CN102239004A - 同时进行的暖气体脱硫作用和co轮换反应来改进合成气净化 - Google Patents

同时进行的暖气体脱硫作用和co轮换反应来改进合成气净化 Download PDF

Info

Publication number
CN102239004A
CN102239004A CN200980148576XA CN200980148576A CN102239004A CN 102239004 A CN102239004 A CN 102239004A CN 200980148576X A CN200980148576X A CN 200980148576XA CN 200980148576 A CN200980148576 A CN 200980148576A CN 102239004 A CN102239004 A CN 102239004A
Authority
CN
China
Prior art keywords
gas
catalyst
sulphur
compound containing
gas streams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200980148576XA
Other languages
English (en)
Inventor
M·瑟班
L·M·金
A·巴塔查里亚
K·M·旺当布舍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Universal Oil Products Co
Original Assignee
Universal Oil Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Products Co filed Critical Universal Oil Products Co
Publication of CN102239004A publication Critical patent/CN102239004A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明包括了用于同时进行气体料流的脱硫和水煤气轮换反应的方法和材料,其包括将气体料流与镍铝酸盐催化剂进行接触。镍铝酸盐催化剂优选选自由如下组成的组,Ni2xAl2O2x+3,Ni(2-y)Ni0 yAl2O(5-y),Ni(4-y)Ni0 yAl2O(7-y),Ni(6-y)Ni0 yAl2O(9-y)和它们的中间体,其中x≥0.5并且0.01≤y≤2。优选地,x为1到3。更优选地,含镍化合物还包括Ni2xAl2O2x+3-zSz,其中0≤z≤2x。

Description

同时进行的暖气体脱硫作用和CO轮换反应来改进合成气净化
发明背景
本发明涉及用于从气体料流中进行硫化合物的脱除以及用于水煤气轮换反应的所使用材料和方法。更具体地说,本发明涉及利用含镍铝酸盐催化剂在450℃时提供脱硫作用和水煤气轮换反应的同时进行。
该气体料流可源于含碳原料的任何部分氧化或气化工艺过程。该气体料流可以是源自IGCC(Integrated Gasification Combined Cycle,集成气化联合循环)煤气化工厂的燃料气体,其可以是来自流体催化裂化单元(fluidcatalytic cracking unit,FCC)的烟道气(flue gas),其可以是来自天然气的蒸汽重整(steam reforming)、特定气化反应或者来自煤的气化的合成气(synthesis gas,syngas)。合成气一般指主要包含一氧化碳和氢气的气体混合物,但是其也可能含有二氧化碳和少量的甲烷和氮气。
合成气作为各种大型化学工艺过程中的原料被使用,或者潜在地是有用的,例如:甲醇的生产,通过Fischer-Tropsch工艺过程的汽油沸程烃的生产,和氨的生产。
用于合成气生产的方法为大家所熟知,一般包括蒸汽重整,自热重整(auto-thermal reforming),轻质烃类的非催化的部分氧化,和任意烃类的非催化的部分氧化。在这些方法中,一般用蒸汽重整来生产合成气,以转化为氨或者甲醇。在此类方法中,烃分子被分解来生产富氢气体料流。
无论碳源和气化过程,生成的燃料气必须在燃气轮机中燃烧之前或者用于化学合成,例如甲醇,氨,脲生产,或者Fischer-Tropsch合成法之前,进行实质上的净化。热燃料气的净化避免了由于与使用化学或者物理溶剂的湿法洗涤技术有关的冷却和后续的再加热的显热(sensible heat)损失。理想地,燃料气体的净化在燃料气体分配系统可以设计的最高温度时进行。这将大大改进整体的加工效率,然而,在所述热燃料气体净化系统可以市购之前,仍有需要克服的重要障碍。仅有热微粒去除系统,即,烛形过滤器(candle filter)或烧结金属过滤器,已经在商业上在长期应用场合成功应用,在200℃到250℃下在位于荷兰的Nuon的Shell煤气化工厂,以及在370℃到430℃下在Wabash River工厂的E-气煤/焦炭气化系统中。全部大型暖脱硫作用示范单元均已失败,主要是由于不合适的硫清除剂材料。
暖气体脱硫演示单元(
Figure BDA0000066176340000021
Pine Air-Blown IGCC和Tampa ElectricPolk Power station)都使用了Zn-基S-清除剂材料。Pine Air-Blown和Hot Gas Cleanup IGCC,其使用了KRW鼓风增压的流化床煤气化系统,其使用含有0.5-0.9%硫的Southern Utah烟煤(设计煤炭)和含有2-3%硫的东部烟煤(计划试验)。目的是演示引入热气体净化(HGCU)的鼓风增压的流化床IGCC技术;来评价低Btu气体燃气轮机;以及在足够确定商业前景的尺度上来评估长期可靠性、可获得性,可维护性,和环境特性。在42个月的演示操作中,没有达到稳态运行,并且Zn-基S-清除剂材料失效,因为其无法在夹带床反应器中物理保持。在538℃反应中,通过挥发,Zn消失了。第二个大型热气体脱硫作用演示单元位于Tampa Electric Polk发电厂,其预计通过GE Environmental Services Inc.开发的热气体净化系统来清洁10%的燃料气体。热气体脱硫单元是Zn氧化物基吸附剂的断续移动的床,其在482℃下操作。演示再次失败了,因为很高的磨损损失(其使得使用了特殊吸附剂的操作成本效率很差),并且还因为由于Zn硫酸盐的形成和Zn的挥发而导致的严重的反应性损失。(参见:ThePineIGCC Project,U.S.DOE andPine Power Project Reports,1996年12月;2001年1月(DE-FC-21-92MC29309)。The Tampa Electric IGCCProject,U.S.DOE和Tampa Electric Reports,1996年8月;2000年7月;2002年8月(DE-FC-21-91MC27363))。
公开了含Zn的硫吸收剂的使用的一些专利,包括Phillips Petroleum拥有的数个专利:US5,045,522;US5,130,288;US5,281,445;US5,306,685;和US6,479,429。还有RTI(Research Triangle Institute)的数个专利:US5,254,516;US2004/0170549A1;和US7,067,093。没有从气体料流脱除硫化合物和水煤气轮换反应同时进行的在先公开。
对于目前热气净化系统的发展状况,在同样的高温条件下,无法除去除了硫化合物和固体颗粒之外的全部其它污染物。甚至,由于迫切的CO2法规,所有集成气化联合循环(IGCC)气化器将必须安装至少一个CO轮换反应器,由此需要将燃料气体冷却到适合进行水煤气轮换催化反应的温度。考虑到这些CO2法规,在气化工业中,倾向于通过利用直接水骤冷气化器(direct water quench)。骤冷模式设计显著地降低了合成气冷却的资金成本,同时热集成保持了良好的总体热效率。骤冷模式对于水煤气轮换反应是有利的,因为原料合成气通过一部分骤冷水的蒸发产生的蒸汽而变得饱和。优选通过直接水骤冷的夹带流动淤浆进料气化,并通常使用GEEnergy的方案,并近来,Shell,Lurgi和Siemens也提供了水骤冷冷却法。除了有效地冷却原料合成气并回收部分显热之外,在骤冷步骤中进行了有意义的污染物去除。在水骤冷步骤中,将固体颗粒,碱金属,非挥发性金属,氯化物,大部分羰基金属和一部分氨均被全部除去。在水骤冷步骤之后留在原料合成气中的污染物包括50-100ppmv氨,1到4ppmv羰基Fe和Ni,50-100ppmv HCN,Hg,As,和含硫的气体,即,H2S和COS。在合成气在燃气轮机中燃烧或者用于化学合成之前,所有这些污染物均要除去。
本发明公开了一类在250℃-550℃能够同时完全除去源自气化过程的燃料气体中的硫(除去H2S和COS)以及将CO轮换成为CO2的材料。该CO2料流可通过加入附加的脱硫(sweet)CO轮换单元来进一步轮换,所述轮换单元位于集成脱硫作用和CO轮换单元的下游。因此,该氢的制造得到了最大化并且清洁,浓缩CO2料流能够使用物理溶剂工艺,例如UOP的Selexol处理工艺,或者备选地使用高温CO2吸收剂来进行捕捉。该集成脱硫作用和CO轮换概念代表了下一代的合成气处理方法。目前,可再生的溶剂型脱酸性气方法在IGCC和化学合成应用场合,例如,UOP的Selexol处理工艺(US2,649,166和US3,363,133)或Linde Engineering的Rectisol处理工艺(US2,863.5277)中得到使用。不幸地,这些方法需要将燃料气体冷却到低温,然后随后再加热它到足够下游使用的温度。与溶剂洗涤型净化过程有关的这个问题可以通过使用了本发明公开的概念来得到解决。本发明涉及利用含镍的铝酸盐催化剂在450℃时提供脱硫作用和水煤气轮换反应的同时进行。该CO2料流可通过加入附加的脱硫CO轮换单元来进行进一步浓缩(完全的CO轮换),所述轮换单元位于集成单元的下游。因此,该氢的制造得到了最大化并得到了清洁,浓缩的CO2料流能够使用物理溶剂工艺,或者备选地使用高温CO2吸收剂来进行捕捉。与该概念相关地,存在几个主要的优点:通过连续从气体料流中除去H2S,COS水解平衡被完全地转移向右,该CO2料流通过水煤气轮换反应得到浓缩,并且设备成本可能得到大大的减低。
发明概述
本发明包括了一种气体料流的同时脱硫和气体轮换的方法,其包括将气体料流与镍铝酸盐催化剂进行接触。该镍铝酸盐催化剂优选选自如下组成的组,Ni2xAl2O2x+3、Ni(2-y)Ni0 yAl2O(5-y)、Ni(4-y)Ni0 yAl2O(7-y)、Ni(6-y)Ni0 yAl2O(9-y)和它们的中间体,其中x≤0.5并且0.01≤y≤2。优选地,x为1到3。更优选地,含镍化合物还包括Ni2xAl2O2x+3-zSz,其中0≤z≤2x。该含镍化合物与在气体料流中的超过10%的含硫化合物起反应。优选地,该含镍化合物与在气体料流中的超过50%的含硫化合物起反应。在气体料流内,至少10%的一氧化碳转化成二氧化碳。该含镍化合物在250℃到550℃时接触气体料流。优选地,温度为400℃到500℃,压力为10到80巴。GHSV(在STP)优选是高于500m3/m3/hr。蒸汽和CO的摩尔比率为从0.5∶1到4∶1,优选摩尔比率为从1.5∶1到3.5∶1。
该气体料流通过烃类、包括燃料气体和合成气的气化来进行生产。
本发明还包括该催化剂在燃料气体的处理中的应用,所述燃料气体包含一氧化碳,氢,二氧化碳,含硫化合物和各种杂质。
发明详述
我们在此公开了一类能够将燃料气体除硫(H2S和COS的完全脱除)并且同时将CO轮换到CO2的材料。该类材料由镍铝酸盐组成,其从作为起始原料的水滑石制备而来。该镍铝酸盐催化剂优选选自如下组成的组,Ni2xAl2O2x+3,Ni(2-y)Ni0 yAl2O(5-y),Ni(4-y)Ni0 yAl2O(7-y),Ni(6-y)Ni0 yAl2O(9-y)和它们的中间体,其中x≥0.5并且0.01≤y≤2。优选地,x为1到3。更优选地,含镍化合物还包括Ni2xAl2O2x+3zSz,其中0≤z≤2x。Ni铝酸盐材料(Ni 4.09:Al2O 7.09:2.4H2O)已显示了具有优异的硫吸收能力,即,在预穿透之前10重量%的S,并且同时实现了40-50%的CO到CO2的转化。该材料是可再生的。
另外,在此我们公开了一类在含硫气体料流中进行COS到H2S的完全水解和氢化所使用的材料和方法,从所述气体料流中进行所述H2S的完全脱除的所述材料和方法,以及将CO轮换成为CO2的所述材料和方法。该镍铝酸盐催化剂优选选自如下组成的组,Ni2xAl2O2x+3、Ni(2-y)Ni0 yAl2O(5-y)、Ni(4-y)Ni0 yAl2O(7-y)、Ni(6-y)Ni0 yAl2O(9-y)和它们的中间体,其中x≥0.5并且0.01≤y≤2。优选地,x为1到3。更优选地,含镍化合物还包括Ni2xAl2O2x+3zSz,其中0≤z≤2x。
实施例1
最终结构式Ni4.09Al2O7.09:2.4H2O的Ni铝酸盐材料,通过层状双氢氧化物(Layered Double Hydroxide,LDH)金属氧化物固溶体(Metal OxideSolid Solution,MOSS)路线来进行制备。在这一过程中,通过将328.0g的50%NaOH水溶液与1170.0g的去离子水进行混合,然后加入136.1g的NaCO3:H2O来制备透明溶液。将345.3g Ni(NO3)2:6H2O和217.7gAl(NO3)3:9H2O溶解到840.0g去离子水中来制备第二溶液。然后在搅拌下,将金属硝酸盐的水溶液在超过2小时的时间内逐滴加入到第一溶液中。将反应混合物加热至80℃,并保持在该温度下16到18小时,同时予以搅拌。然后通过真空过滤将固体分离出来,并用去离子水(26升)有力冲洗,在环境空气中干燥。在这时,X射线衍射证实了Ni-Al-O层状双氢氧化物材料的合成,其然后在450℃被锻烧(在流动空气中)6小时,接着在550℃煅烧4小时,来生成金属氧化物固溶体。得到的材料含有58.5重量%Ni,表面积为189m2/g,孔隙容积=0.337cm3/g,
实施例2
使用实施例1中制备的Ni4.09Al2O7.09:2.4H2O材料,在大气压力,450℃,与模拟吹氧气化器的气体,其含有1.1%H2S+0.0763%COS+45%H2+46%CO+7.2%CO2+0.7%CH4,来完成硫化/CO轮换实验。蒸汽已经被一起进料,其蒸汽:CO的摩尔比率为3.5∶1。湿基GHSV是2100h-1。用2%O2的N2,在500℃,GHSV=2100h-1的条件,进行氧化再生。在该最初第一阶段,在S穿透之前,硫吸收能力是10重量%S,CO至CO2和CH4的转化率为95%。Ni铝酸盐产生了10%CH4,其表示有60%平衡量甲烷的生成。在H2气氛中,样品已被加热到反应温度,使得存在于Ni铝酸盐材料中的一些Ni已经被还原为金属状态,由此产生了甲烷化反应的活性位点。在500℃氧化循环以后,当没有促进甲烷化反应的Ni0存在于镍铝酸盐材料中时,没有观察到CH4的形成。CO到CO2的转化率为50%。然而,在S穿透之前的硫吸收能力仍然是10重量%S。不希望有甲烷的形成,因为其对不被捕捉的碳量做出了贡献;然而,正如下文所显示的,在所有后续循环中,甲烷的生成量为0。
在第一循环中,随着Ni金属逐渐被硫化,甲烷形成量连续减少。在不希望受到任何理论束缚的情况下,我们相信存在于原料中的硫化合物抑制了甲烷化反应,因为它们吸收于H2将吸附的位点,即,Ni0,由此降低了加氢活性。硫毒化了Ni催化剂氢化碳原子的能力,其比毒化形成碳-碳键的能力更加严重。然而,因为原料中含有大量蒸汽,C-C键的形成也得到了抑制,使得含C化合物发生的唯一反应是水煤气轮换反应。该材料在500℃,2%O2的N2中,通过氧化再生进行再生。在氧化步骤仅仅检测到二氧化硫。
在第二循环中,在500℃氧化再生以后,材料完全恢复了硫吸收能力,但仅仅恢复42%的CO转化活性。在第二循环中,没有形成CH4。由于不存在Ni0,并且也可能由于在再生步骤之后剩余的0.5到1.5重量%残留硫导致的硫毒化效应,甲烷的形成被完全抑制。残留硫的存在通过KOH洗涤溶液的S-X射线荧光分析和XAFS分析来得到证实。正如之前指出的,硫强烈吸附在H2也要吸附的位点上,由此降低了催化剂的加氢活性。CH4的形成的完全抑制,但是在接着H2预处理步骤的氧化再生步骤之后的第二硫化循环中,相似的CO轮换为CO2的转化,指出了残留硫(来自之前硫化循环)可毒化用于甲烷化的位点的事实。人们可预想,H2处理将还原一些镍至Ni0,由此生成了用于甲烷化的活性位点。然而,该甲烷产率是零,同时CO轮换为CO2的转化率与没有所述预还原步骤的转化率相似。这表明,用于甲烷化的位点(Ni0)被硫所毒化,同时Ni氧化物(在氧化循环之后生成)位点对CO轮换和硫吸收仍然可得到。在第二循环中,在预穿透之前,硫吸收是10重量%硫。Ni材料的CO到CO2的轮换活性保持不变,CO到CO2的转化率为40-50%,甚至在材料被硫化之后。硫化镍已知是一个酸性(sour)CO轮换催化剂。
对于降低的CO轮换活性的另一理由可以是,在MOSS材料中在硫化-氧化处理之后出现的物理变化。然而,在两个氧化循环之后,材料损失了50%的表面积(表1),暗示一些MOSS结构也许已经瓦解。通过XRD看到的狭NiO峰,说明可能一些金属已经迁移,生成了更大的烧结金属氧化物晶粒。在450℃煅烧的新鲜MOSS材料与在550℃煅烧的新料具有一样的表面积,说明仅热处理不会破坏MOSS结构,但是硫化-氧化处理促进了一些表面积的损失和表面的粗糙化。
表1:暴露于不同温度和气氛下的
Ni铝酸盐的表面积,孔隙容积和孔隙直径
Figure BDA0000066176340000081
表2总结了Ni铝酸盐在脱硫和CO轮换方面的特性。根据如下公式来计算CO2和CH4的产率。
Y CO 2 = % CO 2 out - % CO 2 in % CO in
Y CH 4 = % CH 4 out - % CH 4 in % CO in + % CO 2 in
其中,XCO=一氧化碳转化率(%);YCO2=二氧化碳的产率(%);YCH4=甲烷产率(%);%(CO2,CO,CH4)in指的是在原料气中的CO2,CO或CH4体积%,%(CO2,CO,CH4)out指的是在排出气体中的CO2,CO或CH4体积%。
表2:Ni铝酸盐(Ni/Al=2)在暖气体脱硫和CO轮换方面的性能
Figure BDA0000066176340000091
实施例3(对比实施例)
通过标准浸渍技术来制备负载Ni的氧化铝样品。制备含有溶解到30去离子水中的14.83g的Ni(NO3)3:6H2O的溶液。边温和搅拌,边往溶液中,加入10.7g的R-50/R51γ-氧化铝挤出物。继续在室温下搅拌20小时,在80℃强制通风空气烘箱中,间歇搅拌下,将溶液进行蒸发,得到干燥固体。所形成的干燥固体然后在流动空气下,以3℃/min的加热速率达到550℃,并保持6小时,来进行锻烧。得到的产品通过ICP进行测定,含有38.3%Al,21.1%Ni,其900℃时的LOI=12.84%,导致最终产品结构式为Ni0.51Al2O3.51:1.0H2O。N2的BET表面积被测定为163m2/g,孔隙容积=0.361cc/g。该成品通过X射线衍射分析,其含有NiO和γ-氧化铝。在γ-氧化铝上的NiO在实施例2描述的条件下进行测试。CO到CO2的转化率与Ni铝酸盐材料相似,然而,在S穿透之前的硫吸收能力仅仅是3.9重量%S。
表3:Ni负载在氧化铝上的催化剂在暖气体脱硫和CO轮换方面的性能

Claims (10)

1.一种用于从气体料流中除去硫的催化剂,所述催化剂包含一种含镍化合物。
2.权利要求1的催化剂,其中所述含镍化合物选自由如下组成的组:Ni2xAl2O2x+3、Ni(2-y)Ni0 yAl2O(5-y)、Ni(4-y)Ni0 yAl2O(7-y)、Ni(6-y)Ni0 yAl2O(9-y)和它们的中间体,其中x≥0.5并且0.01≤y≤2。
3.权利要求2的催化剂,其中1≤x≤3。
4.权利要求3的催化剂,其中含镍化合物进一步包含Ni2xAl2O2x+3-zSz,其中0≤z≤2x。
5.一种从气体料流中除去硫的方法,其包括将所述料流与权利要求1-4的催化剂进行接触。
6.权利要求5的方法,其中含镍化合物将所述硫从所述气体料流中除去的同时,所述含镍化合物同时也催化了水煤气轮换反应。
7.权利要求6的方法,其中所述气体料流包含一氧化碳、二氧化碳、氢气、和硫化合物。
8.权利要求6的方法,其中所述含镍化合物与所述气体料流中超过10%的硫化合物反应。
9.权利要求6的方法,其中所述含镍化合物在250℃到550℃的温度下接触所述气体料流。
10.权利要求6的方法,其中蒸汽和CO的摩尔比为0.5∶1到4∶1。
CN200980148576XA 2008-12-04 2009-10-09 同时进行的暖气体脱硫作用和co轮换反应来改进合成气净化 Pending CN102239004A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/328,501 2008-12-04
US12/328,501 US7811474B2 (en) 2008-12-04 2008-12-04 Simultaneous warm gas desulfurization and CO-shift for improved syngas cleanup
PCT/US2009/060084 WO2010065192A1 (en) 2008-12-04 2009-10-09 Simultaneous warm gas desulfurization and co-shift for improved syngas cleanup

Publications (1)

Publication Number Publication Date
CN102239004A true CN102239004A (zh) 2011-11-09

Family

ID=42231308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980148576XA Pending CN102239004A (zh) 2008-12-04 2009-10-09 同时进行的暖气体脱硫作用和co轮换反应来改进合成气净化

Country Status (5)

Country Link
US (1) US7811474B2 (zh)
EP (1) EP2355924A4 (zh)
CN (1) CN102239004A (zh)
AU (1) AU2009322851B2 (zh)
WO (1) WO2010065192A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017545B2 (en) * 2008-12-04 2011-09-13 Uop Llc Dynamic composition for the removal of sulfur from a gaseous stream

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957962A (en) * 1973-04-17 1976-05-18 Shell Oil Company Process for the preparation of hydrogen-rich gas
US5939353A (en) * 1992-12-21 1999-08-17 Bp Amoco Corporation Method for preparing and using nickel catalysts
US6168768B1 (en) * 1998-01-23 2001-01-02 Exxon Research And Engineering Company Production of low sulfer syngas from natural gas with C4+/C5+ hydrocarbon recovery
CN1520454A (zh) * 2001-04-13 2004-08-11 烃类液体脱硫方法
CN1671825A (zh) * 2002-07-22 2005-09-21 出光兴产株式会社 液体烃类脱硫的方法和生产用于燃料电池的氢的方法
US20070283812A1 (en) * 2006-06-09 2007-12-13 General Electric Company System and method for removing sulfur from fuel gas streams

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2863527A (en) 1949-09-15 1958-12-09 Metallgesellschaft Ag Process for the purification of gases
US2649166A (en) 1950-05-02 1953-08-18 Allied Chem & Dye Corp Absorption of carbon dioxide from gases containing the same
US2926751A (en) 1958-09-22 1960-03-01 Fluor Corp Organic carbonate process for carbon dioxide
US3362133A (en) 1965-10-25 1968-01-09 Allied Chem Process for hydrogen sulfide removal from gas mixtures containing h2s and co2
DE1494809C3 (de) 1966-10-25 1974-01-17 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum Auswaschen von Kohlendioxid aus schwefelarmen oder schwefelfreien Gasen
DE2709768A1 (de) * 1977-03-07 1978-09-21 Metallgesellschaft Ag Verfahren zum katalytischen konvertieren von rohgas aus der vergasung fester brennstoffe
US4263020A (en) * 1980-01-02 1981-04-21 Exxon Research & Engineering Co. Removal of sulfur from process streams
US4452854A (en) * 1981-04-14 1984-06-05 United Catalysts, Inc. Catalyst and process for carbon monoxide conversion in sour gas
FR2575453B1 (fr) * 1984-12-28 1990-03-02 Pro Catalyse Procede de conversion du monoxyde de carbone par la vapeur d'eau a l'aide d'un catalyseur thioresistant
US4690806A (en) * 1986-05-01 1987-09-01 Exxon Research And Engineering Company Removal of sulfur from process streams
DE3842008A1 (de) 1988-12-14 1990-06-21 Hoechst Ag Verwendung von triacylierten ehtanolaminen als fluessige, wassermischbare peroxidaktivatoren
US5281445A (en) 1990-07-30 1994-01-25 Phillips Petroleum Company Coating of components of sulfur absorbants
US5130288A (en) 1991-03-07 1992-07-14 Phillips Petroleum Company Cogelled mixtures of hydrated zinc oxide and hydrated silica sulfur sorbents
US5254516A (en) 1992-03-26 1993-10-19 Research Triangle Institute Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance
US5244641A (en) 1992-04-28 1993-09-14 Phillips Petroleum Company Absorption of hydrogen sulfide and absorbent composition therefor
US5710091A (en) 1995-06-07 1998-01-20 Phillips Petroleum Company Sorbent compositions
US6812189B1 (en) 1998-02-24 2004-11-02 Research Triangle Institute Attrition resistant, zinc titanate-containing, reduced sulfur sorbents
AU2003301060A1 (en) * 2002-12-20 2004-07-22 Honda Giken Kogyo Kabushiki Kaisha Noble metal-free nickel catalyst formulations for hydrogen generation
US7357911B2 (en) * 2005-12-16 2008-04-15 Basf Catalysts Llc Process conditions for Pt-Re bimetallic water gas shift catalysts
FR2895415B1 (fr) 2005-12-22 2011-07-15 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957962A (en) * 1973-04-17 1976-05-18 Shell Oil Company Process for the preparation of hydrogen-rich gas
US5939353A (en) * 1992-12-21 1999-08-17 Bp Amoco Corporation Method for preparing and using nickel catalysts
US6168768B1 (en) * 1998-01-23 2001-01-02 Exxon Research And Engineering Company Production of low sulfer syngas from natural gas with C4+/C5+ hydrocarbon recovery
CN1520454A (zh) * 2001-04-13 2004-08-11 烃类液体脱硫方法
CN1671825A (zh) * 2002-07-22 2005-09-21 出光兴产株式会社 液体烃类脱硫的方法和生产用于燃料电池的氢的方法
US20060131215A1 (en) * 2002-07-22 2006-06-22 Idemitsu Kosan Co., Ltd. Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
US20070283812A1 (en) * 2006-06-09 2007-12-13 General Electric Company System and method for removing sulfur from fuel gas streams

Also Published As

Publication number Publication date
AU2009322851A1 (en) 2010-06-10
WO2010065192A1 (en) 2010-06-10
EP2355924A4 (en) 2012-12-19
US20100143229A1 (en) 2010-06-10
AU2009322851B2 (en) 2013-10-10
EP2355924A1 (en) 2011-08-17
US7811474B2 (en) 2010-10-12

Similar Documents

Publication Publication Date Title
Chen et al. Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil
US20070283812A1 (en) System and method for removing sulfur from fuel gas streams
JP5143965B2 (ja) メタノール及びエタノールの製造方法
US20120094337A1 (en) Process for producing a purified synthesis gas stream
JPH0456663B2 (zh)
TW201440888A (zh) 轉化觸媒、煤氣化工廠的氣體精製方法及氣體精製設備
Ding et al. Synthesis and characteristics of BaSrCoFe-based perovskite as a functional material for chemical looping gasification of coal
Koido et al. Fate of sulphur during simultaneous gasification of lignin-slurry and removal of hydrogen sulphide over calcium aluminate supported nickel oxide catalyst
RU2515967C2 (ru) Способ получения богатой водородом газовой смеси
US8017545B2 (en) Dynamic composition for the removal of sulfur from a gaseous stream
Liao et al. H2-rich gas production from wood biomass air-steam gasification over a multifunctional Ni1. 5Ca4. 0Mn1. 0Ox catalyst derived from biomaterial
US7759282B2 (en) Catalyst for removal of sulfer from a gaseous stream
CN102239237B (zh) 同时进行的暖气体脱硫作用和完全co轮换反应来改进合成气净化
CN102239004A (zh) 同时进行的暖气体脱硫作用和co轮换反应来改进合成气净化
Capa et al. Effect of H2S on biogas sorption enhanced steam reforming using a Pd/Ni-Co catalyst and dolomite as a sorbent
JP7423320B2 (ja) 二酸化炭素を主成分とするガス中の硫黄酸化物の除去方法
US20240140795A1 (en) Manufacturing Method and Manufacturing Apparatus of Syngas, and Manufacturing Method of Liquid Hydrocarbon Using the Same
JP2022140290A (ja) 二酸化炭素を主成分とするガス中の硫黄酸化物の除去方法
Schiaroli Synthesis gas production by combined Steam and Dry Reforming of clean biogas
Tahir et al. Integrated approach for H2-Rich syngas production from wastes using carbon-based catalysts and subsequent CO2 adsorption by carbon-based adsorbents: A review
Collins-Martinez et al. Thermodynamic Analysis of the Absorption Enhanced Steam Reforming of Biofuel Model Compounds.
KR20230135332A (ko) 이산화탄소 분해용 복합 금속산화물 촉매 및 이의 제조방법
Hu et al. NiO–Ca9Co12O28 bifunctional phase change catalysts for biomass pyrolysis to hydrogen-rich syngas
GB2618891A (en) A method of forming syngas for producing liquid hydrocarbons
CN114955999A (zh) 一种生物甘油化学链重整制氢co2原位捕集与利用的工艺及其装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111109