂:WDM网络通常使用包括有限数目个可用光学波长的特定光学频带。由此,RWA仍然是在光学网络中实施WDM技术的挑战之一。
路径计算也可能因沿光路的其它问题(例如过量的光学噪声)而受约束。沿路径传播的光学信号可因所述信号所遭遇的光纤和光学装置中的各种物理过程而更改。当对信号的更改导致信号降级时,这些物理过程称为“光学损伤”。光学损伤可沿信号所遍历的路径而累积,且应在WSON中的路径选择期间予以考虑,以确保(例如)从入口点到出口点的信号传播具有可接受量的降级。
发明内容
在一个实施例中,本发明包含一种设备,所述设备包括路径计算元件(PCE),其用于至少局部损伤感知RWA,且基于支持路径路由、波长分配(WA)和损伤确认(IV)的PCE协议(PCEP)与路径计算客户端(PCC)通信。
在另一实施例中,本发明包含一种网络组件,所述网络组件包括至少一个处理器,其用于实施一种方法,所述方法包括:建立与PCC的PCEP会话;从PCC接收包括RWA信息和约束的路径计算信息;基于路径计算信息和供应商设备的私有损伤信息来建立损伤感知RWA(IA-RWA);以及基于IA-RWA将路径和所分配的波长发送到PCC。
在又一实施例中,本发明包含一种方法,其包括使用路由和组合式WA与IV为光学网络中的多个NE建立损伤感知路由和波长分配。
将从结合附图和所附权利要求书进行的以下详细描述中更清楚地理解这些和其它特征。
附图说明
为了更完整地理解本发明,现在参考结合附图和详细描述而进行的以下简要描述,其中相同参考标号表示相同部分。
图1是WSON系统的实施例的示意图。
图2是组合式损伤感知RWA架构的实施例的示意图。
图3是组合式损伤感知RWA架构的另一实施例的示意图。
图4是分开式损伤感知RWA架构的实施例的示意图。
图5是分开式损伤感知RWA架构的另一实施例的示意图。
图6是分开式损伤感知RWA架构的另一实施例的示意图。
图7是分开式损伤感知RWA架构的另一实施例的示意图。
图8是分布式损伤感知RWA架构的实施例的示意图。
图9是路径计算通信方法的实施例的协议图。
图10是路径计算通信方法的另一实施例的协议图。
图11是路径计算通信方法的另一实施例的协议图。
图12是通用计算机系统的实施例的示意图。
具体实施方式
开始应理解,尽管下文提供一个或一个以上实施例的说明性实施方案,但可使用任何数量的技术(不管是目前已知还是现有的)来实施所揭示的系统和/或方法。本发明决不应限于下文所说明的说明性实施方案、图式和技术,包含本文所说明和描述的示范性设计和实施方案,而是可在所附权利要求书连同其整个范围的均等物的范围内修改。
为了确保光学网络中的合适操作,可以详细等级表征多个网络组件(例如NE、子系统、装置、缆线布设等)。可在网络规划、安装和接通阶段考虑这些网络组件的详细特性。另外,可在日常操作期间使用所述网络组件特性,例如用于计算和建立光路以及监视连接。详细特性可包括因组件中的物理过程而导致的光学损伤。
本文揭示用于扩展PCEP以支持光学网络(例如WSON)中的IA-RWA的方法和系统。可在网络的控制平面处管理IA-RWA。可使用多个网络协议(例如PCEP和一般化多协议标签交换(GMPLS)),基于网络组件特性以及损伤对光传播的预期影响来执行损伤感知路径计算。可使用多个架构来实施网络中的IA-RWA,其可包括:组合式路由、WA和IV架构;分开式路由、WA和IV架构;以及分布式WA与IV架构。
图1说明WSON系统100的一个实施例。系统100可包括WSON 110、控制平面控制器120以及PCE 130。WSON 110、控制平面控制器120以及PCE 130可经由光学、电或无线构件彼此通信。WSON 110可包括使用光纤彼此耦合的多个NE 112。在一实施例中,光纤也可视为NE 112。光学信号可在可穿过一些NE 112的光路上的WSON110传输传输。另外,NE112中的一些(例如在WSON 110末端的NE)可用于在来自外部来源的电信号与WSON 110中使用的光学信号之间转换。尽管WSON 110中展示四个NE 112,但WSON 110可包括任何数量的NE 112。
WSON 110传输可为使用有源或无源组件来传输光学信号的任何光学网络。WSON 110可实施WDM传输以通过WSON 110传输光学信号,且可包括如下文详细描述的各种光学组件。WSON 110可为长距离网络、城域网或住宅接入网络的一部分。
NE 112可为传输信号通过WSON 110的任何装置或组件。在一实施例中,NE 112本质上由光学处理组件(例如线路端口、分出端口、插入端口、发射器、接收器、放大器、光学分接头等等)组成,且不含有任何电处理组件。或者,NE 112可包括光学处理组件与电处理组件的组合。NE 112中的至少一些可配置有波长转换器、光电(OE)转换器、电光(EO)转换器、OEO转换器或其组合。然而,对NE 112中的至少一些NE来说,不具有这些转换器可为有利的,因为这样可降低WSON 110的成本和复杂性。在特定实施例中,NE 112可包括光学交叉连接(OXC)、光子交叉连接(PXC)、光学分插多路复用器(OADM)、I类或II类可重新配置的光学分插多路复用器(ROADM)、波长选择性交换器(WSS)、固定光学分插多路复用器(FOADM)或其组合。
NE 112可经由光纤彼此耦合。光纤可用于建立NE 112之间的光学链路且在NE 112传输之间传输光学信号。光纤可包括如国际电信联盟(ITU)的电信标准化部门(ITU-T)标准G.652中所定义的标准单模光纤(SMF)、如ITU-T标准G.653中所定义的色散移位SMF、如ITU-T标准G.654中所定义的截止移位SMF、如ITU-T标准G.655中所定义的非零色散移位SMF、如ITU-T标准G.656中所定义的宽带非零色散移位SMF或其组合。这些光纤类型可通过其光学损伤特性来区分,例如衰减、色散、偏振模色散、四波混合或其组合。这些效应可取决于波长、信道间距、输入功率电平或其组合。可使用光纤来传输传输WDM信号,例如ITU-TG.694.2中所定义的常规WDM(CWDM)信号或ITU-T G.694.1中所定义的密集WDM(DWDM)信号。本文所描述的所有标准均以引用的方式并入本文中。NE 112在其中操作和通信的网络层可称为传输传输平面。
控制平面控制器120可协调WSON 110内的活动。具体地说,控制平面控制器120可接收光学连接请求,且经由多协议标签交换流程工程设计(MPLS-TE)或GMPLS向WSON 110提供光路信令,从而协调NE 112,使得在很少或无竞争的情况下使数据信号路由通过WSON110。另外,控制平面控制器120可使用PCEP与PCE 130通信,以向PCE 130提供可用于路径计算的信息,且/或从PCE 130接收路径计算,且将路径计算转发到NE 112。控制平面控制器120可位于WSON 110外部的组件(例如外部服务器)中,或可位于WSON 110内的组件(例如NE 112)中。控制平面控制器120在其中操作的网络层可称为控制平面,其可与传输平面分开且可管理传输平面。
PCE 130可(例如)在控制平面处对WSON系统100执行RWA的全部或一部分。具体地说,PCE 130可从控制平面控制器120、从NE 112或从两者接收可用于RWA的波长或其它信息。PCE 130可(例如)通过计算用于光学信号的路线或光路、指定用于每一光路的光学波长,且确定沿光路的应在该处将光学信号转换为电信号或不同波长的NE 112,来处理所述信息以获得RWA。RWA可包含用于每一传入信号的至少一个路线以及与每一路线相关联的至少一个波长。PCE 130接着可将RWA信息的全部或一部分发送到控制平面控制器120或直接发送到NE 112。为了在此过程中辅助PCE 130,PCE 130可包括全局业务工程设计数据库(TED)、RWA信息数据库、光学性能监视器(OPM)、物理层约束(PLC)信息数据库或其组合。PCE 130可位于WSON 110外部的组件(例如外部服务器)中,或可位于WSON 110内的组件(例如NE 112)中。
在一些实施例中,PCE 130可接收来自PCC的路径计算请求。PCC可为请求PCE 130执行路径计算的任何客户端应用程序。PCC也可为作出此请求的任何网络组件,例如控制平面控制器120,或任何NE 112,例如ROADM或FOADM。一般来说,PCC使用PCEP与PCE130通信,但也可使用其它可接受的通信协议。
可存在许多类型的可影响PCE 130处的路径计算的路径计算约束。路径计算约束可包含于PCC所请求的路径计算中。在一个实施例中,路径计算约束包含光学质量约束。这些约束的实例包含:光学信噪比(OSNR)、放大器自发发射(ASE)、偏振模色散(PMD)、偏振相关损失(PDL)、相干光学串扰、不相干光学串扰、有效通带、增益非均匀性、增益瞬变、色散或其组合。在一些实施例中,可将路径计算约束分类为线性的,因为其效应与光学信号功率无关,且其个别地影响波长。或者,可将路径计算约束分类为非线性的,因为其效应与光学信号功率有关,产生多个波长信道上的色散、引起波长信道之间的串扰或其组合。不管怎样,可将路径计算约束传送到PCE 130,使得PCE 130可在计算信号通过WSON 100的路径时考虑所述约束。
WSON系统100中所使用的路径计算信息还可包括损伤信息,其可用于执行WSON 110中的IA-RWA。举例来说,PCE 130可对WSON系统100执行IV的全部或一部分,其可包括基于路径中可使所传播的光学信号降级的任何损伤来确认所计算的路径。当光学损伤沿光学信号所传播的路径累积时,损伤可使信号降级,这可降低信号的误码率(BER),或甚至导致无法检测或解调所述信号。如果信号的因光学损伤而导致的BER(或信号质量的任何其它量度)可为可接受的或容许的,且可以足够的准确性来检测所述信号,那么所述路径可通过确认。然而,如果信号的BER因光学损伤而相当低,那么可拒绝所述路径或将所述路径从允许路径中排除。
光学损伤可受网络组件的物理过程或条件影响,例如光纤类型、NE 112的类型和位置、可共享沿信号路径的光纤段的其它光学信号的存在,或其组合。光学损伤以及可导致这些损伤的物理过程在多个光学通信参考中有描述,例如因特网工程设计特别工作组(IETF)请求注解(RFC)4054,其如同全文再现般以引用的方式并入本文中。郭温达·P·阿戈沃(Govind P.Agrawal)在2002年由威利跨科学出版社(Wiley-Interscience)出版的“光纤通信系统(Fiber-Optic Communications Systems)”中以及2007年由学术出版社(Academic Press)出版的“非线性光纤(Nonlinear Fiber Optics)”中也描述了光学损伤,上述两部文献均以引用的方式并入本文中。
一些网络中可忽略光学损伤,其中每个路径均可对网络中的准许信号类型有效。在此情况下,可在网络设计期间考虑光学损伤,且接着在之后(例如在路径计算期间)忽略。然而,在其它网络(例如较大网络)中,限制对每一信号类型允许的路径可能是不实际的。代替的是,可(例如)在路径计算期间使用近似技术(例如链路预算和色散(上升时间)预算)对多个路径执行IV。用于IV的近似技术在多个光学参考中有描述,包含ITU-T G.680和ITU-T系列G补充39(G.Sup39),上述两者以引用的方式并入本文中。用于IV的近似技术可基于损伤模型,且可用于(例如)在控制平面层级处近似或估计因网络组件(例如NE)而导致的损伤。举例来说,近似的IV可包括确定针对一信号类型,哪些路径可具有可接受的BER或OSNR。在一些情况下,如下文所述,可通过(例如)在PCE处组合近似的IV与RWA来改进网络中的IA-RWA。
在一些情况下,损伤效应可能要求准确的估计,例如在添加新路径之前需要损伤对现存路径的影响的评估。多种方法可用于准确或详细的IV,例如基于解出描述光纤中的信号传播的多个偏微分方程式的方法。所述方法还可包括将详细模型用于网络组件。这些方法的估计/模拟时间可取决于网络中的情形或条件。可能需要大量的时间来确认或准予使用详细IV的路径。为了增加确认路径的概率,可在详细IV之前执行近似IV。由于详细IV可基于可实质上不同于RWA方法的估计/模拟方法,因此详细IV过程可与RWA过程分开,例如使用单独的IV实体或单独的PCE。
可在路径计算实体之间,例如PCE与PCC之间或PCE之间无限制或约束的情况下,共享一些路径计算信息(例如RWA信息)。然而,在一些情况下,损伤信息可为私有信息,且不可在网络中的不同组件的不同供应商之间共享。举例来说,如果使用某些专有损伤模型来确认路径或供应商选择不对一组NE共享损伤信息,那么损伤信息不可共享。举例来说,在包括对应于第一供应商且遍历穿过对应于多个第二供应商的多个NE(例如,OADM、PXC等)的线路段的网络中,所述线路段的损伤信息可为私有的,且不可与第二供应商共享。然而,第二供应商的损伤信息可为公开的,且可与第一供应商共享。
在一实施例中,为了使第一供应商设备的损伤信息维持私有,第一供应商设备可提供到达网络中的第一PCE的潜在路径的列表,其可考虑入口节点与出口节点之间的路径计算的列表。路径列表还可包括波长约束以及(例如)对于第一供应商以及至少一第二供应商可能共享的损伤信息。接着可将列表发送到网络中的第二PCE以执行IA-RWA。然而,在相对较大的网络中,路径列表可能相当大,这可能导致缩放问题。在另一实施例中,第一供应商设备可包括类似PCE的实体,其将路径列表提供给网络中负责IA-RWA的PCE。类似PCE的实体可不执行RWA,且因此可不需要知道波长可用性信息。此方法可减少因转发相当大的列表而导致的缩放问题。在另一实施例中,第一供应商设备可包括PCE,其可用于(例如)代表网络执行IA-RWA。此方法可能比其它方法难实施,但可减少所交换的信息的量以及所涉及的路径计算实体的数量。
另外,多个IV方案可用于IA-RWA,例如基于不同细节等级和/或不同架构。举例来说,IA-RWA过程可包括用于候选路径的IV,其中可依据可接受的光学损伤效应来确认(例如,两个节点之间的)一组路径。因此,经确认的路径可具备相关联的波长约束。当(例如)根据网络中的当前使用状态而提供时,路径和相关联的波长可或可不在网络中可用。可响应于接收到的对两个节点之间至多K个(其中K为整数)有效路径的请求而提供所述组路径。可在不揭示关于供应商的设备的私有损伤信息的情况下提供所述组路径。另外或替代地,IA-RWA过程可包括详细IV(IV-详细),其中可提交对路径和相关联波长的确认请求。接着可确认路径和相关联的波长,且可相应地提供响应。类似于针对候选路径的IV的情况,IV响应可不揭示关于供应商的设备的损伤信息。
或者,IA-RWA过程可包括分布式IV,其中可使用近似的损伤降级量度,例如OSNR、差分群延迟(DGD)等。近似的量度可(例如)使用GMPLS或其它信令协议运载通过路径且沿路径累积。当累积的量度到达目的节点时,可作出关于路径有效性的最终决策。此方法可能要求揭示关于供应商的设备(例如沿路径)的损伤信息。
可在光学网络(例如WSON)中使用多个IA-RWA架构,以执行路由、WA和IV。图2说明组合式IA-RWA架构200的实施例。在组合式IA-RWA架构200中,PCC 210可向PCE 220发送路径计算请求,其可包括路径计算信息。路径计算请求可包括RWA信息,且PCE 220可先前就知晓(例如)多个供应商的设备的共享损伤信息。然而,PCE 220可请求额外的损伤信息,例如任一额外供应商的设备的非共享损伤信息。PCE 220可接着使用RWA信息和损伤信息来执行组合式路由、WA和IV。PCE 220可使用单个计算实体(例如处理器)来执行组合式IA-RWA。举例来说,处理器可使用单个或多个算法来处理RWA信息和损伤信息,以计算光路,为每一光路分配光学波长,且确认光路。或者,PCE 220可使用多个处理器来计算和确认光路且分配波长。
在IA-RWA过程期间,PCE 220可执行近似IV或详细IV以确认光路,如上文所述。另外,PCE 220可在RWA之前执行IV。由此,PCE 220可首先依据可接受的损伤效应而产生候选和有效路径列表,且接着基于所述列表执行RWA以提供所计算的路径。或者,PCE 220可在IV之前执行RWA,其中可首先获得所计算路径的列表,且接着可基于损伤信息来确认每一路径。
PCE 220计算路径所需的RWA信息和损伤信息的量可依据所使用的算法而变。如果需要,那么PCE 220可在NE之间建立足够的网络链路之前不计算路径,或当提供了关于NE和网络拓扑的足够RWA信息和损伤信息时计算路径。PCE 220可接着向PCC 210发送所计算的路径以及分配给所述路径的波长。PCE响应可不揭示关于供应商的设备的损伤信息。组合式IA-RWA架构200可改进IA-RWA的效率,且对于网络优化、较小WSON或两者可为优选的。
图3说明另一组合式IA-RWA架构300的实施例。在组合式IA-RWA架构300中,PCC 310可向第一PCE 320发送路径计算请求。第一PCE 320可用于对候选路径(IV候选者)执行路由、WA和IV。第一PCE 320可使用路径计算请求中的RWA信息来执行组合式IA-RWA。第一PCE 320可先前就知晓多个供应商的设备的共享损伤信息,但可请求额外的损伤信息,例如任何额外供应商的设备的非共享损伤信息。损伤信息可包括(例如)源节点与目的节点之间的一组K个路径,以及与所述路径相关联的多个波长。第一PCE 320可(例如)使用IV近似技术,基于损伤信息而产生一组经确认的路径。第一PCE 320可基于所产生的所述组经确认路径来执行RWA。第一PCE 320可接着向第二PCE(或IV实体)发送所计算且确认的路径以及所分配波长的列表,所述第二PCE可用于执行详细IV(IV-详细)。
第二PCE 322可先前就知晓可不与第一PCE 320共享的损伤信息,且可使用所述损伤信息来确认路径。另外,第二PCE 322可请求额外的损伤信息,例如任一额外供应商的设备的非共享损伤信息。因此,第二PCE 322可确认每一所计算路径,且向第一PCE 320返回最终经确认路径列表,第一PCE 320可接着将所述列表转发到PCC 310。最终经确认路径列表可不包括私有损伤信息。
在替代实施例中,第一PCE 320可与第二PCE 322通信,持续检查每一所计算路径的有效性所需的次数。举例来说,第一PCE 320可向第二PCE 322发送对每一所计算路径的确认请求,且第二PCE 322可基于详细IV过程的结果而向第一PCE 320返回对每一请求的肯定或否定响应。由此,第一PCE 320可不在来自第二PCE 322的响应中获得任何私有损伤信息。
组合式IA-RWA架构300可用于以下情况,其中第一PCE 320、第二PCE 322或两者可存取关于供应商的设备的私有损伤信息,但可不共享所述信息。另外,将IV过程分成第一PCE 320与第二PCE 322之间的初始近似IV与后续详细IV可改进IA-RWA的效率和精度。
图4说明分开式IA-RWA架构400的实施例。在分开式IA-RWA架构400中,PCC 410可向第一PCE(或IV实体)420发送路径计算请求,第一PCE 420可用于使用近似或详细技术/模型来执行IV。第一PCE 420可先前就知晓多个供应商的设备的共享损伤信息,但可获得额外的损伤信息,例如任何额外供应商的设备的非共享损伤信息。第一PCE 420可使用路径计算请求中的损伤信息以及可能一组可用波长来产生经确认路径列表。举例来说,损伤信息可包括(例如)源节点与目的节点之间的一组约K个路径,以及与所述路径相关联的多个波长。第一PCE 420可基于损伤信息产生一组经确认路径。举例来说,第一PCE 420可向第二PCE 422发送路径和相关联波长的列表,而不与第二PCE 422或任何其它PCE共享损伤信息。
第二PCE 422可用于将波长分配给第一PCE 420所提供的路径,且可接着将路径列表发送到第三PCE 424,其可用于路由分配。第三PCE 424可从PCC 410接收路径计算信息,且使用来自PCC 410的信息以及来自第一PCE 420和第二PCE 422的信息来执行路径计算,以获得多个所计算且经确认的路径以及对应的波长。第三PCE 424可接着向PCC 410发送所计算的路径和所分配的波长。
在替代实施例中,第三PCE 424可从PCC 410接收路径计算请求,且产生所计算路径和对应波长的列表,其可发送到第二PCE 422。第二PCE 422可将波长分配给路径,且将路径和波长列表传送到第一PCE 420以确认每一路径。举例来说,第一PCE 420可发送对每一所计算路径的肯定或否定响应,(例如)而不共享私有损伤信息。最后,可经由PCE中的任一者向PCC 410发送经确认路径和相关联波长。
图5说明另一分开式IA-RWA架构500的实施例。在分开式IA-RWA架构500中,PCC 510可向第一PCE(或IV实体)520发送路径计算请求,第一PCE 520可用于使用近似或详细技术/模型来执行IV,且(例如)以类似于分开式IA-RWA架构400的方式,向第二PCE 522发送经确认路径和对应波长的列表。然而,第二PCE 522可用于(例如)使用共享处理器或专用处理器来执行组合式RWA。因此,第二PCE 522可从PCC 510接收路径计算信息,且使用来自PCC 510的信息以及来自第一PCE 520的信息来执行路径计算,以获得多个所计算且经确认的路径以及对应的波长。第二PCE 522可接着向PCC 510发送所计算路径和所分配波长。使第一PCE 520与第二PCE 522之间的IV过程与RWA过程分离可为有利的,因为由此可将两个不同过程卸载到两个单独且专门的处理实体,这可改进计算效率。
在替代实施例中,第二PCE 522可从PCC 510接收路径计算请求,且产生所计算路径和对应波长的列表。第二PCE 522可接着将路径和波长列表传送到第一PCE 520以确认每一路径。举例来说,第一PCE 520可发送对每一所计算路径的肯定或否定响应,(例如)而不共享私有损伤信息。最后,可经由PCE中的任一者向PCC 510发送经确认路径和相关联波长。
图6说明另一分开式IA-RWA架构600的实施例。在分开式IA-RWA架构600中,PCC 610可向第一PCE(或IV实体)620发送路径计算请求,第一PCE 620可用于对候选路径执行IV。第一PCE 620可先前就知晓多个供应商的设备的共享损伤信息,但可请求额外的损伤信息,例如任何额外供应商的设备的非共享损伤信息。第一PCE 620可使用路径计算请求中的损伤信息以及可能一组可用波长来产生经确认路径列表。举例来说,损伤信息可包括(例如)源节点与目的节点之间的一组约K个路径,以及与所述路径相关联的多个波长。第一PCE 620可(例如)使用IV近似技术,基于损伤信息而产生一组经确认的路径。第一PCE 620可向第二PCE 622发送路径和相关联波长的列表。然而第一PCE 620可不与第二PCE 622共享损伤信息。
第二PCE 622可用于(例如)使用共享处理器或专用处理器来执行组合式RWA。第二PCE 622可从PCC 610接收路径计算信息,且使用此信息以及来自第一PCE 620的信息来执行路径计算,以获得多个所计算且经确认的路径以及对应的波长。第二PCE 622可接着向第三PCE(或IV实体)624发送所计算且确认的路径以及所分配波长的列表,所述第三PCE 624可用于执行详细IV。
第三PCE 624可先前就知晓可不与第二PCE 622共享的损伤信息,且可使用所述损伤信息来确认路径。另外,第三PCE 624可请求额外的损伤信息,例如任一额外供应商的设备的非共享损伤信息。因此,第三PCE 624可确认每一所计算路径,且向第二PCE 622返回最终经确认路径列表。第二PCE 622或第一PCE 620可接着将最终列表转发到PCC610。最终经确认路径列表可不包括私有损伤信息。
在替代实施例中,第二PCE 622可与第三PCE 624通信,持续检查每一所计算路径的有效性所需的次数。举例来说,第二PCE 622可向第三PCE 624发送对每一所计算路径的确认请求,且第三PCE 624可基于详细IV过程的结果向第二PCE 622返回肯定或否定响应。由此,第二PCE 622可不在来自第三PCE 624的响应中获得任何私有损伤信息。
组合式IA-RWA架构600可用于以下情况,其中第一PCE 620和/或第三PCE 624(但不是第二PCE 622)可存取关于供应商的设备的私有损伤信息,但可不共享所述信息。另外,将IV过程分成第一PCE 620与第三PCE 624之间的初始近似IV与后续详细IV可改进IA-RWA的效率和精度。
图7说明另一分开式IA-RWA架构700的实施例。在分开式IA-RWA架构700中,PCC 710可向第一PCE 720发送路径计算请求,第一PCE 720可用于路由分配。第一PCE 720可使用来自PCC 710的路径计算信息来执行路径计算,且接着向第二PCE 722发送所计算路径以及路径计算请求中的任何RWA信息,第二PCE 722可用于组合式WA与IV。
第二PCE 722可从第一PCE 720接收所计算路径和RWA信息,且可先前就知晓(例如)多个供应商的设备的共享损伤信息。第二PCE 722还可请求额外的损伤信息,例如任一额外供应商的设备的非共享损伤信息。因此,第二PCE 722可使用RWA信息和损伤信息来执行组合式WA与IV。第二PCE 722可使用单个或多个处理器来执行组合式WA与IV。第二PCE 722可执行近似IV或详细IV以确认所计算路径。另外,第二PCE 722可在WA之前执行IV。由此,第二PCE 722可首先(例如)基于所计算路径而产生候选和有效路径的列表,且接着执行WA。或者,第二PCE 722可在IV之前执行WA,其中可将波长分配给所计算路径,且接着可基于损伤信息来确认每一路径。由于IV过程是与波长相关的,因此在第二PCE 722中组合WA与IV可改进系统中的计算效率。接着可经由第二PCE 722或第一PCE 720向PCC 710发送所计算路径和所分配波长的最终列表。
在替代实施例中,第二PCE 722可从PCC 710接收路径计算请求,且产生经确认路径和所分配波长的列表,其可发送到第一PCE 720。第一PCE 720可接着基于来自第一PCE 722的信息计算多个路径和相关联波长。最后,可经由PCE中的任一者将所计算且经确认的路径以及相关联波长发送到PCC 710。
图8说明分布式IA-RWA架构800的实施例。在分布式IA-RWA架构800中,PCE 810可从NE 820、830和840(也许经由直接链路)接收一些或所有RWA信息,且执行路由分配。PCE 810接着将路由分配直接或间接传递到个别NE 820、830和840,其可接着(例如)基于本地信息在NE 820、830和840之间的本地链路处执行分布式WA与IV(WA/IV)。
举例来说,NE 820可从NE 830和840接收本地RWA信息,且将一些或所有RWA信息发送到PCE 810。PCE 810可使用接收到的RWA信息来计算光路,且将光路列表发送到NE820。NE 820可使用光路列表来将NE 830识别为光路中的下一NE。NE 820可建立到NE 830的链路(例如经由信令协议),且使用可包括额外约束的所接收本地RWA信息来为经由链路的传送分配波长。另外,NE 820可使用本地损伤信息来执行IV,且产生经确认光路列表。经确认路径列表可对应于多个波长,其可由PCE 810指定或在RWA信息中指示。NE 820可基于近似模型和量度对至少一些波长执行近似IV,所述近似模型和量度可(例如)使用GMPLS或GMPLS资源保留协议(RSVP)而运载通过路径或沿路径累积。举例来说,NE 820可基于可沿路径由后续节点累积的信号质量的量度(例如BER或OSNR)来执行IV。
NE 830可从NE 820接收光路和波长的列表,且使用光路列表来将NE 840识别为光路中的下一NE。因此,NE 830可建立到NE 840的链路,且分配相同或不同波长用于经由链路的传送。NE 830还可使用由节点820使用的相同损伤信息和/或其它本地损伤信息,以执行IV且更新所确认光路和相关联波长的列表。NE 830可基于相同的近似模型和量度(例如BER、OSNR等)执行近似IV,所述近似模型和量度可由节点830更新且进一步累积。类似地,NE840可接收来自NE 830的光路和波长的列表,以及来自节点840的包含经累积量度的损伤信息,更新接收到的信息,且沿路径传播所述信息。
因此,可在NE之间以分布式方式分配波长和确认光路的同时路由信号,直到到达目的节点为止。在个别NE处分配波长可减少可在NE之间以及NE与PCE 810之间转发的RWA信息和损伤信息的量。然而,这些分布式WA/IV方案可能要求在NE之间共享一些本地和私有损伤信息。此外,这些基于信令的方案可能随着所计算路径和可用波长的数量增加而变得较不实际。
上文所描述的IA-RWA架构中的至少一些可能要求改变当前协议和/或标准,例如关于PCE、信令、信息模型、路由或其组合。表1说明可能需要改变以支持上文的IA-RWA架构的系统的一些方面。
  IA-RWA架构   PCE   信令   信息模型   路由
  组合式IA-RWA架构200
  组合式IA-RWA架构300
  组合式IA-RWA架构400
  组合式IA-RWA架构500
  组合式IA-RWA架构600
  组合式IA-RWA架构700
  组合式IA-RWA架构800
表1:可能要求针对不同IA-RWA架构的改变的系统方面。
ITU-T G.680中可描述可用于以上IA-RWA架构中的损伤模型中的一些。ITU-T G.680包含光纤以及各种装置和子系统的一些详细和近似损伤特性。ITU-T G.680还描述集成损伤模型,其可用于支持(例如)以上架构中的IA-RWA。然而,ITU-T G.680中的损伤特性和模型适合于包括针对第一供应商的线路段的网络,其穿过多个第二供应商的多个NE(例如,OADM、PXC等)。所述线路段的损伤信息可为私有的,且第二供应商的损伤信息可为公开的。然而,对于其它网络配置,可能需要额外或不同的损伤模型和损伤特性,其中将对应于多个供应商的多个线路段或系统部署在系统上。
举例来说,在分布式IA-RWA架构(例如,分布式IA-RWA架构800)的情况下,可能需要损伤信息模型和损伤“计算模型”来启用IV。另外,可在沿路径的多个节点处传播和更新的累积损伤量度可能需要标准化,使得同一系统中的不同供应商的不同节点可支持IV。ITU-T G.680可描述可使用的一些损伤量度,例如针对OSNR、残余色散、偏振模色散/偏振相关损失、信道均匀性效应等的计算公式。然而,ITU-T G.680未指定哪些测量结果可存储或维持在节点中以及呈什么形式。
以上不同IA-RWA架构还可使用不同的路径/波长损伤确认,其可对路由强加不同要求。举例来说,在使用近似损伤信息来确认路径的情况下,可使用GMPLS路由(例如)基于损伤信息模型来分布NE和链路的损伤特性。在分布式IA-RWA架构的情况下,可能无需改变路由协议,但可能需要信令协议的显著改变以启用IV。举例来说,在分布式方案中传输的信号的特性(例如信号调制类型)可影响对光学损伤的系统容限。因此,在分布式方案中(例如)经由信令来传送这些信号特性可能是有利的。
另外,以上不同IA-RWA架构可包括不同PCE配置,其可取决于每一架构所需的特定功能性。举例来说,在组合式IA-RWA架构200的情况下,单个PCE(例如,PCE 220)可执行IA-RWA所需的所有计算。由此,PCE可用于(例如在TED中)维持关于网络(例如WSON)拓扑和交换能力、网络WDM链路波长利用率以及网络损伤信息的信息。PCE还可用于接收来自PCC的可包括源节点、目的节点以及信号特性、类型和/或所需质量的路径计算请求。如果路径计算成功,那么PCE可向PCC发送应答(或响应),其可包括所计算的路径以及所分配的波长。否则,如果路径计算不成功,那么PCE可向PCC发送指示路径计算失败的原因的响应。举例来说,所述响应可指示路径计算因缺乏可用波长、因损伤考虑因素或因两者而失败。
在分开式IA-RWA架构(例如分开式IA-RWA架构500)的情况下,至少两个PCE(例如,PCE 520和PCE 522)可分别执行IV和RWA。所述PCE中的一者(例如PCE 522)可用于执行RWA计算,且协调总的IA-RWA过程,且另一PCE(例如PCE 520)可用于对候选路径执行IV(IV-候选)。RWA PCE可与PCC相互作用以接收路径计算请求,且与IV候选者PCE相互作用以根据需要执行IV且获得一组有效的路径和波长。RWAPCE还可用于(例如在TED中)维持关于网络(例如WSON)拓扑和交换能力以及关于网络WDM链路波长利用率的信息。然而,IV RWA PCE可不维持损伤信息。
RWA PCE还可用于接收来自PCC的可包括源节点、目的节点以及信号特性、类型和/或所需质量的路径计算请求。如果路径计算成功,那么RWAPCE可向PCC发送应答(或响应),其可包括所计算的路径以及所分配的波长。否则,如果路径计算不成功,那么RWA PCE可向PCC发送指示路径计算失败的原因的响应。举例来说,所述响应可指示路径计算因缺乏可用波长、因损伤考虑因素或因两者而失败。另外,RWA PCE可用于向IV候选者PCE发送请求,以在PCC请求中请求源节点与目的节点之间的K个路径以及针对所述路径的可接受波长。因此,RWA PCE可接收来自IV候选者PCE的应答(或响应),其可包括两个节点之间的最多K个所请求路径以及相关联波长。
IV候选者PCE可用于用于损伤感知路径计算,而不必知晓当前链路波长利用率。IV候选者PCE可与RWA PCE相互作用,但不与PCC相互作用,且可(例如在TED中)维持关于网络(例如WSON)拓扑和交换能力以及网络损伤信息的信息。然而,IV候选者PCE可不维持网络WDM链路波长利用率。组合式IA-RWA架构400为可包括类似配置的IV候选者PCE的另一IA-RWA架构。
另外或替代地,PCE中的一者可用于(例如)在分开式IA-RWA架构600中执行详细IV(IV-详细)。IV-详细PCE可(例如在TED中)维持网络损伤信息以及可能维持关于WDM链路波长利用率的信息。为了协调总IA-RWA,RWA PCE可向IV-详细PCE发送IV请求,其可包括路径和波长以及任何信号特性和质量要求的列表。因此,IV-详细PCE可向RWA PCE发回应答(响应),其指示IV请求是否被成功/不成功地满足。举例来说,所述应答可指示肯定/否定决策(例如,是/否决策)。如果未满足IV请求,那么IV-详细PCE可向RWA PCE发送指示IV请求失败的原因的应答。因此,RWA PCE可(例如)通过修改信号参数或特性来确定是否尝试不同信号。组合式IA-RWA架构300为可包括类似配置的IV-详细PCE的另一IA-RWA架构。
图9说明PCC与PCE之间的路径计算通信方法900的实施例。PCE可用于组合式IA-RWA,例如在组合式IA-RWA架构200中。可使用任何合适协议(例如PCEP)来实施方法900。在方法900中,PCC可向PCE发送路径计算请求902。所述请求可包括路径计算信息和路径计算约束。举例来说,路径计算信息可包括RWA信息(包含波长约束)以及可能所需的损伤信息。在904处,PCE计算通过网络的路径,其可基于路径计算信息且满足路径计算约束。举例来说,PCE可基于RWA信息和损伤信息来执行RWA和IV。PCE可接着向PCC发送路径计算应答906。应答906可包括IA-RWA。
图10说明PCC与至少两个PCE或计算实体之间的路径计算通信方法1000的实施例。两个PCE可用于用于单独的RWA和IV,例如在分开式IA-RWA架构500以及分开式IA-RWA架构400中。可使用任何合适协议(例如PCEP)来实施方法1000。在方法1000中,PCC可向RWA PCE发送路径计算请求1002。所述请求可包括路径计算信息和路径计算约束。举例来说,路径计算信息可包括包含波长约束的RWA信息。路径计算约束可包括(例如)第一节点(源节点)与第二节点(目的节点)之间针对可由指定类型(或类)和相关联参数表示的信号的质量约束。RWA PCE可向IV PCE(其可为IV-候选者PCE)发送IV请求1004。由此,RWA PCE可在PCC请求中请求所指示的两个节点之间的K个路径以及所述路径的可接受波长。
在1006处,IV候选者PCE可(例如)使用近似技术/模型来执行IV,以获得候选路径和相关联波长的列表。IV候选者PCE可接着向RWAPCE发送应答1008,其包括路径和波长的列表。在1010处,RWA PCE可使用来自IV候选者PCE的信息以及接收到的路径计算信息/约束来执行RWA。RWA PCE可接着向PCC发送路径计算应答1012,其可包括IA-RWA。
图11说明PCC与多个PCE或计算实体之间的路径计算通信方法1100的实施例。PCE可用于单独的RWA和IV候选者以及IV-详细过程,例如在分开式IA-RWA架构600以及组合式IA-RWA架构300中。可使用任何合适协议(例如PCEP)来实施方法1100。在方法1100中,PCC、RWAPCE以及IV-候选者PCE之间的步骤1102、1104、1106、1108以及1110可大体上类似于方法1000中的对应步骤而配置。
在方法1100的步骤1110中,RWA PCE获得IA-RWA计算。然而,在向PCC发送IA-RWA之前,PC RWA可向IV-详细PCE发送IV请求1112。由此,RWAPCE可请求来自IV-详细PCE的对所计算路径和所分配波长的详细检验。在1114处,IV-详细PCE可(例如)使用详细技术/模型来执行IV,以确认所计算路径和对应的波长。IV-详细PCE可接着向RWAPCE发送应答1116,以批准或拒绝每一所计算路径。RWAPCE可基于来自IV-详细PCE的应答而更新路径和波长的列表,且接着向PCC发送应答1118,其可包括最终IA-RWA。
当网络包括多个PCE时,不是网络内的所有PCE均可具有执行IA-RWA或RWA的能力。因此,网络可包括发现机制,其允许PCC确定将在其中发送请求(例如请求902、1002或1102)的PCE。举例来说,发现机制可包括来自PCC的对具有IA-RWA能力的PCE或具有RWA能力的PCE的广告,以及来自PCE的指示其是否具有此能力的响应。可将发现机制实施为方法900、1000和1100的一部分,或实施为单独过程。
在任何通用网络组件(例如具有充足处理能力、存储器资源和网络吞吐量能力来处置置于其上的必要工作负荷的计算机或网络组件)上实施上文所述的网络组件。图12说明适合于实施本文所揭示的组件的一个或一个以上实施例的典型的通用网络组件。网络组件1200包含处理器1202(其可称为中央处理单元或CPU),其与存储器装置通信,所述存储器装置包含辅助存储装置1204、只读存储器(ROM)1206、随机存取存储器(RAM)1208、输入/输出(I/O)装置1210以及网络连接性装置1212。处理器可实施为一个或一个以上CPU芯片,或可为一个或一个以上专用集成电路(ASIC)的一部分。
辅助存储装置1204通常由一个或一个以上磁盘驱动器或磁带驱动器组成,且用于数据的非易失性存储,且在RAM 1208不够大到足以保存所有工作数据的情况下作为溢出数据存储装置。辅助存储装置1204可用于在选择加载到RAM 1208中的程序来执行时存储所述程序。ROM 1206用于存储在程序执行期间读取的指令以及可能数据。ROM 1206为非易失性存储器装置,其通常相对于辅助存储装置1204的较大存储器容量具有较小存储器容量。RAM 1208用于存储易失性数据且可能用于存储指令。对ROM 1206和RAM 1208的存取通常比对辅助存储装置1204的存取快。
虽然本发明中已提供若干实施例,但应理解,所揭示的系统和方法可在不脱离本发明的精神或范围的情况下以许多其它特定形式体现。本发明的实例将被视为说明性的而不是限制性的,且不希望限于本文所给出的细节。举例来说,各种元件或组件可在另一系统中组合或集成,或某些特征可省略或不实施。
另外,各种实施例中描述和说明为离散或单独的技术、系统、子系统和方法可在不脱离本发明的范围的情况下与其它系统、模块、技术或方法组合或集成。展示或论述为彼此耦合或直接耦合或通信的其它项目可通过某种接口、装置或中间组件(不管是以电方式、机械方式还是其它方式)间接耦合或通信。改变、替代和更改的其它实例可由所属领域的技术人员确定且可在不脱离本文所揭示的精神和范围的情况下作出。

Claims (20)

1.一种设备,其包括:
路径计算元件(PCE),用于至少局部损伤感知路由和波长分配(RWA),且基于支持路径路由、波长分配(WA)和损伤确认(IV)的PCE协议(PCEP)与路径计算客户端(PCC)通信。
2.根据权利要求1所述的设备,其中所述PCE用于组合式路径路由、WA和IV。
3.根据权利要求2所述的设备,其中所述PCE用于对多个候选路径进行近似IV,且耦合到用于进行详细IV的计算实体。
4.根据权利要求1所述的设备,其中所述PCE用于路径路由,且耦合到用于路径WA的第二PCE以及用于进行IV的计算实体。
5.根据权利要求1所述的设备,其中所述PCE用于路径路由和WA,且耦合到用于进行近似IV的计算实体。
6.根据权利要求5所述的设备,其中所述计算实体用于对多个候选路径的进行近似IV,且其中所述PCE耦合到用于进行详细IV的第二计算实体。
7.根据权利要求1所述的设备,其中所述PCE用于路径路由,且耦合到用于路径WA和IV的第二PCE。
8.根据权利要求1所述的设备,其中所述PCC是波长交换光学网络(WSON)的网络元件(NE)。
9.根据权利要求1所述的设备,其中所述PCE用于路径路由,且其中所述NE和所述WSON中的多个第二NE经配置以用于分布式WA和IV。
10.一种网络组件,其包括:
至少一个处理器,其用于实施包括以下步骤的方法:
建立与路径计算客户端(PCC)的路径计算元件(PCE)协议(PCEP)会话;
从所述PCC接收路径计算信息,所述的路径计算信息包括路由和波长分配(RWA)信息和约束;
基于所述路径计算信息以及供应商设备的私有损伤信息来建立损伤感知RWA(IA-RWA);以及
基于所述IA-RWA向所述PCC发送路径和所分配波长。
11.根据权利要求10所述的网络组件,其中建立IA-RWA包括执行组合式路径路由、波长分配(WA)和损伤确认(IV)以计算所述路径和所分配波长。
12.根据权利要求11所述的网络组件,其中基于信号质量量度,使用近似损伤技术和模型来执行IV。
13.根据权利要求10所述的网络组件,其中建立IA-RWA包括:
发送对多个候选路径和相关联波长的损伤确认(IV)请求;
接收对所述候选路径和相关联波长中的至少一些的IV;以及
基于所述所确认的路径和波长执行RWA,以计算所述路径和所分配波长。
14.根据权利要求10所述的网络组件,其中建立IA-RWA包括:
发送对多个候选路径和相关联波长的第一损伤确认(IV)请求;
接收对所述候选路径和相关联波长中的至少一些的IV;
基于所述所确认的路径和波长执行RWA,以计算所述路径和所分配波长;以及
发送对所述所计算路径和所分配波长的第二详细IV。
15.根据权利要求14所述的网络组件,其中如果所述所计算路径未得到确认,那么计算第二路径。
16.根据权利要求14所述的网络组件,其中基于描述信号传播的偏微分方程式,使用详细损伤技术和模型来执行IV。
17.一种方法,其包括:
使用路由和组合式波长分配(WA)与损伤确认(IV)为光学网络中的多个网络元件(NE)建立损伤感知路由和波长分配。
18.根据权利要求17所述的方法,其进一步包括在所述光学网络的控制平面处路由经过所述NE的路径。
19.根据权利要求18所述的方法,其进一步包括基于一般化多协议标签交换(GMPLS),经由信令在所述NE之间分布组合式WA与IV。
20.根据权利要求19所述的方法,其中通过沿所述经过所述NE的路径累积信号质量降级量度,来在所述NE之间分布IV。
CN2010800031601A 2009-02-06 2010-02-04 用于波长交换光学网络中的损伤感知路由和波长分配的系统和方法 Pending CN102246435A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15067909P 2009-02-06 2009-02-06
US61/150,679 2009-02-06
US12/695,634 US8396364B2 (en) 2009-02-06 2010-01-28 System and method for impairment-aware routing and wavelength assignment in wavelength switched optical networks
US12/695,634 2010-01-28
PCT/CN2010/070502 WO2010088858A1 (en) 2009-02-06 2010-02-04 System and method for impairment-aware routing and wavelength assignment in wavelength switched optical networks

Publications (1)

Publication Number Publication Date
CN102246435A true CN102246435A (zh) 2011-11-16

Family

ID=42540505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800031601A Pending CN102246435A (zh) 2009-02-06 2010-02-04 用于波长交换光学网络中的损伤感知路由和波长分配的系统和方法

Country Status (4)

Country Link
US (2) US8396364B2 (zh)
EP (1) EP2351264B1 (zh)
CN (1) CN102246435A (zh)
WO (1) WO2010088858A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904635A (zh) * 2012-10-25 2013-01-30 中兴通讯股份有限公司 一种光信噪比检测的方法、系统和设备
CN103475440A (zh) * 2013-09-06 2013-12-25 南京邮电大学 一种支持区分业务的损伤感知路由与波长分配方法
CN104981995A (zh) * 2013-02-11 2015-10-14 思科技术公司 利用网络状态信息进行dwdm快速光路设置
CN113726442A (zh) * 2021-09-02 2021-11-30 苏州大学 一种基于全光波长转换的路由和波长分配方法及装置
CN114128230A (zh) * 2019-08-13 2022-03-01 华为技术有限公司 损伤感知光网络的控制与管理

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080225723A1 (en) * 2007-03-16 2008-09-18 Futurewei Technologies, Inc. Optical Impairment Aware Path Computation Architecture in PCE Based Network
US8396364B2 (en) * 2009-02-06 2013-03-12 Futurewei Technologies, Inc. System and method for impairment-aware routing and wavelength assignment in wavelength switched optical networks
BR112012003812A2 (pt) * 2009-08-21 2016-04-26 Ericsson Telefon Ab L M método para estabelecer caminhos ópticos para tráfego de usuário, e , entidade de nó
US9491086B2 (en) 2011-03-02 2016-11-08 Ciena Corporation Distributed network planning systems and methods
EP2706708B1 (en) * 2011-05-24 2015-09-16 Huawei Technologies Co., Ltd. Method and apparatus for path selection
CN102238443B (zh) 2011-06-01 2013-11-20 电子科技大学 一种满足波长连续性约束条件的跨域路径建路方法
US9485553B2 (en) 2011-09-08 2016-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Path computation in wavelength switched optical networks
US9054828B2 (en) * 2011-10-14 2015-06-09 Glimmerglass Networks, Inc. Method and system for managing optical distribution network
US8942956B1 (en) * 2012-02-16 2015-01-27 Google Inc. Method and apparatus for building and presenting network designs
US9369785B1 (en) * 2014-12-18 2016-06-14 Juniper Networks, Inc. Integrated controller for routing / switching network and underlying optical transport system
US9369200B1 (en) * 2014-12-18 2016-06-14 Juniper Networks, Inc. Network controller having predictable analytics and failure avoidance in packet-optical networks
CN110248261B (zh) * 2018-03-09 2021-09-17 中国移动通信集团广东有限公司 调度处理的方法、装置和传输处理的方法
WO2019201441A1 (en) * 2018-04-19 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Path computation engine and method of configuring an optical path for quantum key distribution
US10374745B1 (en) 2018-06-08 2019-08-06 Cisco Technology, Inc. Path selection in optical network for optical nodes with flexible baud rate and modulation format
CN110177311B (zh) * 2019-06-03 2020-09-01 西安电子科技大学 一种基于多目标优化的多波长分配方法
US20230145196A1 (en) * 2020-03-30 2023-05-11 Nec Corporation Monitoring apparatus, monitoring method, and non-transitory computer-readable medium containing program
US12003408B2 (en) * 2021-11-09 2024-06-04 Cisco Technology, Inc. Policy validation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080225723A1 (en) * 2007-03-16 2008-09-18 Futurewei Technologies, Inc. Optical Impairment Aware Path Computation Architecture in PCE Based Network
US20080298805A1 (en) * 2007-05-30 2008-12-04 Futurewei Technologies, Inc. System and Method for Wavelength Conversion and Switching
CN101075956B (zh) * 2007-06-22 2010-08-04 华为技术有限公司 一种波长通道的建立方法、系统及设备
US8433192B2 (en) * 2008-12-08 2013-04-30 Ciena Corporation Dynamic performance monitoring systems and methods for optical networks
US8521026B2 (en) * 2009-01-19 2013-08-27 Cisco Technology, Inc. Registration of device characteristics with optical layer for use in establishing connections through an optical network
US8396364B2 (en) * 2009-02-06 2013-03-12 Futurewei Technologies, Inc. System and method for impairment-aware routing and wavelength assignment in wavelength switched optical networks
US8346079B2 (en) * 2009-02-27 2013-01-01 Futurewei Technologies, Inc. Path computation element protocol (PCEP) operations to support wavelength switched optical network routing, wavelength assignment, and impairment validation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904635A (zh) * 2012-10-25 2013-01-30 中兴通讯股份有限公司 一种光信噪比检测的方法、系统和设备
WO2013167074A3 (zh) * 2012-10-25 2014-01-03 中兴通讯股份有限公司 一种光信噪比检测的方法、系统和设备
CN102904635B (zh) * 2012-10-25 2015-08-12 中兴通讯股份有限公司 一种光信噪比检测的方法、系统和设备
US9397748B2 (en) 2012-10-25 2016-07-19 Zte Corporation Method, system, and device for detecting optical signal-to-noise ratio
CN104981995A (zh) * 2013-02-11 2015-10-14 思科技术公司 利用网络状态信息进行dwdm快速光路设置
CN104981995B (zh) * 2013-02-11 2018-09-18 思科技术公司 用于在从源节点到目的地节点的路径上设置波长的方法和装置
CN103475440A (zh) * 2013-09-06 2013-12-25 南京邮电大学 一种支持区分业务的损伤感知路由与波长分配方法
CN114128230A (zh) * 2019-08-13 2022-03-01 华为技术有限公司 损伤感知光网络的控制与管理
CN113726442A (zh) * 2021-09-02 2021-11-30 苏州大学 一种基于全光波长转换的路由和波长分配方法及装置

Also Published As

Publication number Publication date
US8396364B2 (en) 2013-03-12
US20100202773A1 (en) 2010-08-12
EP2351264B1 (en) 2018-07-04
EP2351264A4 (en) 2012-10-03
WO2010088858A1 (en) 2010-08-12
US8718469B2 (en) 2014-05-06
US20130156428A1 (en) 2013-06-20
EP2351264A1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
CN102246435A (zh) 用于波长交换光学网络中的损伤感知路由和波长分配的系统和方法
US9392348B2 (en) Path computation element protocol (PCEP) operations to support wavelength switched optical network routing, wavelength assignment, and impairment validation
US9236972B2 (en) Optical impairment aware path computation architecture in PCE based network
EP2467960B1 (en) Methods and node entities in optical networks
US20170134089A1 (en) System and method of configuring an optical network
US8630542B2 (en) Distributing wavelength compatible with signaling protocols
US20150296279A1 (en) Hierarchical guided search for n-tuple disjoint optical paths
US8208405B2 (en) Information encoding for impaired optical path validation
Rizzelli et al. Assessing the scalability of next-generation wavelength switched optical networks
EP3417575B1 (en) Photonic-layer aware path computation element
Azodolmolky et al. DICONET NPOT: An impairments aware tool for planning and managing dynamic optical networks
JP5599699B2 (ja) 光ネットワーク制御システムおよび方法
Salvadori et al. Distributed optical control plane for dynamic lightpath establishment in translucent optical networks based on reachability graph
Rumipamba Zambrano Contributions to network planning and operation of Flex-Grid/SDM optical core networks
Adami et al. Lightpath survivability with QoT guarantees: Developing and evaluating a new algorithm
Saradhi et al. Physical Layer Impairment (PLI) Aware Transponder Selection Policies for GMPLS/WDM Optical Networks
Wang et al. Toward distributed translucent wavelength switched optical networks under GMPLS/PCE architecture
王シン Study on Planning and Control in Translucent Wavelength Switched Optical Network with Physical Layer Impairment Constraint

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111116